Inductance Deriving Self Inductance Eddy Currents Summer Research

Total Page:16

File Type:pdf, Size:1020Kb

Inductance Deriving Self Inductance Eddy Currents Summer Research Eddy Current Position Sensors Inductance Gabe Poehls Eddy current position sensors rely on the principle of inductance to determine the proximity of a sensor coil to a conductive Summer Research target. Inductance is a result of the Blue Line Engineering specializes in the interaction between magnetic fields and design and fabrication of high precision electrical current within a coil of wire. eddy current position sensors for Faraday’s Law and Lenz’s Law describe various aerospace applications, typically this interaction: used on fast steering mirrors for laser communication. This summer we -An electromotive force Eddy Currents worked on developing a modeling (EMF) is generated within in process for their line of sensor coils to a closed loop equal to the Eddy currents are loops of electrical current induced within aid in new position sensor development. rate of change in magnetic conductors as a result of a changing magnetic field. These Michael Faraday flux through the loop. currents circulate such that a new magnetic field is created to oppose the field that created them. This relationship is -This EMF causes a current to shown in the following diagram: flow through the loop and a magnetic field is formed which opposes the field that caused it. Emil Lenz Deriving Self Inductance ANSYS Maxwell Software used to model coil sensors and perform E&M analysis with an aluminum target (not shown) and collect inductance data A changing magnetic field is generated in the sensor coil when supplied by an AC Voltage source. As the target approaches the sensor coil, eddy currents are formed within the body of the aluminum target which create a magnetic field of their own to oppose that of the coil. This decreases the net magnetic flux through the coil and with it the Inductance vs. Position for physical test data (red) and ANSYS model data (blue). As the target approaches the sensor (the zero of the x- measured inductance of the circuit. By measuring axis) the inductance of the sensor coil circuit is shown to decrease inductance at various coil-target distances, a relationship Image References: Self Inductance: Image #1: https://en.wikipedia.org/wiki/Emil_Lenz between inductance and target position can be determined. Image #2: https://en.wikipedia.org/wiki/Michael_Faraday Image #3: https://www.bluelineengineering.com/.
Recommended publications
  • The Mathematical Modeling of Magnetostriction
    THE MATHEMATICAL MODELING OF MAGNETOSTRICTION Katherine Shoemaker A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTERS OF ART May 2018 Committee: So-Hsiang Chou, Advisor Kit Chan Tong Sun c 2018 Katherine Shoemaker All rights reserved iii ABSTRACT So-Hsiang Chou, Advisor In this thesis, we study a system of differential equations that are used to model the material deformation due to magnetostriction both theoretically and numerically. The ordinary differential system is a mathematical model for a much more complex physical system established in labo- ratories. We are able to clarify that the phenomenon of double frequency is more delicate than originally suspected from pure physical considerations. It is shown that except for special cases, genuine double frequency does not arise. In particular, simulation results using the lab data is consistent with the experiment. iv I dedicate this work to my family. Even if they don’t understand it, they understand so much more. v ACKNOWLEDGMENTS I would like to express my sincerest gratitude to my advisor Dr. Chou. He has truly inspired me and made my graduate experience worthwhile. His guidance, both intellectually and spiritually, helped me through all the time spent researching and writing this thesis. I could not have asked for a better advisor, or a better instructor and I am truly appreciative of all the support he gave. In addition, I would like to thank the remaining faculty on my thesis committee: Dr. Tong Sun and Dr. Kit Chan, for supporting me through their instruction and mentorship.
    [Show full text]
  • Electromagnetic Induction, Ac Circuits, and Electrical Technologies 813
    CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES 813 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Figure 23.1 This wind turbine in the Thames Estuary in the UK is an example of induction at work. Wind pushes the blades of the turbine, spinning a shaft attached to magnets. The magnets spin around a conductive coil, inducing an electric current in the coil, and eventually feeding the electrical grid. (credit: phault, Flickr) 814 CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Learning Objectives 23.1. Induced Emf and Magnetic Flux • Calculate the flux of a uniform magnetic field through a loop of arbitrary orientation. • Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire. 23.2. Faraday’s Law of Induction: Lenz’s Law • Calculate emf, current, and magnetic fields using Faraday’s Law. • Explain the physical results of Lenz’s Law 23.3. Motional Emf • Calculate emf, force, magnetic field, and work due to the motion of an object in a magnetic field. 23.4. Eddy Currents and Magnetic Damping • Explain the magnitude and direction of an induced eddy current, and the effect this will have on the object it is induced in. • Describe several applications of magnetic damping. 23.5. Electric Generators • Calculate the emf induced in a generator. • Calculate the peak emf which can be induced in a particular generator system. 23.6. Back Emf • Explain what back emf is and how it is induced. 23.7. Transformers • Explain how a transformer works. • Calculate voltage, current, and/or number of turns given the other quantities.
