A Brief Outline of the History of Electromagnetism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics. -
The Concept of Field in the History of Electromagnetism
The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”. -
Faraday's Law Da
Faraday's Law dA B B r r Φ≡B •d A B ∫ dΦ ε= − B dt Faraday’s Law of Induction r r Recall the definition of magnetic flux is ΦB =B∫ ⋅ d A Faraday’s Law is the induced EMF in a closed loop equal the negative of the time derivative of magnetic flux change in the loop, d r r dΦ ε= −B∫ d ⋅= A − B dt dt Constant B field, changing B field, no induced EMF causes induced EMF in loop in loop Getting the sign EMF in Faraday’s Law of Induction Define the loop and an area vector, A, who magnitude is the Area and whose direction normal to the surface. A The choice of vector A direction defines the direction of EMF with a right hand rule. Your thumb in A direction and then your fingers point to positive EMF direction. Lenz’s Law – easier way! The direction of any magnetic induction effect is such as to oppose the cause of the effect. ⇒ Convenient method to determine I direction Heinrich Friedrich Example if an external magnetic field on a loop Emil Lenz is increasing, the induced current creates a field opposite that reduces the net field. (1804-1865) Example if an external magnetic field on a loop is decreasing, the induced current creates a field parallel to the that tends to increase the net field. Incredible shrinking loop: a circular loop of wire with a magnetic flux is shrinking with time. In which direction is the induced current? (a) There is none. (b) CW. -
Faraday's Law Da
Faraday's Law dA B B r r Φ≡B •d A B ∫ dΦ ε= − B dt Applications of Magnetic Induction • AC Generator – Water turns wheel Æ rotates magnet Æ changes flux Æ induces emf Æ drives current • “Dynamic” Microphones (E.g., some telephones) – Sound Æ oscillating pressure waves Æ oscillating [diaphragm + coil] Æ oscillating magnetic flux Æ oscillating induced emf Æ oscillating current in wire Question: Do dynamic microphones need a battery? More Applications of Magnetic Induction • Tape / Hard Drive / ZIP Readout – Tiny coil responds to change in flux as the magnetic domains (encoding 0’s or 1’s) go by. 2007 Nobel Prize!!!!!!!! Giant Magnetoresistance • Credit Card Reader – Must swipe card Æ generates changing flux – Faster swipe Æ bigger signal More Applications of Magnetic Induction • Magnetic Levitation (Maglev) Trains – Induced surface (“eddy”) currents produce field in opposite direction Æ Repels magnet Æ Levitates train S N rails “eddy” current – Maglev trains today can travel up to 310 mph Æ Twice the speed of Amtrak’s fastest conventional train! – May eventually use superconducting loops to produce B-field Æ No power dissipation in resistance of wires! Faraday’s Law of Induction r r Recall the definition of magnetic flux is ΦB =B∫ ⋅ d A Faraday’s Law is the induced EMF in a closed loop equal the negative of the time derivative of magnetic flux change in the loop, d r r dΦ ε= −B∫ d ⋅= A − B dt dt Constant B field, changing B field, no induced EMF causes induced EMF in loop in loop Getting the sign EMF in Faraday’s Law of Induction Define the loop and an area vector, A, who magnitude is the Area and whose direction normal to the surface. -
Maxwell Discovers That Light Is Electromagnetic Waves in 1862
MAXWELL DISCOVERS LIGHT IS ELECTROMAGNETIC WAVES James Clerk Maxwell was a Scottish scientist. He worked in the mid-nineteenth century in Scotland and England. At that time, electricity and magnetism had been extensively studied, and it was known since 1831 that electric current produces magnetism. Maxwell added the idea that changing magnetism could produce electricity. The term that Maxwell added to the known equations (called Ampere's law) for magnetism allowed Maxwell to see that there were wave-like solutions, that is, solutions that look like a sine wave (as a function of time). The numbers in Maxwell's equations all came from laboratory experiments on electric- ity and magnetism. There was nothing in those equations about light, and radio waves were completely unknown at the time, so the existence of electromagnetic waves was also completely unknown. But mathematics showed that