Downloaded 27 Additional Transcriptomes from Genbank

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 27 Additional Transcriptomes from Genbank bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454256; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A phylotranscriptome study using silica gel-dried leaf tissues 2 produces an updated robust phylogeny of Ranunculaceae 3 4 Running title: RNA-seq using silica gel-dried tissues 5 Jian He1†, Rudan Lyu1†, Yike Luo1†, Jiamin Xiao1†, Lei Xie1*, Jun Wen2*, Wenhe Li1, 6 Linying Pei4, Jin Cheng3 7 1 School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 8 100083 PR China 9 2Department of Botany, National Museum of Natural History, MRC 166, Smithsonian 10 Institution, Washington, DC 20013-7012, USA 11 3 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, 12 College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 13 100093 PR China 14 4Beijing Engineering Technology Research Center for Garden Plants, Beijing Forestry 15 University Forest Science Co. Ltd., Beijing, 100083, PR China 16 †These authors contributed equally to this work. 17 Correspondence: Lei Xie, email: [email protected]; Jun Wen, email: [email protected]. 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454256; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The utility of transcriptome data in plant phylogenetics has gained popularity in recent years. 21 However, because RNA degrades much more easily than DNA, the logistics of obtaining 22 fresh tissues has become a major limiting factor for widely applying this method. Here, we 23 used Ranunculaceae to test whether silica-dried plant tissues could be used for RNA 24 extraction and subsequent phylogenomic studies. We sequenced 27 transcriptomes, 21 from 25 silica gel-dried (SD-samples) and six from liquid nitrogen-preserved (LN-samples) leaf 26 tissues, and downloaded 27 additional transcriptomes from GenBank. Our results showed that 27 although the LN-samples produced slightly better reads than the SD-samples, there were no 28 significant differences in RNA quality and quantity, assembled contig lengths and numbers, 29 and BUSCO comparisons between two treatments. Using this data, we conducted 30 phylogenomic analyses, including concatenated- and coalescent-based phylogenetic 31 reconstruction, molecular dating, coalescent simulation, phylogenetic network estimation, and 32 whole genome duplication (WGD) inference. The resulting phylogeny was consistent with 33 previous studies with higher resolution and statistical support. The 11 core Ranunculaceae 34 tribes grouped into two chromosome type clades (T- and R-types), with high support. 35 Discordance among gene trees is likely due to hybridization and introgression, ancient genetic 36 polymorphism and incomplete lineage sorting. Our results strongly support one ancient 37 hybridization event within the R-type clade and three WGD events in Ranunculales. 38 Evolution of the three Ranunculaceae chromosome types is likely not directly related to WGD 39 events. By clearly resolving the Ranunculaceae phylogeny, we demonstrated that SD-samples 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454256; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 40 can be used for RNA-seq and phylotranscriptomic studies of angiosperms. 41 Keywords 42 chromosomal type, phylotranscriptomics, Ranunculaceae, RNA-seq, silica-dried leaf tissue 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454256; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 43 1 INTRODUCTION 44 With the recent advances in high-throughput sequencing and analytical methods, 45 phylogenetic reconstruction using genome-wide sequence data has become widely used 46 in plant evolutionary studies (Johnson et al., 2012; Yu et al., 2018). However, whole- 47 genome sequencing of densely sampled phylogenetic analyses has remained impractical 48 and unnecessary due to high costs and computational limitations. Hence researchers 49 have developed reduced-representation methods (e.g., genome skimming, restriction 50 site-associated DNA sequencing or RAD-seq, target enrichment sequencing such as 51 Hyb-seq, and transcriptome sequencing or RNA-seq) as practical tools for phylogenetic 52 studies (Zimmer & Wen, 2015; McKain et al., 2018). 