    [Show full text]
  • The Concept of Field in the History of Electromagnetism
    The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”.
    [Show full text]
  • Faraday's Law Da
    Faraday's Law dA B B r r Φ≡B •d A B ∫ dΦ ε= − B dt Faraday’s Law of Induction r r Recall the definition of magnetic flux is ΦB =B∫ ⋅ d A Faraday’s Law is the induced EMF in a closed loop equal the negative of the time derivative of magnetic flux change in the loop, d r r dΦ ε= −B∫ d ⋅= A − B dt dt Constant B field, changing B field, no induced EMF causes induced EMF in loop in loop Getting the sign EMF in Faraday’s Law of Induction Define the loop and an area vector, A, who magnitude is the Area and whose direction normal to the surface. A The choice of vector A direction defines the direction of EMF with a right hand rule. Your thumb in A direction and then your fingers point to positive EMF direction. Lenz’s Law – easier way! The direction of any magnetic induction effect is such as to oppose the cause of the effect. ⇒ Convenient method to determine I direction Heinrich Friedrich Example if an external magnetic field on a loop Emil Lenz is increasing, the induced current creates a field opposite that reduces the net field. (1804-1865) Example if an external magnetic field on a loop is decreasing, the induced current creates a field parallel to the that tends to increase the net field. Incredible shrinking loop: a circular loop of wire with a magnetic flux is shrinking with time. In which direction is the induced current? (a) There is none. (b) CW.
    [Show full text]
  • Faraday's Law Da
    Faraday's Law dA B B r r Φ≡B •d A B ∫ dΦ ε= − B dt Applications of Magnetic Induction • AC Generator – Water turns wheel Æ rotates magnet Æ changes flux Æ induces emf Æ drives current • “Dynamic” Microphones (E.g., some telephones) – Sound Æ oscillating pressure waves Æ oscillating [diaphragm + coil] Æ oscillating magnetic flux Æ oscillating induced emf Æ oscillating current in wire Question: Do dynamic microphones need a battery? More Applications of Magnetic Induction • Tape / Hard Drive / ZIP Readout – Tiny coil responds to change in flux as the magnetic domains (encoding 0’s or 1’s) go by. 2007 Nobel Prize!!!!!!!! Giant Magnetoresistance • Credit Card Reader – Must swipe card Æ generates changing flux – Faster swipe Æ bigger signal More Applications of Magnetic Induction • Magnetic Levitation (Maglev) Trains – Induced surface (“eddy”) currents produce field in opposite direction Æ Repels magnet Æ Levitates train S N rails “eddy” current – Maglev trains today can travel up to 310 mph Æ Twice the speed of Amtrak’s fastest conventional train! – May eventually use superconducting loops to produce B-field Æ No power dissipation in resistance of wires! Faraday’s Law of Induction r r Recall the definition of magnetic flux is ΦB =B∫ ⋅ d A Faraday’s Law is the induced EMF in a closed loop equal the negative of the time derivative of magnetic flux change in the loop, d r r dΦ ε= −B∫ d ⋅= A − B dt dt Constant B field, changing B field, no induced EMF causes induced EMF in loop in loop Getting the sign EMF in Faraday’s Law of Induction Define the loop and an area vector, A, who magnitude is the Area and whose direction normal to the surface.
    [Show full text]
  • Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses
    aerospace Article Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses Yi Zhang †, Qiang Shen †, Liqiang Hou † and Shufan Wu * School of Aeronautics and Astronautics, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 200240, China; [email protected] (Y.Z.); [email protected] (Q.S.); [email protected] (L.H.) * Correspondence: [email protected]; Tel.: +86-34208597 † These authors contributed equally to this work. Abstract: The safety of on-orbit satellites is threatened by space debris with large residual angular velocity and the space debris removal is becoming more challenging than before. This paper explores the non-contact despinning and traction problem of high-speed rotating targets and proposes an eddy current brake and traction technology for space targets without any propellant consumption. The principle of the conventional eddy current brake is analyzed in this article and the concept of eddy current brake and traction without propellant is put forward for the first time. Secondly, according to the key technical requirements, a brand-new structure of a satellite generating artificial magnetic field is designed accordingly. Then the control mechanism of eddy current brake and traction without propellant is analyzed qualitatively by simplifying the model and conditions. Then, the magnetic pulse control method is proposed and analyzed quantitatively. Finally, the feasibility of the technology is verified by the numerical simulation method. According to the simulation results, the eddy current brake and traction technology based on magnetic pulses can make the angular speed of target decrease linearly without propellant during the process.
