Geologic Framework and Hydrogeologic Characteristics of the Edwards Aquifer Outcrop, Hays County, Texas

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Framework and Hydrogeologic Characteristics of the Edwards Aquifer Outcrop, Hays County, Texas GEOLOGIC FRAMEWORK AND HYDROGEOLOGIC CHARACTERISTICS OF THE EDWARDS AQUIFER OUTCROP, HAYS COUNTY, TEXAS U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 95-4265 Prepared in cooperation with the EDWARDS UNDERGROUND WATER DISTRICT Blank Page GEOLOGIC FRAMEWORK AND HYDROGEOLOGIC CHARACTERISTICS OF THE EDWARDS AQUIFER OUTCROP, HAYS COUNTY, TEXAS By John A. Hanson and Ted A. Small U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 95–4265 Prepared in cooperation with the EDWARDS UNDERGROUND WATER DISTRICT Austin, Texas 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Acting Director Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 8027 Cameron Rd. Box 25286 Austin, TX 78754–4733 Denver, CO 80225–0286 ii CONTENTS Abstract ................................................................................................................................................................................ 1 Introduction .......................................................................................................................................................................... 1 Methods of Investigation .......................................................................................................................................... 3 Acknowledgments .................................................................................................................................................... 3 Geologic Framework ............................................................................................................................................................ 5 General Features ....................................................................................................................................................... 5 Stratigraphy ............................................................................................................................................................... 5 Hydrogeologic Characteristics ............................................................................................................................................. 7 General Features ....................................................................................................................................................... 7 Porosity and Permeability ......................................................................................................................................... 8 Summary .............................................................................................................................................................................. 9 References Cited ................................................................................................................................................................... 9 PLATE [Plate is in pocket] 1. Map showing hydrogeologic subdivisions of the Edwards aquifer outcrop, Hays County, Texas FIGURE 1. Map showing location of the study area ............................................................................................................... 2 TABLE 1. Summary of the lithologic and hydrologic properties of the hydrogeologic subdivisions of the Edwards aquifer outcrop, Hays County, Texas ................................................................................................................... 4 CONTENTS iii Blank Page Geologic Framework and Hydrogeologic Characteristics of the Edwards Aquifer Outcrop, Hays County, Texas By John A. Hanson and Ted A. Small Abstract INTRODUCTION All of the hydrogeologic subdivisions within Located in the Lower Cretaceous Kainer and the Edwards aquifer outcrop in Hays County have Person Formations of the Edwards Group (Rose, 1972) some porosity and permeability. The most porous and the overlying Georgetown Formation, the Edwards and permeable appear to be hydrogeologic sub- aquifer is one of the most permeable and productive car- division VI, the Kirschberg evaporite member of bonate aquifers in the nation. The dissolution-modified, faulted limestone aquifer (Buszka and others, 1990) is the Kainer Formation; hydrogeologic subdivision the sole source of public water supply for San Antonio III, the leached and collapsed members, undivided; and is the major source of water for Hays County. and hydrogeologic subdivision II, the cyclic and Most recharge to the Edwards aquifer occurs in marine members, undivided, of the Person Forma- counties immediately west of Bexar County (fig. 1). tion. The two types of porosity in the Edwards Streams cross Edwards aquifer outcrops (the recharge aquifer outcrop are fabric selective, which is zone) in the Balcones fault zone and lose much, if not related to depositional or diagenetic elements and all, of their flow to faults, fractures, sinkholes, and typically exists in specific stratigraphic horizons; caves in the outcrop. After entering the aquifer, the and not fabric selective, which can exist in any water moves east to points of discharge in Bexar County lithostratigraphic horizon. Permeability, the capac- (mostly municipal wells) and then northeast, parallel or ity of porous rock to transmit water, depends on the almost parallel to the northeast-trending Balcones faults physical properties of the rock such as size, shape, into Comal and Hays Counties, where it is discharged and distribution of pores, and fissuring and