53 Genome skimming is one of the most widely applied partitioning strategies for 54 phylogenetic inferences, and especially efficient for obtaining complete plastid genome 55 sequences of plants (Dodsworth, 2015; Liu et al., 2018; Zhai et al., 2019; He et al, 2019; 56 Liu et al., 2020; Wang et al, 2020). However, it is often of limited utility to obtain 57 enough single copy nuclear genes for phylogenetic analyses, especially for non-model 58 plant taxa possessing both huge genome sizes and no whole-genome reference (McKain 59 et al., 2018; but see Liu et al., 2021). Hyb-seq is another widely used genome 60 partitioning method that can target low-copy nuclear genes. Like genome skimming, 61 Hyb-seq can use almost all kinds of tissue samples (e.g., silica gel-preserved, flash- 62 frozen, fresh, or even old herbarium materials) (Yu et al., 2018; McKain et al., 2018; 63 Reichelt et al., 2021; Wang et al., 2021). However, Hyb-seq requires a complex 64 laboratory protocol involving bait capture. Furthermore, this method often results in a 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454256; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 65 high proportion of missing data, and also cannot be used to detect ancient whole 66 genome duplication (WGD) based on paralogous genes. 67 In recent years, using RNA-seq to reconstruct phylogenetic relationships 68 (phylotranscriptomics) and gene family evolution has gained popularity because of its 69 relatively low cost and improved analytical pipelines (Wen et al., 2013, 2015; Wickett et 70 al., 2014; Landis et al., 2017; Zeng et al., 2017; One Thousand Plant Transcriptomes 71 Initiative, 2019; Cheon et al., 2020; Alejo-Jacuinde et al., 2020). Using that method, 72 researchers can often assemble thousands of genes (especially single-copy nuclear 73 genes) from plant taxa under study and use them for both inferring phylogenetic 74 relationships and gene family evolution (Yang and Smith, 2014; Yang et al., 2015; 75 Xiang et al., 2017). Compared to Hyb-seq, RNA-seq uses relatively simple 76 experimental protocols to generate more complete nuclear data, and paralogous genes 77 from RNA-seq data can also be used to infer WGD (McKain et al., 2018). 78 While improvements in sequencing and extraction protocols have made RNA-seq 79 much easier in plants (Romero et al., 2014; Yang et al., 2017), its application in 80 phylogenetic study still remains challenging. Because RNA is more unstable than DNA, 81 RNA-seq requires more stringent material preservation techniques. Previous studies 82 have used fresh or liquid-nitrogen flash frozen plant tissues or fresh tissue quickly 83 soaked in RNA stabilization solution, and then subsequently preserved in an ultra-low 84 temperature (-80 ℃) freezer (Yu et al., 2018; McKain et al., 2018; Dodsworth et al., 85 2019). However, because phylotranscriptomic studies often focus on non-model plant 86 taxa, they usually require extensive field work and broad taxon sampling schemes. The 5 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454256; this version posted July 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 87 logistics of using liquid nitrogen tanks in the field or expensive RNA stabilization 88 solution to preserve collected plant tissues at multiple locations, not to mention quick 89 access to an ultra-low temperature freezer for subsequent laboratory work, greatly limits 90 the practicality of using RNA-seq for phylogenetic studies (Zimmer & Wen, 2015; Yang 91 et al., 2017). 92 Traditional DNA-based molecular phylogenetics, DNA barcoding, as well as 93 genome skimming and RAD-seq methods, often use silica gel-dried leaf tissues 94 (Narzary et al., 2015; Yu et al., 2018). Such sampling method is cheaper and amenable 95 to collecting and transporting large number of samples. Much emphasis has been placed 96 on how different plant tissues, preservation methods, and RNA extraction protocols may 97 impact the quantity and quality of extracted RNA (Johnson et al., 2012; Romero et al., 98 2014; Yang et al., 2017), but no empirical study has explored silica gel-dried plant 99 tissues for RNA-seq. This may be due to the reasons that even though total RNA may be 100 extracted from silica gel-dried plant tissues, it is not possible to quantitatively measure 101 gene expression using this kind of samples for evo-devo studies. However, a 102 phylotranscriptomic study needs to obtain large nuclear data sets for pertinent plant taxa 103 for analysis, and it does not need to quantitatively measure gene expression.