    [Show full text]
  • Lecture 30 Motional Emf
    LECTURE 30 MOTIONAL EMF Instructor: Kazumi Tolich Lecture 30 2 ¨ Reading chapter 23-3 & 23-4. ¤ Motional emf ¤ Mechanical work and electrical energy Clicker question: 1 3 Motional emf 4 ¨ As the rod moves to the right at a constant velocity v, the motional emf is given by ΔΦ BΔA lvΔt E = N = = B = Bvl Δt Δt Δt Example: 1 5 ¨ A Boeing KC-135A airplane has a wingspan of L = 39.9 m and flies at constant altitude in a northerly direction with a speed of v = 240 m/s. If the vertical component of the Earth’s magnetic -6 field is Bv = 5.0 × 10 T, and its -6 horizontal component is Bh = 1.4 × 10 T, what is the induced emf between the wing tips? Clicker question: 2 & 3 6 Mechanical and electric powers 7 ¨ Suppose the rod is moving with a constant velocity �. ¨ The mechanical power delivered by the external force is: ¨ Compare this to the electrical power in the light bulb: ¨ Therefore, mechanical power has been converted directly into electrical power. Example: 2 8 ¨ In the figure, let the magnetic field strength be B = 0.80 T, the rod speed be v = 10 m/s, the rod length be l = 0.20 m, and the resistance of the resistor be R = 2.0 Ω. (The resistance of the rod and rails are negligible.) a) Find the induced emf in the circuit. b) Find the induced current in the circuit (including direction). c) Find the force needed to move the rod with constant speed (assuming negligible friction).
    [Show full text]
  • Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches
    AP Corp | (508) 351-6200 | www.a-pcorp.com Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches Both eddy-current sensors as well as inductive switches and displacement sensors have been used for many years, each having their respective advantages when it comes to measuring position and displacement of objects in harsh environments. However, recent advances in eddy-current sensor design, integration and packaging, as well as overall cost reduction, have made these sensors a much more attractive option. This is especially true where high linearity, high-speed measurements and high resolution are critical requirements. Common Inductive Sensors & Switches To appreciate the inherent advantages of eddy-current sensors, relative to inductive switches and displacement sensors, it’s important to first understand the principle of operation of both types. The classic inductive displacement sensor comprises a coil that is wound around a ferromagnetic core. When excited by an alternating current from an oscillator-based driver circuit, the coil generates a magnetic field that is concentrated around the core. The lines of flux interact with the target conductor as it approaches, creating eddy currents that are the reverse of the initial excitation current and have the effect of reducing the voltage across the oscillator. These variations in voltage due to the change in air gap distance are detected and converted to an analog output signal, such as a 4-20mA loop, and then processed upstream to determine displacement. 1 AP Corp | (508) 351-6200 | www.a-pcorp.com In an inductive displacement sensor, a coil is wrapped around a ferromagnetic core and when an alternating current is passed through the coil it generates a magnetic field.
    [Show full text]
  • Lecture 3: Static Magnetic Solvers
    Lecture 3: Static Magnetic Solvers ANSYS Maxwell V16 Training Manual © 2013 ANSYS, Inc. May 21, 2013 1 Release 14.5 Content A. Magnetostatic Solver a. Selecting the Magnetostatic Solver b. Material Definition c. Boundary Conditions d. Excitations e. Parameters f. Analysis Setup g. Solution Process B. Eddy Current Solver a. Selecting the Eddy Current Solver b. Material Definition c. Boundary Conditions d. Excitations e. Parameters f. Analysis Setup g. Solution Process © 2013 ANSYS, Inc. May 21, 2013 2 Release 14.5 A. Magnetostatic Solver Magnetostatic Solver – In the Magnetostatic Solver, a static magnetic field is solved resulting from a DC current flowing through a coil or due to a permanent magnet – The Electric field inside the current carrying coil is completely decoupled from magnetic field – Losses are only due to Ohmic losses in current carrying conductors – The Magnetostatic solver utilizes an automatic adaptive mesh refinement technique to achieve an accurate and efficient mesh required to meet defined accuracy level (energy error). Magnetostatic Equations – Following two Maxwell’s equations are solved with Magnetostatic solver H J 1 Jz (x, y) ( Az (x, y)) B 0 0r B μ0( H M ) 0 r H 0 M p Maxwell 2D Maxwell 3D © 2013 ANSYS, Inc. May 21, 2013 3 Release 14.5 a. Selecting the Magnetostatic Problem Selecting the Magnetostatic Solver – By default, any newly created design will be set as a Magnetostatic problem – Specify the Magnetostatic Solver by selecting the menu item Maxwell 2D/3D Solution Type – In Solution type window, select Magnetic> Magnetostatic and press OK Maxwell 3D Maxwell 2D © 2013 ANSYS, Inc.