dissolu- by wells and springs. tion. Additional recharge to the Edwards aquifer is from Edwards aquifer outcrops in the Balcones fault Two faults, San Marcos Springs and zone in northern Bexar County and southern Comal and Mustang Branch, completely, or almost com- Hays Counties. The rugged, scenic limestone hills of the pletely, offset the Edwards aquifer by juxtaposing Edwards aquifer outcrops are the site of rapidly Edwards aquifer limestone against nearly imper- encroaching residential and commercial development. meable upper confining units along parts of their Kipp and others (1993, p. 1) report a substantial traces across Hays County. These faults are increase in development activities over the Edwards thought to be barriers, or partial barriers, to ground- recharge zone during 1992–93. They also note that water flow where the beds are juxtaposed. increased development brings a greater threat of con- tamination to the Edwards aquifer. The aquifer could be In Hays County, the Edwards aquifer proba- contaminated from spills or leakage of hazardous mate- bly is most vulnerable to surface contamination in rials; or runoff from the rapidly developing urban areas the rapidly urbanizing areas on the Edwards aquifer that surround, or are built on, the intensely faulted and outcrop. Contamination can result from spills or fractured, karstic limestone outcrops characteristic of leakage of hazardous materials; or runoff on the the recharge zone. Furthermore, some of the hydrogeo- intensely faulted and fractured, karstic limestone logic subdivisions that compose the Edwards aquifer outcrops characteristic of the recharge zone. have greater effective porosity and permeability than Abstract 1 98o 07’30" HAYS COUNTY o 30 15’ rton Ba C re 98o ek 98o 15’ Cr eek n io n O 97 o52’30" 30o 07’30" C EdwardsPlateau y Cre pr e k ess C O re io n NC e On o A k 94 45’ L B R I V E R 30o Plain R San Marcos Platform E V Base modified from University of Texas, I Bureau of Economic Geology, 1979, R 1981a, b, 1983 Coastal O Purga C to ry N C A ree L o k 29 52’30" B San Marcos Gulf EXPLANATION STUDY AREA EDWARDS AQUIFER OUTCROP 0 5 10 MILES TEXAS San Antonio HAYS COUNTY NE O COMAL Z COUNTY T L U BEXAR A COUNTY F S E N C O BAL Figure 1. Location of the study area. 2 Geologic Framework and Hydrogeologic Characteristics of the Edwards Aquifer Outcrop, Hays County, Texas others, and in areas where they crop out, might provide member of the Kainer Formation, which caps several efficient avenues for contaminants to enter the aquifer. hills in southwestern, north-central, and northeastern According to Buszka (1987, p. 2), "Carbonate aquifers Hays County, can be identified on aerial photographs by such as the Edwards are readily susceptible to ground- a pattern of concentric rings of sparse vegetation grow- water contamination where the presence of pollutants ing on the differentially weathered limestone. The coincides with the outcrop of the aquifer." In Hays regional dense member of the Person Formation can be County, the Edwards aquifer probably is most vulnera- ble to surface contamination in the rapidly urbanizing recognized on aerial photographs as small, light-to- areas on the Edwards aquifer outcrop. almost-white areas. The U.S. Geological Survey, in cooperation with Well logs and geologic map data were compiled the Edwards Underground Water District, mapped the and used in mapping the hydrogeologic subdivisions Edwards aquifer outcrop and described its hydrogeo- of the Edwards aquifer in the study area. The thick- logic characteristics (porosity and permeability) to doc- nesses of the hydrogeologic subdivisions that compose ument conditions pertinent to movement and the Edwards aquifer were determined from well logs in contamination of ground water. This report describes and adjacent to the aquifer outcrop in Hays County. the
Recommended publications
  • Geophysical Mapping of Mount Bonnell Fault of Balcones Fault Zone
    Geophysical mapping of Mount Bonnell fault of Balcones fault zone and its implications on Trinity-Edwards Aquifer interconnection, central Texas, USA Mustafa Saribudak1 Abstract There are up to 1200 ft (365 m) of total displacement across the Geophysical surveys (resistivity, natural potential [self-po- BFZ. Faults generally dip steeply (45–85°), varying primarily tential], conductivity, magnetic, and ground penetrating radar) due to specific rock properties and local stress fields (Ferrill and were conducted at three locations across the Mount Bonnell fault Morris, 2008). in the Balcones fault zone of central Texas. The normal fault has The BFZ includes the Edwards and Trinity aquifers, which hundreds of meters of throw and is the primary boundary between are primary sources of water for south-central Texas communities, two major aquifers in Texas, the Trinity and Edwards aquifers. including the city of San Antonio. The Trinity Aquifer underlies In the near surface, the fault juxtaposes the Upper Glen Rose the Edwards Aquifer through the Balcones fault zone. Formation on the Edwards Plateau, consisting of interbedded The BFZ’s most prominent fault is the Mount Bonnell, with limestone and marly limestone, against the Edwards Group, which a vertical throw of up to 600 ft (183 m) (Figure 1). The fault is mostly limestone, on the eastern down-thrown side (coastal hydrogeologically juxtaposes these Cretaceous carbonate aquifers plain). The Upper Glen Rose member is considered to be the during the Miocene tectonic deformation associated with the Upper Trinity Aquifer and also a confining zone underlying the Balcones fault zone, where the younger Edwards Group limestone Edwards Aquifer.