Recommended publications
  • Hortus Botanicus Universitatis Posnaniensis Index Seminum
    HORTUS BOTANICUS UNIVERSITATIS POSNANIENSIS INDEX SEMINUM 2020-2021 ANNO 2020 COLLECTORUM QUAE HORTUS BOTANICUS UNIVERSITATIS POSNANIENSIS MUTUO COMMUTANDA OFFERT OGRÓD BOTANICZNY UNIWERSYTETU IM. ADAMA MICKIEWICZA UL. DĄBROWSKIEGO 165 PL – 60-594 POZNAŃ ebgconsortiumindexseminum2020 ebgconsortiumindexseminum2021 Information Informacja Year of foundation – 1925 Rok założenia – 1925 Area about 22 ha, including about 800 m2 of greenhouses Aktualna powierzchnia około 22 ha w tym około 800 m2 pod szkłem Number of taxa – about 7500 Liczba taksonów – około 7500 1. Location: 1. Położenie: the Botanical Garden of the A. Mickiewicz University is situated in the W part of Poznań zachodnia część miasta Poznania latitude – 52o 25‘N szerokość geograficzna – 52o 25‘N longitude – 16o 55‘E długość geograficzna – 16o 55‘E the altitude is 89.2 m a.s.l. wysokość n.p.m. – 89.2 m 2. The types of soils: 2. Typy gleb: – brown soil – brunatna – rot soil on mineral ground – murszowa na podłożu mineralnym – gray forest soil – szara gleba leśna SEMINA PLANTARUM EX LOCIS NATURALIBUS COLLECTA zbierał/collected gatunek/species stanowisko/location by MAGNOLIOPHYTA Magnoliopsida Apiaceae 1. Daucus carota L. PL, prov. Wielkopolskie, Poznań, Szczepankowo J. Jaskulska 2. Peucedanum oreoselinum (L.) Moench PL, prov. Kujawsko-Pomorskie, Folusz J. Jaskulska Asteraceae 3. Achillea millefolium L. s.str. PL, prov. Wielkopolskie, Kamionki J. Jaskulska 4. Achillea millefolium L. s.str. PL, prov. Wielkopolskie, Koninko J. Jaskulska 5. Artemisia vulgaris L. PL, prov. Wielkopolskie, Kamionki J. Jaskulska 6. Artemisia vulgaris L. PL, prov. Wielkopolskie, Koninko J. Jaskulska 7. Bidens tripartita L. PL, prov. Wielkopolskie, Koninko J. Jaskulska 8. Centaurea scabiosa L. PL, prov. Kujawsko-Pomorskie, Folusz J.
    [Show full text]
  • High-Elevation Limits and the Ecology of High-Elevation Vascular Plants: Legacies from Alexander Von Humboldt1
    a Frontiers of Biogeography 2021, 13.3, e53226 Frontiers of Biogeography REVIEW the scientific journal of the International Biogeography Society High-elevation limits and the ecology of high-elevation vascular plants: legacies from Alexander von Humboldt1 H. John B. Birks1,2* 1 Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, Bergen, Norway; 2 Ecological Change Research Centre, University College London, Gower Street, London, WC1 6BT, UK. *Correspondence: H.J.B. Birks, [email protected] 1 This paper is part of an Elevational Gradients and Mountain Biodiversity Special Issue Abstract Highlights Alexander von Humboldt and Aimé Bonpland in their • The known uppermost elevation limits of vascular ‘Essay on the Geography of Plants’ discuss what was plants in 22 regions from northernmost Greenland known in 1807 about the elevational limits of vascular to Antarctica through the European Alps, North plants in the Andes, North America, and the European American Rockies, Andes, East and southern Africa, Alps and suggest what factors might influence these upper and South Island, New Zealand are collated to provide elevational limits. Here, in light of current knowledge a global view of high-elevation limits. and techniques, I consider which species are thought to be the highest vascular plants in twenty mountain • The relationships between potential climatic treeline, areas and two polar regions on Earth. I review how one upper limit of closed vegetation in tropical (Andes, can try to
    [Show full text]
  • Home Garden Market
