(PAC) Rev 24 Based on Applicable Aegls, Erpgs, Or Teels (Chemicals Listed by CASRN) PAC Rev 24 – August 2008
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2013 Pguy Acd Labs Presentation
‘Next Generation Fingerprinting’ A GC‐HR‐TOF‐MS Method to Semi‐Quantify Constituents in Aerosols and Aerosol Fractions E. Dossin, A. Monge, E. Martin, P. Pospisil, A. Knorr, M.C. Bentley, P.A. Guy Metabolomics & Analytical Chemistry Gr., Philip Morris Products SA, 2000 Neuchatel, Switzerland Outline 1. Description of the existing GC-MS fingerprinting method Pros & cons of the current fingerprinting method Why switching to a 7200 Agilent high resolution MS instrument? 2. How to tackle semi-quantification of the smoke constituents with the help of chemoinformatics tools Curation step for smoke constituents to be monitored Analysis of reference standards Retention time prediction model (QSPR approach) Selection of appropriate internal standards (clustering approach) 3. Semi-quantification from calibration curve of reference standards Linearity Assessment of silylation 4. What about other smoke constituents? 5. Conclusion Page: 2 Existing Fingerprinting Method • Aerosol sample generated from a smoking machine (ISO) – Whole smoke – Gas Vapor Phase (GVP) sbPBS – Total Particulate Matter (TPM) • Compounds list • GC columns (HP6890 GC) – DB-624: HS-SPME-GC-MS Volatile Chemicals – DB-FFAP: GC-MS Non Polar Chemicals –DB-5-MS: HT-GC-MS Polar Chemicals (TMS) • Detection (MSD5973 MS) – Electron ionization mode – Full scan (low resolution) Semi-quantification (d6-phenol) Page: 3 Description of the Former GC‐MS Fingerprinting Method (HP6890 GC ‐ MSD5973 MS) Cell culture Medium plus Cigarette DB-624 column ● Headspace(HS)-SPME-GC-MS Smoke high -
(12) United States Patent (10) Patent N0.: US 7,265,155 B2 Artman Et A1
US007265155B2 (12) United States Patent (10) Patent N0.: US 7,265,155 B2 Artman et a1. (45) Date of Patent: *Sep. 4, 2007 (54) TREATING A VARIETY OF PATHOLOGICAL W0 98 08498 A 3/1998 CONDITIONS, INCLUDING SPASTICITY WO WO98/08498 3/1998 AND CONVULSIONS, BY EFFECTING A WO WO99/44623 3/1999 MODULATION OF CNS ACTIVITY WITH W0 WO 01/28516 10/2000 ISOVALERAMIDE, ISOVALERIC ACID, OR A RELATED COMPOUND OTHER PUBLICATIONS Schon and Blau, J Neurol Neurosurg Psychiatry, Sep. 1987: (75) Inventors: Linda D. Artman, Salt Lake City, UT 50(9):1148-1152.* (US); Manuel Balandrin, Sandy, UT Dorland’s Medical Dictionary 27th ed. p. 379* (US); Robert L. Smith, Lansdale, PA Pharmacotherapy, A Pathophysiologic Approach, Dipiro et al.2nd (Us) ed. 1991, pp. 1232, 1238).* Drug facts and comparisons 1999 ed. pp. 1595-1597(“Drug (73) Assignee: NBS Pharmaceuticals, Inc., Salt Lake Facts”).* City, UT (US) Pharmacotherapy, A Pathophysiologic Approach, Dipiro et al. 2nd ed. 1991, pp. 1232 & 1238* Notice: Subject to any disclaimer, the term of this Drug Facts and Comparisons. 1999 ed. pp. 1595-1597 (“Drug patent is extended or adjusted under 35 Facts”).* Julius A. Vida “Advances in Anticonvulsant Drug Development”; USC 154(b) by 0 days. Anticonvulsants (1997) pp. 1-9; Academic Press. Julius A. Vida “Noncyclic Anticonvulsants”; Anticonvulsants This patent is subject to a terminal dis (1977) pp. 577-619; Academic Press. claimer. Salim Hadad, et al. “Pharmacokinetic Analysis and Antiepileptic Activity of N-Valproyl Deriatives of GABA and Glycine”; Phar (21) Appl. N0.: 10/614,344 maceutical Research (1995), pp. 905-907; Plenum Publishing Cor poration. -