    [Show full text]
  • A Look at the Texas Hill Country Following the Path We Are on Today Through 2030
    A Look at the Texas Hill Country Following the path we are on today through 2030 This unique and special region will grow, but what will the Hill Country look like in 2030? Growth of the Hill Country The Hill Country Alliance (HCA) is a nonprofit organization whose purpose is to raise public awareness and build community support around the need to preserve the natural resources and heritage of the Central Texas Hill Country. HCA was formed in response to the escalating challenges brought to the Texas Hill Country by rapid development occurring in a sensitive eco-system. Concerned citizens began meeting in September of 2004 to share ideas about strengthening community activism and educating the public about regional planning, conservation development and a more responsible approach growth in the Hill Country. This report was prepared for the Texas Hill Country Alliance by Pegasus Planning 2 Growth of the Hill Country 3 Growth of the Hill Country Table of Contents Executive Summary Introduction The Hill Country Today The Hill Country in 2030 Strategic Considerations Reference Land Development and Provision of Utilities in Texas (a primer) Organizational Resources Materials Reviewed During Project End Notes Methodology The HCA wishes to thank members of its board and review team for assistance with this project, and the authors and contributors to the many documents and studies that were reviewed. September 2008 4 Growth of the Hill Country The Setting The population of the 17-County Hill Country region grew from approximately 800,000 in 1950 (after the last drought on record) to 2.6 million in 2000.
    [Show full text]
  • USGS Water-Resources Investigations Report 97-4133
    HYDROGEOLOGIC FRAMEWORK AND GEOCHEMISTRY OF THE EDWARDS AQUIFER SALINE-WATER ZONE, SOUTH-CENTRAL TEXAS U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97–4133 FRESHWATER ZONE SALINE-WATER ZONE Prepared in cooperation with the EDWARDS AQUIFER AUTHORITY and SAN ANTONIO WATER SYSTEM HYDROGEOLOGIC FRAMEWORK AND GEOCHEMISTRY OF THE EDWARDS AQUIFER SALINE-WATER ZONE, SOUTH-CENTRAL TEXAS By George E. Groschen and Paul M. Buszka U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97–4133 Prepared in cooperation with the EDWARDS AQUIFER AUTHORITY and SAN ANTONIO WATER SYSTEM Austin, Texas 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Acting Director Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 8011 Cameron Rd. Box 25286 Austin, TX 78754–3898 Denver, CO 80225–0286 ii CONTENTS Abstract ................................................................................................................................................................................ 1 Introduction .......................................................................................................................................................................... 1 Purpose and Scope ...................................................................................................................................................