    Home Garden Market Catalogue 2011/2013 AG-2020 AGASTACHE aurantiaca 'Sunset Yellow’ DI-7228 DIGITALIS purpurea 'Candy Mountain Peach’ AG-2020 AGASTACHE aurantiaca 'Sunset Yellow’ DI-7228 DIGITALIS purpurea 'Candy Mountain Peach’ AG-2040 AGASTACHE aurantiaca 'Fragrant Carpet’ DI-7226 DIGITALIS purpurea ssp heywoodii 'Silver Fox Improved’ AG-2040 AGASTACHE aurantiaca 'Fragrant Carpet’ DI-7226 DIGITALIS purpurea ssp heywoodii 'Silver Fox Improved’ BR-4320 BRASSICA rapa 'Moutarde Rouge’ LA-8140 LAVANDULA lanata 'Woolly Lavender’ BR-4320 BRASSICA rapa 'Moutarde Rouge’ LA-8140 LAVANDULA lanata 'Woolly Lavender’ CA-0130 CALANDRINIA ciliata 'Blanca’ PH-3557 PHLOX drummondii 'Beauty Cranberry & Cream’ CA-0130 CALANDRINIA ciliata 'Blanca’ PH-3557 PHLOX drummondii 'Beauty Cranberry & Cream’ CO-5930 COREOPSIS xhybrida 'Incredible! Mid Mix’ PH-3572 PHLOX drummondii 'Beauty Moody Blues’ CO-5930 COREOPSIS xhybrida 'Incredible! Mid Mix’ PH-3572 PHLOX drummondii 'Beauty Moody Blues’ CO-9118 COSMOS bipinnatus 'Fizzy Pink’ SA-2670 SALVIA patens 'Cambridge Blue’ CO-9118 COSMOS bipinnatus 'Fizzy Pink’ SA-2670 SALVIA patens 'Cambridge Blue’ CO-9120 COSMOS bipinnatus 'Fizzy Pink Dark Centre’ SC-2400 SCHIZANTHUS pinnatus 'Tinkerbell Mixed’ CO-9120 COSMOS bipinnatus 'Fizzy Pink Dark Centre’ SC-2400 SCHIZANTHUS pinnatus 'Tinkerbell Mixed’ CO-9230 COSMOS bipinnatus 'Double Dutch Rose’ TA-2740 TAGETES erecta 'Kees' Orange’ CO-9230 COSMOS bipinnatus 'Double Dutch Rose’ TA-2740 TAGETES erecta 'Kees' Orange’ CU-2885 CUCURBITA pepo 'Vegetable Spaghetti’ VE-6500 VERBENA
    [Show full text]
  • AGS-Seed-List-No.62 2013-2014
    WELCOME TO THE ALPINE GARDEN SOCIETY’S 62nd SEED LIST Please read through these notes and also the notes on the back of the order forms before completing the forms. The main distribution will begin in December and will continue through January. Please note that the distribution takes place from Pershore and the office will be closed for the Christmas and New Year holiday. Consequently, no orders will be made up between 20 December 2013 and 6 January 2014. The seeds offered originate from various sources and cannot be guaranteed true to name. Neither The Alpine Garden Society nor any official of the Society can be held responsible for what is supplied. Members are reminded that named cultivars and hybrids cannot be relied upon to come true, and plants raised from seed from cultivars should not be labelled with the names of those cultivars. Seeds of many species are in short supply and we can never have enough to meet all requests. If you request very rare or scarce species you may be disappointed and we advise you to spread your requests throughout a variety of seeds on the list. We do limit the allocation of rare species to try and be as fair as possible to all members, especially to those who donate the rare seed. Surplus seeds are those remaining after all applications for main distribution seeds have been met. Please see the notes on the back of the order form for further information. On-line ordering is the recommended way to order and pay for seed. There are many advantages in ordering this way, in particular a built in link to pictures of the plants on the list.
    [Show full text]
  • Plants at MCBG
    Mendocino Coast Botanical Gardens All recorded plants as of 10/1/2016 Scientific Name Common Name Family Abelia x grandiflora 'Confetti' VARIEGATED ABELIA CAPRIFOLIACEAE Abelia x grandiflora 'Francis Mason' GLOSSY ABELIA CAPRIFOLIACEAE Abies delavayi var. forrestii SILVER FIR PINACEAE Abies durangensis DURANGO FIR PINACEAE Abies fargesii Farges' fir PINACEAE Abies forrestii var. smithii Forrest fir PINACEAE Abies grandis GRAND FIR PINACEAE Abies koreana KOREAN FIR PINACEAE Abies koreana 'Blauer Eskimo' KOREAN FIR PINACEAE Abies lasiocarpa 'Glacier' PINACEAE Abies