Maxwell's equations had wave-like solutions. What did that mean? Maxwell proceeded to calculate the speed of those waves, which of course depended on the numbers that came from lab experiments with electricity and magnetism (not with light!). He got the answer 310,740,000 meters per second. Maxwell must have had an \aha moment" when he recognized that number. He did recognize that number: it was the speed of light! He was lecturing at King's College, London, in 1862, and there he presented his result that the speed of propagation of an electromagnetic field is approximately that of the speed of light. He considered this to be more than just a coincidence, and commented: \We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena." 1 2 MAXWELL DISCOVERS LIGHT IS ELECTROMAGNETIC WAVES He published his work in his 1864 paper, A dynamical theory of the electromagnetic field. -
Electromagnetic Induction Go Back in Time
Electromagnetic Induction Many electrical or electronic devices rely on a principle called electromagnetic induction in order to function. The term refers to electricity being produced in a conductor by a changing magnetic field. To understand it better, it helps to go back in time. This phenomenon was first observed byMichael Faraday in 1831 A conductor is the term and, realizing that this was an important discovery, he carried given to a material whose electrons will out a number of experiments to determine exactly what was move easily from one happening. He noticed that: atom to another. • When the magnetic flux linking a conductor changes then an electromotive force is induced in the conductor. • The magnitude of the emf induced in the inductor is proportional to the rate of change of the flux linkage. The above relates to one of Faraday’s laws. In simple terms, it means that if a conductor is moved within a magnetic field then the force it experiences causes an electric current to flow through that conductor. Likewise, the faster the change in the magnetic field then the greater the emf produced. 47 The important thing to remember is that the electromotive force will only be produced in the conductor as long as the magnetic field is changing – therefore, no change, no current flow! A typical conductor is a Other experiments length of copper wire. Michael Faraday was not the only one to have observed the phenomenon. Working independently, the American scientist Joseph Henry also discovered electromagnetic induction at about the same time as Faraday. In recognition, the henry (symbol H) is now the SI unit of inductance. -
Notizen Zur Schweizerischen Kulturgeschichte
Notizen zur schweizerischen Kulturgeschichte. Von FERDINAND RUDIO und CARL SCHRÖTER. 29. Die Eulerausgabe (Fortsetzung 1). Im Anschluss an unsern letztjährigen Bericht geben wir zunächst den Bericht der Eulerkommission für das Jahr 1909/10 wieder, wie er am . 5. September 1910 der. 93. Jahresversammlung der Schweize- rischen Naturforschenden Gesellschaft in Basel vorgelegt worden ist. Er lautet: Bericht der Eulerkommission für das Jahr 1909/10. • Um die Beschlüsse der Gesellschaft vom 6. September 1909 aus- zuführen, versammelte sich die Kommission am 19. Dezember in Bern; vom Zentralkomitee nahmen • die Herren Dr. Fritz Sarasin und Dr. P. Chappuis an der Sitzung teil. Die Kommission konstituierte sich und bestellte ihre Organe wie folgt: Herr Professor Rudio übernimmt als Präsident des Redaktions- komitees die wissenschaftliche Leitung des ganzen Unternehmens. Als Mitredakteure stehen ihm zur Seite die Herren Geheimräte A. Krazer und P. Stäckel, Professoren an der technischen Hoch- schule in Karlsruhe. Zum Präsidenten der Eulerkommission wird der Unterzeichnete gewählt, zum Schriftführer Herr Professor R. Fueter, zum Mitglied an Stelle von Herrn Professor Geiser Herr Professor Dr. Heinrich Ganter in Aarau. Zur Besorgung der Finanzen wird ein Schatzmeister und ein Finanzausschuss von drei Mitgliedern bestellt: zum Schatzmeister wird gewählt Herr Eduard His-Schlumberger in Firma Ehinger & Co., 1) Siehe die Notizen Nr. 26 (1909), 24 (1908) und 22 (1907). 542 Ferdinand Rudio und Carl Schröter. Basel, zum dritten Mitglied des Finanzausschusses neben dem Präsi- denten und dem Schatzmeister Herr Dr. P. C h a p p u i s. Auf Antrag von Herrn Professor Rudio wird die Firma B. G. Teubner in Leipzig mit dem Druck und Verlag des Werkes betraut. -