    [Show full text]
  • Late Cretaceous and Tertiary Burial History, Central Texas 143
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org L C T B H, C T Peter R. Rose 718 Yaupon Valley Rd., Austin, Texas 78746, U.S.A. ABSTRACT In Central Texas, the Balcones Fault Zone separates the Gulf Coastal Plain from the elevated Central Texas Platform, comprising the Hill Country, Llano Uplift, and Edwards Plateau provinces to the west and north. The youngest geologic for- mations common to both regions are of Albian and Cenomanian age, the thick, widespread Edwards Limestone, and the thin overlying Georgetown, Del Rio, Buda, and Eagle Ford–Boquillas formations. Younger Cretaceous and Tertiary formations that overlie the Edwards and associated formations on and beneath the Gulf Coastal Plain have no known counterparts to the west and north of the Balcones Fault Zone, owing mostly to subaerial erosion following Oligocene and Miocene uplift during Balcones faulting, and secondarily to updip stratigraphic thinning and pinchouts during the Late Cretaceous and Tertiary. This study attempts to reconstruct the burial history of the Central Texas Platform (once entirely covered by carbonates of the thick Edwards Group and thin Buda Limestone), based mostly on indirect geological evidence: (1) Regional geologic maps showing structure, isopachs and lithofacies; (2) Regional stratigraphic analysis of the Edwards Limestone and associated formations demonstrating that the Central Texas Platform was a topographic high surrounded by gentle clinoform slopes into peripheral depositional areas; (3) Analysis and projection
    [Show full text]
  • Map Showing Geology and Hydrostratigraphy of the Edwards Aquifer Catchment Area, Northern Bexar County, South-Central Texas
    Map Showing Geology and Hydrostratigraphy of the Edwards Aquifer Catchment Area, Northern Bexar County, South-Central Texas By Amy R. Clark1, Charles D. Blome2, and Jason R. Faith3 Pamphlet to accompany Open-File Report 2009-1008 1Palo Alto College, San Antonio, TX 78224 2U.S. Geological Survey, Denver, CO 80225 3U.S. Geological Survey, Stillwater, OK 74078 U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Denver, Colorado: 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Clark, A.R., Blome, C.D., and Faith, J.R, 2009, Map showing the geology and hydrostratigraphy of the Edwards aquifer catchment area, northern Bexar County, south- central Texas: U.S. Geological Survey Open-File Report 2009-1008, 24 p., 1 pl. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Page Introduction……………………………………………………………………….........……..…..4 Physical Setting…………………………………………………………..………….….….….....7 Stratigraphy……………..…………………………………………………………..….…7 Structural Framework………………...……….……………………….….….…….……9 Description of Map Units……………………………………………………….…………...….10 Summary……………………………………………………………………….…….……….....21 References Cited………………………………………….…………………………...............22 Figures 1.
    [Show full text]
  • Wildlife Populations in Texas
    Wildlife Populations in Texas • Five big game species – White-tailed deer – Mule deer – Pronghorn – Bighorn sheep – Javelina • Fifty-seven small game species – Forty-six migratory game birds, nine upland game birds, two squirrels • Sixteen furbearer species (i.e. beaver, raccoon, fox, skunk, etc) • Approximately 900 terrestrial vertebrate nongame species • Approximately 70 species of medium to large-sized exotic mammals and birds? White-tailed Deer Deer Surveys Figure 1. Monitored deer range within the Resource Management Units (RMU) of Texas. 31 29 30 26 22 18 25 27 17 16 24 21 15 02 20 28 23 19 14 03 05 06 13 04 07 11 12 Ecoregion RMU Area (Ha) 08 Blackland Prairie 20 731,745 21 367,820 Cross Timbers 22 771,971 23 1,430,907 24 1,080,818 25 1,552,348 Eastern Rolling Plains 26 564,404 27 1,162,939 Ecoregion RMU Area (Ha) 29 1,091,385 Post Oak Savannah 11 690,618 Edwards Plateau 4 1,308,326 12 475,323 5 2,807,841 18 1,290,491 6 583,685 19 2,528,747 7 1,909,010 South Texas Plains 8 5,255,676 28 1,246,008 Southern High Plains 2 810,505 Pineywoods 13 949,342 TransPecos 3 693,080 14 1,755,050 Western Rolling Plains 30 4,223,231 15 862,622 31 1,622,158 16 1,056,147 39,557,788 Total 17 735,592 Figure 2. Distribution of White-tailed Deer by Ecological Area 2013 Survey Period 53.77% 11.09% 6.60% 10.70% 5.89% 5.71% 0.26% 1.23% 4.75% Edwards Plateau Cross Timbers Western Rolling Plains Post Oak Savannah South Texas Plains Pineywoods Eastern Rolling Plains Trans Pecos Southern High Plains Figure 3.