nebrodensis SILICIAN FIR PINACEAE Abies pinsapo var. marocana MOROCCAN FIR PINACEAE Abies recurvata var. ernestii CHIEN-LU FIR PINACEAE Abies vejarii VEJAR FIR PINACEAE Abutilon 'Fon Vai' FLOWERING MAPLE MALVACEAE Abutilon 'Kirsten's Pink' FLOWERING MAPLE MALVACEAE Abutilon megapotamicum TRAILING ABUTILON MALVACEAE Abutilon x hybridum 'Peach' CHINESE LANTERN MALVACEAE Acacia craspedocarpa LEATHER LEAF ACACIA FABACEAE Acacia cultriformis KNIFE-LEAF WATTLE FABACEAE Acacia farnesiana SWEET ACACIA FABACEAE Acacia pravissima OVEN'S WATTLE FABACEAE Acaena inermis 'Rubra' NEW ZEALAND BUR ROSACEAE Acca sellowiana PINEAPPLE GUAVA MYRTACEAE Acer capillipes ACERACEAE Acer circinatum VINE MAPLE ACERACEAE Acer griseum PAPERBARK MAPLE ACERACEAE Acer macrophyllum ACERACEAE Acer negundo var. violaceum ACERACEAE Acer palmatum JAPANESE MAPLE ACERACEAE Acer palmatum 'Garnet' JAPANESE MAPLE ACERACEAE Acer palmatum 'Holland Special' JAPANESE MAPLE ACERACEAE Acer palmatum 'Inaba Shidare' CUTLEAF JAPANESE
    [Show full text]
  • Tracheophyte of Xiao Hinggan Ling in China: an Updated Checklist
    Biodiversity Data Journal 7: e32306 doi: 10.3897/BDJ.7.e32306 Taxonomic Paper Tracheophyte of Xiao Hinggan Ling in China: an updated checklist Hongfeng Wang‡§, Xueyun Dong , Yi Liu|,¶, Keping Ma | ‡ School of Forestry, Northeast Forestry University, Harbin, China § School of Food Engineering Harbin University, Harbin, China | State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China ¶ University of Chinese Academy of Sciences, Beijing, China Corresponding author: Hongfeng Wang ([email protected]) Academic editor: Daniele Cicuzza Received: 10 Dec 2018 | Accepted: 03 Mar 2019 | Published: 27 Mar 2019 Citation: Wang H, Dong X, Liu Y, Ma K (2019) Tracheophyte of Xiao Hinggan Ling in China: an updated checklist. Biodiversity Data Journal 7: e32306. https://doi.org/10.3897/BDJ.7.e32306 Abstract Background This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years. This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years.
    [Show full text]
  • Trial of Aquilegia 2003-2003
    Trial of Aquilegia 2003-2003 Objective: To demonstrate and assess the habit and flowering performance of a range of Aquilegia grown from seed for garden decoration. Entries: 96 entries were submitted in the trial including 16 mixtures submitted by various seed companies in the UK and worldwide. Cultivation: Seed was sown in early June 2002 under glass into pans using modular compost (suitable for seed sowing and young plants). (The A. vulgaris types were sown in the 3rd week April and then resown in mid May due to poor germination). The pans were covered with 2mm fine vermiculite, drenched with Revive at a concentration of 1ml/l [a soil treatment of natural micro organisms which suppresses soil borne plant diseases] and germinated at 20°C under mist. The seedlings were pricked out into modules, using modular compost, drenched with Revive and liquid fed at each watering with a 3:1:3 fertiliser at a concentration of 1:200. The plants were potted on into 1L pots (the Cameo Series into smaller 9cm pots) using a growing-on compost (similar to a multipurpose compost) and were placed outside for the summer. Whilst in trays/ pots the plants were drenched with an insecticide and regularly sprayed to control powdery mildew, initially using fungicidal protectants and then fungicidal eradicants as required. 20 plants of each single colour entry and 40 plants of each mixed colour entry were planted out on 08 October 2002 with 45 cm between plants and 45 cm between entries. The smaller entries such as Cameo Series and Fantasy Series were planted with 30 cm between plants and 30 cm between entries.