List of Lists
United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals -
Hazardous Substances (Chemicals) Transfer Notice 2006
16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but -
OZO-L-CYCLOPBNTBNE. 1-CAEBOXYLATE and ETHYL 2-METHYL-3-OXOCYCLOPENTANECAKBOXYLATE
PART I THE SYNTHESES AND EEACTIONS OF METHYL 2-METHYL-^-OZO-l-CYCLOPBNTBNE. 1-CAEBOXYLATE AND ETHYL 2-METHYL-3-OXOCYCLOPENTANECAKBOXYLATE PAET II A STUDY OF THE REACTIONS OF GRIGNARD REAGENTS WITH ESTERS OF LEVULINIC ACID DISSERTATION Presented. In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By James Li McPherson, B.S., M.A, The Ohio State University 1955 Approved by: Adviser ACKNOWLEnXSMEWT It is a pleasure to express ray deep appreciation to Dr. Melvin S. Nevraan who suggested this problem, and whose advice and encouragement were an invaluable aid throughout this investigation, and to extend to the Upjohn Company, Kalamazoo, Michigan, ray sincere appreciation for a fellowship in connection with this work. il TABLE OF CONTENTS Aoknowledgeinent Part I The Syntheses and Beaotlons of Methyl S-raethyl-l-oxo-l-cyclopentene- 1-carhoxylate (IX) and ethyl 2-methyl~5-oxocyclopentanecarboxylate (Vl) Chapter Page I Introduction 1 II Synthesis 1. Discussion of Results 12 2. Flor Sheet (Fig. 5) 15 5. Diethyl 2-cyanc«3-taethylhutanedioate (ll) l6 k . Diethyl 2-cyano-2.-(2-oyanoethyl)-3- methylhutanedioate (ill) l8 5, Tfiethyl ^-metbyl-l, $,4-pentanetricarhoxylate (l?) 19 6 , Diethyl 2-methyl-3"Oxo«l,it— cyclopentane dicarhoxylate (v) 22 7, Ethyl 2~methyl-3-oxocyclopentanecar'boxylate (Vl) 2 k 8 , 2«Methyl*-3-'Oxo"l-cyclopentene-*l« carhoxylic acid (VIIl) 26 9* 2r^ethyl-3»-oxocyclopentaneoarh0xylic acid 29 10 0 Methyl 2p-methyl"3~oxo«l-cyclopentene" 1-carhoxylate (ix) 52 11. Ethyl 2-methyl~3'*oxor«l-cyclopentene" Imcarhoxylate (VIl) 55 III Reactions 1. -
Chemical Compatibility Storage Group
CHEMICAL SEGREGATION Chemicals are to be segregated into 11 different categories depending on the compatibility of that chemical with other chemicals The Storage Groups are as follows: Group A – Compatible Organic Acids Group B – Compatible Pyrophoric & Water Reactive Materials Group C – Compatible Inorganic Bases Group D – Compatible Organic Acids Group E – Compatible Oxidizers including Peroxides Group F– Compatible Inorganic Acids not including Oxidizers or Combustible Group G – Not Intrinsically Reactive or Flammable or Combustible Group J* – Poison Compressed Gases Group K* – Compatible Explosive or other highly Unstable Material Group L – Non-Reactive Flammable and Combustible, including solvents Group X* – Incompatible with ALL other storage groups The following is a list of chemicals and their compatibility storage codes. This is not a complete list of chemicals, but is provided to give examples of each storage group: Storage Group A 94‐75‐7 2,4‐D (2,4‐Dichlorophenoxyacetic acid) 94‐82‐6 2,4‐DB 609-99-4 3,5-Dinitrosalicylic acid 64‐19‐7 Acetic acid (Flammable liquid @ 102°F avoid alcohols, Amines, ox agents see SDS) 631-61-8 Acetic acid, Ammonium salt (Ammonium acetate) 108-24-7 Acetic anhydride (Flammable liquid @102°F avoid alcohols see SDS) 79‐10‐7 Acrylic acid Peroxide Former 65‐85‐0 Benzoic acid 98‐07‐7 Benzotrichloride 98‐88‐4 Benzoyl chloride 107-92-6 Butyric Acid 115‐28‐6 Chlorendic acid 79‐11‐8 Chloroacetic acid 627‐11‐2 Chloroethyl chloroformate 77‐92‐9 Citric acid 5949-29-1 Citric acid monohydrate 57-00-1 Creatine 20624-25-3 -