    [Show full text]
  • A RECREATIONAL USE SURVEY of the SAN MARCOS RIVER Thesis
    A RECREATIONAL USE SURVEY OF THE SAN MARCOS RIVER Thesis Presented to the Graduate Council of Southwest Texas State University in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By David D Bradsby San Marcos, Texas May 1994 - A RECREATIONAL USE SURVEY OF THE SAN MARCOS RIVER Approved: B. G. Whiteside, Chairman Approved: TABLE OF CONTENTS List of Figures . i v List of Tables . vi Acknowledgements . vi i Introduction . 1 Recreational Literature Review . 2 San Marcos River . 6 Threatened and Endangered Species . 2 4 Methods . 27 Results.................................... 35 Discussion . 5 4 Conclusions . 6 9 Literature Cited . 7 2 iii LIST OF FIGURES Figure Page 1 . Map of the upper San Marcos River from Spring Lake to the Blanco River confluence ................ 7 2. Detailed map of the upper San Marcos River showing study areas ...... .... ..... ..... .. ... .. ....... ... .. ..... ......... ...... ... 9 3. Pepper's study area on the San Marcos River looking upstream .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. 1 1 4. Sewell Park study area on the San Marcos River looking downstream............................................................... 1 3 5. City Park study area on the San Marcos River ............ 1 5 6. Rio Vista Annex study area on the San Marcos River ........... ......... .... .... .... ......... ........ .... ......... ....... 1 7 7. Rio Vista Park study area on the San Marcos River ................ ......... ....... ..... .... ........ .... ........
    [Show full text]
  • April 2014 Midden
    The Midden League City Rain Garden by Chris LaChance Galveston Bay Area Chapter - Texas Master Naturalists April 2014 Table of Contents President’s Corner by Maureen Nolan-Wilde, President 2014 Prairie Ponderings 2 Wetland Wanderings 2 In mid-January, current and former board members took part in a planning day at Julie Receives Award 4 Galveston Island State Park. The purpose of the day was to build on the Chapter’s accomplishments, identify opportunities and help plan for the future. 2014 Plant of the Yr. 4 Early People of Texas 6 We developed a “roadmap” that can be used to set goals and focus our efforts for 2014 and beyond. We identified the following areas where we can make immediate Heritage Book Study - 6 improvements: Review Membership 7 Succession planning for key roles (learning exactly what board members and Outreach Survey committee chairs do so that, in the future, this knowledge isn’t lost), Coastal Mammals AT 7 Pelican AT 8 Leveraging current technologies (for example, making better use of the website, social media and tools for sending messages to our members), Diurnal Raptors AT 9 GBA Clan 10 Growing our outreach efforts (such as stewardship and education in schools). WaterSmart Award 12 Since that meeting, we have launched an image database that contains over 1,000 GBAC 1st Camp Out 12 pictures and has been viewed more than 10,200 times. This database, which is easily 2014 Class Fun 14 accessible and can be viewed 24/7, is a great example of using technology to make us more efficient and effective.
    [Show full text]
  • MEXICO Las Moras Seco Creek K Er LAVACA MEDINA US HWY 77 Springs Uvalde LEGEND Medina River
    Cedar Creek Reservoir NAVARRO HENDERSON HILL BOSQUE BROWN ERATH 281 RUNNELS COLEMAN Y ANDERSON S HW COMANCHE U MIDLAND GLASSCOCK STERLING COKE Colorado River 3 7 7 HAMILTON LIMESTONE 2 Y 16 Y W FREESTONE US HW W THE HIDDEN HEART OF TEXAS H H S S U Y 87 U Waco Lake Waco McLENNAN San Angelo San Angelo Lake Concho River MILLS O.H. Ivie Reservoir UPTON Colorado River Horseshoe Park at San Felipe Springs. Popular swimming hole providing relief from hot Texas summers. REAGAN CONCHO U S HW Photo courtesy of Gregg Eckhardt. Y 183 Twin Buttes McCULLOCH CORYELL L IRION Reservoir 190 am US HWY LAMPASAS US HWY 87 pasas R FALLS US HWY 377 Belton U S HW TOM GREEN Lake B Y 67 Brady iver razos R iver LEON Temple ROBERTSON