James Clerk Maxwell of Glenlair[1] FRS FRSE (1831–1879) Was a Scottish[2] Physicist and Mathematician
Average 78.3% (’18) 81.6% (‘17) 77.4% (‘16) 84.9% (‘15) 82.3% (‘14) 85.6%(’13) 75.5%(’12) 85.1% (‘11) Ave Time: 1 hr 34 min (’18) 1 hr 32 min (‘17) 1hr 30min (‘16) 1hr 30min (‘15) 1 hr 23 min (’14) 1hr 28min (‘13) 1hr 25min (’12) 1 hr 39min (‘11) Note the n-2 rule: your best 7 homeworks only contribute to your course mark. Michael Faraday, FRS (1791–1867) was an English chemist and physicist. His inventions of electromagnetic rotary devices formed the foundation of electric motor technology, and it was largely due to his efforts that electricity became viable for use in technology. As a chemist, Faraday discovered benzene, investigated the clathrate hydrate of chlorine, invented an early form of the Bunsen burner and the system of oxidation numbers, and popularised terminology such as anode, cathode, electrode, and ion. Faraday received little formal education. Historians of science refer to him as the best experimentalist in the history of science. He was a member of the Sandemanian Church, a Christian sect founded in 1730 that demanded total faith and commitment. Biographers have noted that "a strong sense of the unity of God and nature pervaded Faraday's life and work." Faraday undertook numerous, and often time-consuming, service projects for private enterprise and the British government. This work included investigations of explosions in coal mines, being an expert witness in court, and the preparation of high-quality optical glass. Faraday spent extensive amounts of time on projects such as the construction and operation of light houses. -
Basic Concepts
CHAPTER 1 Basic Concepts 1.1 INTRODUCTION Energy conversion means converting one form of energy into another form. An electric generator converts mechanical energy (drawn from prime mover through shaft) into electric energy. An electric motor converts electric energy into mechanical energy (which drives mechanical load e.g. fan, lathe etc.). Electric generators and motors operate by virtue of induced emf. The induction of emf is based on Faraday’s law of electromagnetic induction. Every generator and motor has a stator (which remains stationary) and rotor (which rotates). 1.2 FARADAY’S LAW OF ELECTROMAGNETIC INDUCTION Michael Faraday demonstrated through his experiments that an emf is induced in a circuit when the magnetic flux enclosed by the circuit changes with respect to time. In 1831, he proposed the following law known as Faraday’s law of electromagnetic induction. dλ Ndφ e == ...(1.1) dt dt where e = emf induced, volts λ = flux linkage, weber turns N = number of turns in the winding φ = flux, webers t = time, seconds. 1.3 LENZ’S LAW Every action causes an equal and opposite reaction. The fact that this is true in electromagnetism, was discovered by Emil Lenz. The Lenz’s law states that the induced current always develops a flux which opposes the motion (or the change producing the induced current). This law refers to induced currents and thus implies that it is applicable to closed circuits only. If the circuit is open, we can find the direction of induced emf by thinking in terms of the response if it were closed. 2 Energy Conversion The motion of a conductor in a field causes an induced emf in the conductor and energy is gener- ated. -
Research Papers-Mechanics / Electrodynamics/Download/7797
The Full Significance of the Speed of Light Frederick David Tombe, Northern Ireland, United Kingdom, [email protected] 15th June 2019 Abstract. In the year 1855, German physicists Wilhelm Eduard Weber and Rudolf Kohlrausch performed a landmark experiment of profound significance. By discharging a Leyden jar (a capacitor), they linked the speed of light to the ratio between electrostatic and electrodynamic units of charge. This experiment was electromagnetism’s Rosetta Stone because the result can be used to, (i) identify the speed of light as the speed of circulation of electric current, (ii) identify the speed of light as the speed of electromagnetic waves through a dielectric solid that pervades