    [Show full text]
  • Parque Nacional Tierra Del Fuego Flora
    Parque Nacional Tierra del Fuego Flora • Common English Name (Nombre Español o Local)Order Family Genus species) Monocotyledons (Monocotyledones) • Arrowgrass, Marsh (??) (Najadales Juncaginaceae Triglochin palustris) • Arrowgrass, Seaside (??) (Najadales Juncaginaceae Triglochin maritima) • Bentgrass, Common (Pasto Quila) (Poales Gramineae/Poaceae Agrostis capillaris) • Bentgrass, Upland (??) (Poales Gramineae/Poaceae Agrostis perennans) • Bluegrass (??) (Poales Gramineae/Poaceae Poa alopecurus) • Bluegrass (??) (Poales Gramineae/Poaceae Poa breviculmis) • Bluegrass (??) (Poales Gramineae/Poaceae Poa rigidifolia) • Bluegrass (??) (Poales Gramineae/Poaceae Poa scaberula) • Bluegrass (Möra-Shúka) (Poales Gramineae/Poaceae Poa yaganica) • Bluegrass, Annual (Pastito de Invierno) (Poales Gramineae/Poaceae Poa annua) • Bluegrass, Canada (??) (Poales Gramineae/Poaceae Poa compressa) • Bluegrass, Kentucky (Pasto de Mallin) (Poales Gramineae/Poaceae Poa pratensis) • Bluegrass, Northern (??) (Poales Gramineae/Poaceae Poa stenantha) • Bulrush, California (Junco) (Cyperales Cyperaceae Schoenoplectus californicus) • Bulrush, Nevada (Scirpus) (Cyperales Cyperaceae Amphiscirpus nevadensis) • Foxtail, Meadow (Alopecuro de los Prados-cola de Zorro) (Poales Gramineae/Poaceae Alopecurus pratensis) • Grass, Black (??) (Poales Gramineae/Poaceae Alopecurus magellanicus) • Grass, Fiber Optic (??) (Cyperales Cyperaceae Isolepis cernua) • Grass, Small Tussock (??) (Poales Gramineae/Poaceae Festuca magellanica) • Grass, Sweet Holy (Ratonera) (Poales Gramineae/Poaceae
    [Show full text]
  • Supporting Information
    Supporting Information Kempel et al. 10.1073/pnas.1016508108 Supporting Information Corrected April 05, 2011 SI Methods phylogenies: Asteraceae (2), Boraginaceae (3), Brassicaceae (4), We constructed a phylogenetic tree of all our species using the Campanulaceae (5, 6), Caryophyllaceae (7), Convolvulaceae (8), program PHYLOMATIC (1) (Fig. S1). This program assembles Lamiaceae (9), Malvaceae (10), Onagraceae (11), Papaveraceae a phylogeny using a backbone plant mega-tree based on a variety (12), Ranunculaceae (12), and Solanaceae (8). We adjusted the of sources primarily involving DNA studies. Because the resulting branch lengths for the resulting tree using the bladj function in tree showed many polytomies at the family level, we resolved PHYLOCOM (13), which calibrates unknown node ages by linear within-family relationships using the following recently published interpolation of ages from Wikström et al. (14). 1. Webb CO, Donoghue MJ (2005) Phylomatic: Tree assembly for applied phylogenetics. 8. Olmstead RG, et al. (2008) A molecular phylogeny of the Solanaceae. Taxon 57: Mol Ecol Notes 5:181–183. 1159–1181. 2. Funk VA, et al. (2005) Everywhere but Antarctica: Using a supertree to understand the 9. Wagstaff SJ, Olmstead RG, Cantino PD (1995) Parsimony analysis of cpDNA restriction diversity and distribution of the Compositae. Kongelige Danske Videnskabernes site variation in subfamily Nepetoideae (Labiatae). Am J Bot 82:886–892. Selskab Biologiske Skrifter 55:343–374. 10. Escobar García P, Schönswetter P, Fuertes Aguilar J, Nieto Feliner G, Schneeweiss GM 3. Långström E, Chase MW (2002) Tribes of Boraginoideae (Boraginaceae) and (2009) Five molecular markers reveal extensive morphological homoplasy and placement of Antiphytum, Echiochilon, Ogastemma and Sericostoma: A phylogenetic reticulate evolution in the Malva alliance (Malvaceae).
    [Show full text]
  • Distribution of Vascular Plants Along the Altitudinal Gradient of Gyebangsan (Mt.) in Korea
    Journal of Asia-Pacific Biodiversity 7 (2014) e40ee71 Contents lists available at ScienceDirect Journal of Asia-Pacific Biodiversity journal homepage: http://www.elsevier.com/journals/journal-of-asia-pacific- biodiversity/2287-884x Original article Distribution of vascular plants along the altitudinal gradient of Gyebangsan (Mt.) in Korea Jong-Cheol Yang*, Hee-Suk Hwang, Hye-Jeong Lee, Su-Young Jung, Seong-Jin Ji, Seung-Hwan Oh, You-Mi Lee Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, Gyeonggi 487-821, Republic of Korea article info abstract Article history: This study was conducted to examine the distribution of vascular plants along the altitudinal gradient Received 31 December 2013 and investigation routes of Gyebangsan (Mt.) in Korea. The total number of flora of Gyebangsan (Mt.) was Received in revised form 510 taxa in total, comprising 83 families, 283 genera, 449 species, four subspecies, 52 varieties and five 11 February 2014 forms. In the flora of this area, 14 taxa were Korean endemic plants and 17 taxa were rare plants. Accepted 11 February 2014 Naturalized plants in Korea numbered 27 taxa. The number of vascular plants monotonically decreased Available online 15 March 2014 with increasing altitude. In contrast, the rare plants mostly increased with increasing altitude. The endemic plants of Korea did not show any special pattern by altitude gradient. The naturalized plants Keywords: Gyebangsan (Mt.) altitude were mainly distributed at the open area below 1000 m. Ó Distribution Copyright 2014, National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA). Korea endemic plant Production and hosting by ELSEVIER. All rights reserved.