395 B 536 Winstal. O. Saito EEEEEE
USOO8426439B2 (12) UnitedO States Patent (10) Patent No.: US 8.426,439 B2 Ciccocioppo (45) Date of Patent: *Apr. 23, 2013 (54) COMPOSITIONS AND METHODS FOR 7,510,728 B2 3/2009 Koike ........................... 424/464 PROPHYLAXIS AND TREATMENT OF 7,517,900 B2 4/2009 Pendri et al. ... 514,404 7,524,975 B2 4/2009 Mae et al. ... 549,405 ADDCTIONS 2002fOOO6942 A1 1/2002 Davis ........... ... 514,369 2002fOO77320 A1 6/2002 Lohray et al. 514/226.2 (75) Inventor: Roberto Ciccocioppo, Camerino (IT) 2003/0069246 A1 4/2003 Darrow et al. ................ 514,245 2003/010.0587 A1 5/2003 Moinet et al. ................. 514,369 (73) Assignee: Omeros Corporation, Seattle, WA (US) 2003/0220373 Al 1 1/2003 Jaye et al. ... 514,342 2004/0028735 A1 2/2004 Kositprapa ... 424/468 2004/OO77525 A1 4/2004 Chapman et al. ... 514/2 - r 2004/0096499 A1 5/2004 Vaya et al. ... 424/468 (*) Notice: Subject to any disclaimer, the term of this 2004/0127443 A1 7/2004 Pershadsingh 514,44 patent is extended or adjusted under 35 2004/0204472 A1 10/2004 Briggs et al. 514,406 U.S.C. 154(b) by 859 days. 2005, 00041 79 A1 1/2005 Pedersen ...... ... 514,342 2005, OO14786 A1 1/2005 Sun et al. .. ... 514/313 This patent is Subject to a terminal dis- 2005, OO 14833 A1 1/2005 Clark et al. .. ... 514,561 claimer. 2005, 0096331 A1 5/2005 Das et al. 514,259.3 2005, 01711.1.0 A1 8, 2005 Yu et al. ....... ... 514,248 2006, OOO9518 A1 1/2006 Campbell et al. -
Thermochemical Properties and Regularities of Amides, Anilides
DOI: 10.17344/acsi.2017.3683 Acta Chim. Slov. 2018, 65, 127–130 127 Scientific paper Thermochemical Properties and Regularities of Amides, Anilides, and Amidic Acids Alma Kairlapovna Ryskaliyeva,* Murat Ergalievich Baltabayev and Aigul Moldakhmetovna Zhubatova Kazakh National Agrarian University, 8 Abay Av., 050000 Almaty, Kazakhstan * Corresponding author: E-mail: [email protected] Received: 08-07-2017 Abstract The thermodynamic properties of carbamide and its alkyl substituted were studied insufficiently. In this article, the en- thalpies of combustion of ΔсН of some amides, anilides and amidic acids have been determined experimentally; their standard enthalpies of formation have been calculated. Linear dependences between the average atomic enthalpy of + combustion of ΔcH amides and their basicity constants in acidic aqueous solutions of pKBH have been established; a correlation that relates the enthalpies of combustion of amides and the corresponding amidic acids has been found. Keywords: Enthalpy of combustion, thermochemistry, amides, correlation analysis 3 1. Introduction self-packing calorimetric bomb (Vint. = 325 cm ), equipped with two valves (for input and output of gases), was used to Amides, anilides and their derivatives play an im- determine the enthalpies of combustion of the studied portant role in various biochemical processes and are compounds. The measurement error of the calorimeter therefore widely used as analytical and organic reagents in was ± 0.1%, which was absolutely insufficient to make pre- plant growing, -