all of space, while noting that inertial centrifugal force and dipole fields share in common an inverse cube law in distance. The result can also be used to, (iii) identify magnetic repulsion as a centrifugal force, and hence to establish the double helix pattern that characterizes magnetic lines of force. Weber’s Interpretation I. Weber and Kohlrausch’s 1855 experiment involved discharging a Leyden jar (a capacitor) that had been storing a known amount of charge in electrostatic units, and then seeing how long it took for a unit of electric current, as measured in electrodynamic units, to produce the same deflection in a galvanometer [1]. From these readings they discovered that the ratio of the two systems of units was equal to c√2 where c is the directly measured speed of light, although it’s not clear that they immediately noticed the numerical value of c explicitly. Had they however used electromagnetic units instead of electrodynamic units for the electric current, the result would have stood out as c exactly. -
1 Eesti Füüsika Selts ELEKTROMAGNETISM Füüsika Õpik Gümnaasiumile Kalev Tarkpea Henn Voolaid 1. Elektriväli Ja Magnetv
Eesti Füüsika Selts ELEKTROMAGNETISM Füüsika õpik gümnaasiumile Kalev Tarkpea Henn voolaid 1. Elektriväli ja magnetväli ........................................................................................ 4 1.1 Elektromagnetismi uurimisaine ........................................................................... 4 1.1.1. Sissejuhatus elektromagnetnähtuste füüsikasse ........................................... 4 1.1.2. Elektromagnetismi uurimise ajaloost ........................................................... 5 1.1.3. Elektromagnetismi kursuse struktuur .......................................................... 6 1.2. Elektrilaeng ......................................................................................................... 6 1.2.1. Elektrilaengu mõiste .................................................................................... 6 1.2.2. Positiivsed ja negatiivsed laengud ............................................................... 7 1.2.3. Elementaarlaeng ........................................................................................... 7 1.2.4. Laengu jäävuse seadus ................................................................................. 8 1.2.5. Elektrit juhtivad ja mittejuhtivad ained ........................................................ 9 1.2.6. Elektrivool ja voolutugevus ....................................................................... 10 1.3. Coulomb’i seadus .............................................................................................. 13 1.3.1. Coulomb’i -
Christa Jungnickel Russell Mccormmach on the History
Archimedes 48 New Studies in the History and Philosophy of Science and Technology Christa Jungnickel Russell McCormmach The Second Physicist On the History of Theoretical Physics in Germany The Second Physicist Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 48 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, USA. ASSOCIATE EDITORS FOR MATHEMATICS AND PHYSICAL SCIENCES JEREMY GRAY, The Faculty of Mathematics and Computing, The Open University, UK. TILMAN SAUER, Johannes Gutenberg University Mainz, Germany ASSOCIATE EDITORS FOR BIOLOGICAL SCIENCES SHARON KINGSLAND, Department of History of Science and Technology, Johns Hopkins University, Baltimore, USA. MANFRED LAUBICHLER, Arizona State University, USA ADVISORY BOARD FOR MATHEMATICS, PHYSICAL SCIENCES AND TECHNOLOGY HENK BOS, University of Utrecht, The Netherlands MORDECHAI FEINGOLD, California Institute of Technology, USA ALLAN D. FRANKLIN, University of Colorado at Boulder, USA KOSTAS GAVROGLU, National Technical University of Athens, Greece PAUL HOYNINGEN-HUENE, Leibniz University in Hannover, Germany TREVOR LEVERE, University of Toronto, Canada JESPER LU¨ TZEN, Copenhagen University, Denmark WILLIAM NEWMAN, Indiana University, Bloomington, USA LAWRENCE PRINCIPE, The Johns Hopkins University, USA JU¨ RGEN RENN, Max Planck Institute for the History of Science, Germany ALEX ROLAND, Duke University, USA ALAN SHAPIRO, University of Minnesota, USA NOEL SWERDLOW, California Institute of Technology, USA