    [Show full text]
  • Molecular Phylogeny of Ranunculaceae Based on Rbc L Sequences
    Biologia 65/6: 997—1003, 2010 Section Botany DOI: 10.2478/s11756-010-0105-8 Molecular phylogeny of Ranunculaceae based on rbc L sequences Ying-fan Cai1*†, Sheng-wei Li2,MinChen2,Ming-fengJiang2†,YiLiu1, Yong-fang Xie1, Quan Sun1,Huai-zhongJiang1,Neng-wenYin1,LingWang1,RuiZhang1, Cheng-lin Huang1 &KairongLei3 1Chongqing University of Posts and Telecommunications, Chongqing 400065, People’s Republic of China; e-mail: [email protected] 2Southwest University for Nationalities, Chengdu 610041, People’s Republic of China 3Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329,People’s Republic of China Abstract: A phylogenetic tree was constructed by sequencing rbcL genes of 33 species representing 19 genera of Ranuncu- laceae, and three related species, Mahonia bealei, Mahonia fortunei and Nandina domestica. The results showed that the rbcL sequences of these Ranunculaceae range from 1,346 bp to 1,393 bp. The results based on the phylogenetic tree indi- cated that Caltha and Trol lius should not be put in the same tribe, and a close relationship betweenAdonis and Trol lius is supported by our research, while Aquilegia should be in Thalictroideae. In combination with the morphological and chemical evidence, the generic classification of Ranunculaceae should be revised into five subfamilies: Hydrastidoideae, Coptidoideae, Helleboroideae, Thalictroideae and Ranunculoideae. We demonstrate that the rbcL gene is of great value for investigating generic to subfamilial relationships in Ranunculaceae. Key words: phylogeny; Ranunculaceae; rbcL Abbreviations: rbcL, ribulose-1,5-bisphosphate carboxylase/oxygenase; IPTG, isopropyl β-D-1-thiogalactopyranoside; X- Gal, 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside Introduction boroideae, Coptidoideae and Isopyroideae.
    [Show full text]
  • Considérations Sur L'histoire Naturelle Des Ranunculales
    Considérations sur l’histoire naturelle des Ranunculales Laetitia Carrive To cite this version: Laetitia Carrive. Considérations sur l’histoire naturelle des Ranunculales. Botanique. Université Paris-Saclay, 2019. Français. NNT : 2019SACLS177. tel-02276988 HAL Id: tel-02276988 https://tel.archives-ouvertes.fr/tel-02276988 Submitted on 3 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Considérations sur l’histoire naturelle des Ranunculales 2019SACLS177 Thèse de doctorat de l'Université Paris-Saclay : préparée à l’Université Paris-Sud NNT École doctorale n°567 : Sciences du végétal, du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Orsay, le 05 juillet 2019, par Laetitia Carrive Composition du Jury : Catherine Damerval Directrice de recherche, CNRS (– UMR 320 GQE) Présidente du jury Julien Bachelier Professeur, Freie Universität Berlin (– Institute of Biology) Rapporteur Thomas Haevermans Maître de conférences, MNHN (– UMR 7205 ISYEB) Rapporteur Jean-Yves Dubuisson Professeur, SU (–UMR 7205 ISYEB) Examinateur Sophie Nadot Professeure, U-PSud (– UMR 8079 ESE) Directrice de thèse « Le commencement sera d’admirer tout, même les choses les plus communes. Le milieu, d’écrire ce que l’on a bien vu et ce qui est d’utilité.
    [Show full text]