Lampasas Stillhouse BELL SAN SABA Hollow Lake Salado MILAM MADISON San Saba River Nava BURNET US HWY 183 US HWY 190 Salado sota River Lake TX HWY 71 TX HWY 29 MASON Buchanan N. San G Springs abriel Couple enjoying the historic mill at Barton Springs in 1902. R Mason Burnet iver Photo courtesy of Center for American History, University of Texas. SCHLEICHER MENARD Y 29 TX HW WILLIAMSON BRAZOS US HWY 83 377 Llano S. S an PECOS Gabriel R US HWY iver Georgetown US HWY 163 Llano River Longhorn Cavern Y 79 Sonora LLANO Inner Space Caverns US HW Eckert James River Bat Cave US HWY 95 Lake Lyndon Lake Caverns B. Johnson Junction Travis CROCKETT of Sonora BURLESON 281 GILLESPIE BLANCO Y KIMBLE W TRAVIS SUTTON H GRIMES TERRELL S U US HWY 290 US HWY 16 US HWY P Austin edernales R Fredericksburg Barton Springs 21 LEE Somerville Lake AUSTIN Pecos
    [Show full text]
  • Ecoregions of Texas
    Ecoregions of Texas 23 Arizona/New Mexico Mountains 26 Southwestern Tablelands 30 Edwards Plateau 23a Chihuahuan Desert Slopes 26a Canadian/Cimarron Breaks 30a Edwards Plateau Woodland 23b Montane Woodlands 26b Flat Tablelands and Valleys 30b Llano Uplift 24 Chihuahuan Deserts 26c Caprock Canyons, Badlands, and Breaks 30c Balcones Canyonlands 24a Chihuahuan Basins and Playas 26d Semiarid Canadian Breaks 30d Semiarid Edwards Plateau 24b Chihuahuan Desert Grasslands 27 Central Great Plains 31 Southern Texas Plains 24c Low Mountains and Bajadas 27h Red Prairie 31a Northern Nueces Alluvial Plains 24d Chihuahuan Montane Woodlands 27i Broken Red Plains 31b Semiarid Edwards Bajada 24e Stockton Plateau 27j Limestone Plains 31c Texas-Tamaulipan Thornscrub 25 High Plains 29 Cross Timbers 31d Rio Grande Floodplain and Terraces 25b Rolling Sand Plains 29b Eastern Cross Timbers 25e Canadian/Cimarron High Plains 29c Western Cross Timbers 25i Llano Estacado 29d Grand Prairie 25j Shinnery Sands 29e Limestone Cut Plain 25k Arid Llano Estacado 29f Carbonate Cross Timbers 25b 26a 26a 25b 25e Level III ecoregion 26d 300 60 120 mi Level IV ecoregion 26a Amarillo 27h 60 0 120 240 km County boundary 26c State boundary Albers equal area projection 27h 25i 26b 25j 27h 35g 35g 26b Wichita 29b 35a 35c Lubbock 26c Falls 33d 27i 29d Sherman 35a 25j Denton 33d 35c 32a 33f 35b 25j 26b Dallas 33f 35a 35b 27h 29f Fort 35b Worth 33a 26b Abilene 32c Tyler 29b 24c 29c 35b 23a Midland 26c 30d 35a El Paso 24a 23b Odessa 35b 24a 24b 25k 27j 33f Nacogdoches 24d Waco Pecos 25j
    [Show full text]
  • L ANDERSON Thinking Is More Important Than Elaborate
    Stratigraphy of the Fredericksburg Group, East Texas Basin L ANDERSON thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train­ ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob­ jective attitude and to examine critically all geological and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Cover: Isopach of the Fredericksburg Group. THE BAYLOR PRINTING SERVICE WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 47 Stratigraphy of the Fredericksburg Group, East Texas Basin L. Marlow Anderson BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1989 Baylor Geological Studies EDITORIAL STAFF Janet L. Burton, Editor O. T. Hayward, Ph.D., Advisor, Cartographic Editor general and urban geology and what have you Joe C. Yelderman, Jr., Ph.D., Associate Editor hydrogeology Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D. stratigraphy, petroleum geology Rena Bonem, Ph.D. paleontology, paleoecology Brown, Ph.D. structural tectonics S.
    [Show full text]
  • Geological Society of America Bulletin
    Downloaded from gsabulletin.gsapubs.org on January 11, 2012 Geological Society of America Bulletin Structural framework of the Edwards Aquifer recharge zone in south-central Texas David A. Ferrill, Darrell W. Sims, Deborah J. Waiting, Alan P. Morris, Nathan M. Franklin and Alvin L. Schultz Geological Society of America Bulletin 2004;116, no. 3-4;407-418 doi: 10.1130/B25174.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.
    [Show full text]