    [Show full text]
  • Electromagnetic Induction Go Back in Time
    Electromagnetic Induction Many electrical or electronic devices rely on a principle called electromagnetic induction in order to function. The term refers to electricity being produced in a conductor by a changing magnetic field. To understand it better, it helps to go back in time. This phenomenon was first observed byMichael Faraday in 1831 A conductor is the term and, realizing that this was an important discovery, he carried given to a material whose electrons will out a number of experiments to determine exactly what was move easily from one happening. He noticed that: atom to another. • When the magnetic flux linking a conductor changes then an electromotive force is induced in the conductor. • The magnitude of the emf induced in the inductor is proportional to the rate of change of the flux linkage. The above relates to one of Faraday’s laws. In simple terms, it means that if a conductor is moved within a magnetic field then the force it experiences causes an electric current to flow through that conductor. Likewise, the faster the change in the magnetic field then the greater the emf produced. 47 The important thing to remember is that the electromotive force will only be produced in the conductor as long as the magnetic field is changing – therefore, no change, no current flow! A typical conductor is a Other experiments length of copper wire. Michael Faraday was not the only one to have observed the phenomenon. Working independently, the American scientist Joseph Henry also discovered electromagnetic induction at about the same time as Faraday. In recognition, the henry (symbol H) is now the SI unit of inductance.
    [Show full text]
  • 3-D Eddy Current Torque Modeling
    CMP-843 3-D Eddy Current Torque Modeling Subhra Paul, Walter Bomela and Jonathan Z. Bird Laboratory for Electromechanical Energy Conversion and Control University of North Carolina at Charlotte, NC 28223, USA This paper presents an analytic based eddy current torque analysis procedure. The equations are derived using the second order vector potential and the magnetic rotor is modeled using the magnetic charge sheet concept. The formulation enables the damping and stiffness equations to be derived. The equations are numerically computed and the accuracy is compared against experimental torque and power measurements. Index Terms— eddy currents, torque, Halbach rotor, maglev, second order vector potential. I. INTRODUCTION HEN a magnetic source moves in the vicinity of a Wconductive plate, time varying magnetic fields induce eddy currents in the plate which in turn interacts with the source magnetic field to create velocity dependent drag and lift force. The generated drag force can be utilized in applications such as eddy current braking [1] and rotor vibration damping [2]. While the lift force can be utilized to (a) (b) provide suspension for high-speed maglev trains [3]. Fig. 2 The (a) x-y and (b) z-y view of the problem region. Electrodynamic maglev suspension systems typically rely on a II. GOVERNING EQUATIONS null-flux coil guideway topology in order to maximize the lift- A schematic showing the relevant problem regions is to-drag ratio [4]. Another way to avoid this drag and achieve shown in Fig. 2. The rotor velocity in the x, y and z directions integrated suspension and propulsion for the vehicle at low as well as rotational speed, ω , is shown.
    [Show full text]
  • The Electromagnetic Analysis and Design of a New Permanent Magnetic Eddy Current Damper
    Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, IMECS 2014, March 12 - 14, 2014, Hong Kong The Electromagnetic Analysis and Design of a New Permanent Magnetic Eddy Current Damper XIE Hu, MA Shuyuan, LI Wenbin Abstract—The thesis suggests the design of a passive Depending on different primary excitation sources, the permanent magnetic eddy current damper. The damping force electromagnetic damper has three sub-types: electrical from the eddy currents which are generated by a conductor excitation magnetic damper, hybrid excitation plate cutting through magnetic lines of forces can help make a electromagnetic damper and permanent magnetic damper[2]. maglev positioning platform more stable. The formulas for Electrical excitation magnetic damper can regulate the calculating damping force are proposed by applying molecular braking force by adjusting the air gap magnetic flux density current methods. The feasibility of the design is proved by the amplitude. However, its braking force is lower in density finite element simulation of the proposed damper. and has more excitation magnetic loss. Hybrid excitation air gap magnetic field is under the effects of excitation winding Keywords—Maglev Positioning Platform, Permanent and permanent magnets, with the advantages of large air gap Magnetic Eddy Current Damper, Molecular Current, Finite magnetic amplitude, flexibility and high efficiency and the Element Analysis, Damping Coefficient disadvantages of complicated structure and large size. Permanent magnetic damper does not require extra I. INTRODUCTION power supply or excitation winding, so it is energy-saving, [3] hen a conductor moves in a magnetic field, it will be highly efficient and greater in braking density .
    [Show full text]