Cytotoxic Methylthioadenosine Analogues by Thomas Doerksen B
Cytotoxic Methylthioadenosine Analogues by Thomas Doerksen B.Sc., The King’s University, 2015 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Chemistry © Thomas Doerksen, 2016 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Cytotoxic Methylthioadenosine Analogues by Thomas Doerksen BSc, The King’s University, 2015 Supervisory Committee Dr. Jeremy E. Wulff (Department of Chemistry) Supervisor Dr. Thomas Fyles (Department of Chemistry) Departmental Member Dr. Neil Burford (Department of Chemistry) Departmental Member iii Abstract Supervisory Committee Dr. Jeremy Wulff (Department of Chemistry) Supervisor Dr. Thomas Fyles (Department of Chemistry) Departmental Member Dr. Neil Burford (Department of Chemistry) Departmental Member The gene for methylthioadenosine phosphorylase (MTAP) is absent in almost 30% of cancers, opening a door for selective chemotherapy. One strategy to target the absence of MTAP involves the design of a cytotoxic methylthioadenosine (MTA) analogue. Non-cancerous cells would break down the cytotoxic analogue, since they contain MTAP, but cancerous cells would not, since they do not have MTAP. However, before such a compound can be made, we need to better understand the types of substrates accommodated by MTAP. The purpose of this thesis was therefore to explore a series of MTA analogues, probing the structure-function relationships between MTAP and specific structural modifications of MTA. Nine phenylthioadenosine (PTA) derivatives bearing ortho-, meta-, or para- methyl carboxylate, carboxylate, and hydroxymethyl substituents were synthesized and tested for cytotoxicity and as substrates for MTAP. -
Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane
Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane P. NACCACHE and R. I. SHA'AFI From the Department of Physiology, The University of Connecticut School of Medicine, Farmington, Connecticut 06032 ABSTRACT The permeability of human red cell membrane to 90 different molecules has been measured. These solutes cover a wide spectrum of non- electrolytes with varying chemical structure, chain length, lipid solubility, chemical reactive group, ability to form hydrogen bonds, and other properties. In general, the present study suggests that the permeability of red cell membrane to a large solute is determined by lipid solubility, its molecular size, and its hydrogen-bonding ability. The permeability coefficient increases with increas- ing lipid solubility and decreasing ability to form hydrogen bonds, whereas it decreases with increasing molecular size. In the case of small solutes, the pre- dominant diffusion factor is steric hindrance augmented by lipid solubility. It is also found that replacement of a hydroxyl group by a carbonyl group or an ether linkage tends to increase permeability. On the other hand, replacement of a hydroxyl group by an amide group tends to decrease the permeability coeffi- cient. INTRODUCTION Recently, the permeability coefficients of a series of amide, ureas, and diols have been measured on human red cells (1). Based on these studies, it was postulated that there are three important variables which need to be consid- ered separately in understanding the permeation process across human red cell membranes. The first is a parameter describing lipid solubility, the second a parameter depending on molecular size, and the third a parameter which is concerned with the chemical nature of the solute. -
Ep 3043784 B9
(19) *EP003043784B9* (11) EP 3 043 784 B9 (12) CORRECTED EUROPEAN PATENT SPECIFICATION (15) Correction information: (51) Int Cl.: Corrected version no 1 (W1 B1) A61K 31/085 (2006.01) C07C 255/54 (2006.01) (2006.01) Corrections, see C07D 213/85 Claims EN 1, 8, 10 (86) International application number: (48) Corrigendum issued on: PCT/US2014/054375 20.11.2019 Bulletin 2019/47 (87) International publication number: (45) Date of publication and mention WO 2015/035223 (12.03.2015 Gazette 2015/10) of the grant of the patent: 15.05.2019 Bulletin 2019/20 (21) Application number: 14842085.4 (22) Date of filing: 05.09.2014 (54) ARYL ETHERS AND USES THEREOF ARYLETHER UND VERWENDUNGEN DAVON ARYLÉTHERS ET UTILISATIONS DE CEUX-CI (84) Designated Contracting States: • RIZZI, James P. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Irving, TX 75063 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • SCHLACHTER, Stephen, T. PL PT RO RS SE SI SK SM TR Dallas, TX 75208 (US) • WALLACE, Eli, M. (30) Priority: 09.09.2013 US 201361875674 P Richardson, TX 75080 (US) 11.04.2014 US 201461978421 P • WANG, Bin Dallas, TX 75229 (US) (43) Date of publication of application: • WEHN, Paul 20.07.2016 Bulletin 2016/29 Dallas, TX 75205 (US) • XU, Rui (60) Divisional application: Dallas, TX 75205 (US) 18185557.8 / 3 417 851 • YANG, Hanbiao 18185565.1 / 3 417 852 Coppell, TX 75019 (US) 19192594.0 (74) Representative: Mewburn Ellis LLP (73) Proprietor: Peloton Therapeutics, Inc. -
Chemical Compatibility Storage Codes1
CHEMICAL COMPATIBILITY STORAGE CODES1 Storage Group A: Compatible Organic Bases Identifier Name 100‐46‐9 Benzylamine 100‐85‐6 Benzyltrimethylammonium hydroxide 108‐91‐8 Cyclohexylamine 111‐42‐2 Diethanolamine 109‐89‐7 Diethylamine 75‐04‐7 Ethylamine 107‐15‐3 Ethylenediamine 110‐89‐4 Piperidine 102‐71‐6 Triethanolamine 121‐44‐8 Triethylamine Storage Group B: Compatible Pyrophoric And Water Reactive Materials Identifier Name 7783‐70‐2 Antimony pentafluoride 98‐88‐4 Benzoyl chloride 353‐42‐4 Boron triflouride compound with methyl ether (1:1) 594‐19‐4 Tert‐Butyllithium 156‐62‐7 Calcium cyanamide 16853‐85‐3 Lithium aluminum hydride 4111‐54‐0 Lithium diisopropylamide 7580‐67‐8 Lithium hydride 7439‐93‐2 Lithium metal (e.g., in THF) 124‐63‐0 Methanesulfonyl chloride 917‐54‐4 Methyllithium solution (and other alkyls) 7440‐09‐7 Potassium metal 17242‐52‐3 Potassium amide 16940‐66‐2 Sodium borohydride 7646‐69‐7 Sodium hydride 7440‐66‐6 Zinc (fume or dust) Storage Group C: Compatible Inorganic Bases Identifier Name 1336‐21‐6 Ammonium hydroxide 17194‐00‐2 Barium hydroxide 1305‐62‐0 Calcium hydroxide 21351‐79‐1 Cesium hydroxide 1310‐65‐2 Lithium hydroxide 1 Adapted from Stanford University’s ChemTracker Storage System. Used with permission from Lawrence M. Gibbs, Stanford University. 1310‐58‐3 Potassium hydroxide 1310‐82‐3 Rubidium hydroxide 1310‐73‐2 Sodium hydroxide 18480‐07‐4 Strontium hydroxide Storage Group D: Compatible Organic Acids Identifier Name 64‐19‐7 Acetic acid 79‐10‐7 Acrylic acid 65‐85‐0 Benzoic acid 98‐07‐7 Benzotrichloride 98‐88‐4