Toxicological Profile for Perchlorates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physician Perchlorate Fact Sheet
Physician Fact Sheet PERCHLORATE Environmental Epidemiology and Toxicology Division HIGHLIGHTS: Perchlorate competitively inhibits the uptake of iodide by the thyroid gland potentially affecting thyroid function. Pregnant women and their developing fetus may be more susceptible to the effects of perchlorate because of the stress that pregnancy places on the thyroid gland. Disruption of thyroid function could put pregnant women at greater risk for pregnancy-related complications such as preeclampsia, placental abruption, and low birth weight infants. An adequate iodine intake may negate the potential effects. Exposure levels that affect thyroid function have not been well demonstrated in humans. Currently, a National Primary Drinking Water Regulation for perchlorate does not exist. For more information, call the Texas Department of Health Environmental Epidemiology and Toxicology Division at (800)588-1248. What is Perchlorate? How does perchlorate get into the body? -1 Perchlorate (ClO4 ) is the most oxygenated member of Drinking water contaminated with perchlorate is the a series of compounds made up of chlorine and most likely way that perchlorate can get into the body. oxygen. It can form an acid or a salt in combination Perchlorate is not well absorbed through the skin. with a hydrogen ion (H+) or another cation such as sodium, potassium, or ammonium ion. Perchlorate What health effects are associated with salts, which have been widely used as an oxidizer in perchlorate? solid propellants for rockets and missiles since the mid- 1940s, have a finite shelf-life and must periodically be Perchlorate competitively inhibits the uptake of iodide replaced. As a result, large volumes of perchlorate by the thyroid gland through its effect on a transport have been disposed of since the 1950s. -
Thyroid Disease Update
10/11/2017 Thyroid Disease Update • Donald Eagerton M.D. Disclosures I have served as a clinical investigator and/or speakers bureau member for the following: Abbott, Astra Zenica, BMS, Boehringer Ingelheim, Eli Lilly, Merck, Novartis, Novo Nordisk, Pfizer, and Sanofi Aventis Thyroid Disease Update • Hypothyroidism • Hyperthyroidism • Thyroid Nodules • Thyroid Cancer 1 10/11/2017 2 10/11/2017 Case 1 • 50 year old white female is seen for follow up. Notices cold intolerance, dry skin, and some fatigue. Cholesterol is higher than prior visits. • Family history; Mother had history of hypothyroidism. Sister has hypothyroidism. • TSH = 14 (0.30- 3.3) Free T4 = 1.0 (0.95- 1.45) • Weight 70 kg Case 1 • Next step should be • A. Check Free T3 • B. Check AntiMicrosomal Antibodies • C. Start Levothyroxine 112 mcg daily • D. Start Armour Thyroid 30 mg q day • E. Check Thyroid Ultrasound Case 1 Next step should be • A. Check Free T3 • B. Check AntiMicrosomal Antibodies • C. Start Levothyroxine 112 mcg daily • D. Start Armour Thyroid 30 mg q day • E. Check Thyroid Ultrasound 3 10/11/2017 Hypothyroidism • Incidence 0.1- 2.0 % of the population • Subclinical hypothyroidism in 4-10% of the adult population • 5-8 times higher in women An FT4 test can confirm hypothyroidism 13 • In the presence of high TSH and FT4 levels in relation to the thyroid function TSH, low FT4 (free thyroxine) usually signalsTSH primary hypothyroidism12 Overt Mild Mild Overt Euthyroidism FT4 Hypothyroidism Thyrotoxicosis* Thyrotoxicosis vs. hyperthyroidism¹ While these terms are often used interchangeably, thyrotoxicosis (toxic thyroid), describes presence of too much thyroid hormone, whether caused by thyroid overproduction (hyperthyroidism); by leakage of thyroid hormone into the bloodstream (thyroiditis); or by taking too much thyroid hormone medication. -
Liothyronine Sodium(BANM, Rinnm) Potassium Perchlorate
2174 Thyroid and Antithyroid Drugs with methodological limitations. However, a controlled trial of In myxoedema coma liothyronine sodium may be liothyronine with paroxetine could not confirm any advantage of given intravenously in a dose of 5 to 20 micrograms by 3 O additive therapy. slow intravenous injection, repeated as necessary, usu- 1. Aronson R, et al. Triiodothyronine augmentation in the treat- HO I ally at intervals of 12 hours; the minimum interval be- ment of refractory depression: a meta-analysis. Arch Gen Psychi- OH atry 1996; 53: 842–8. tween doses is 4 hours. An alternative regimen advo- 2. Altshuler LL, et al. Does thyroid supplementation accelerate tri- NH2 cates an initial dose of 50 micrograms intravenously cyclic antidepressant response? A review and meta-analysis of I O the literature. Am J Psychiatry 2001; 158: 1617–22. followed by further injections of 25 micrograms every 3. Appelhof BC, et al. Triiodothyronine addition to paroxetine in I 8 hours until improvement occurs; the dosage may the treatment of major depressive disorder. J Clin Endocrinol then be reduced to 25 micrograms intravenously twice Metab 2004; 89: 6271–6. (liothyronine) daily. Obesity. Thyroid drugs have been tried in the treatment of obes- Liothyronine has also been given in the diagnosis of ity (p.2149) in euthyroid patients, but they produce only tempo- NOTE. The abbreviation T3 is often used for endogenous tri-io- hyperthyroidism in adults. Failure to suppress the up- rary weight loss, mainly of lean body-mass, and can produce se- dothyronine in medical and biochemical reports. Liotrix is USAN rious adverse effects, especially cardiac complications.1 for a mixture of liothyronine sodium with levothyroxine sodium. -
Clinical Thyroidology for Patients Volume 6 Issue 8 2013
Clinical THYROIDOLOGY th 90 ANNIVERSARY FOR PATIENTS VOLUME 6 ISSUE 8 2013 www.thyroid.org EDITOR’S COMMENTS . .2 Tanda ML et al Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed HYPOTHYROIDISM . 3 Graves’ hyperthyroidism seen at a single center. J Clin Desiccated thyroid extract vs Levothyroxine Endocrinol Metab 2013;98:1443-9. in the treatment of hypothyroidism Levothyroxine is the most common form of thyroid hormone THYROID CANCER . 8 replacement therapy. Prior to the availability of the pure levothy- Stimulated thyroglobulin levels obtained after roxine, desiccated animal thyroid extract was the only treatment thyroidectomy are a good indicator for risk of for hypothyroidism and some individuals still prefer dessicated future recurrence from thyroid cancer. thyroid extract as a more “natural” thyroid hormone. This study Thyroglobulin is a protein secreted only by thyroid cells, both was performed to compare levothyroxine to desiccated thyroid normal and cancerous thyroid cells. After thyroidectomy and extract in terms of thyroid blood tests, changes in weight, psy- removal of most of the normal thyroid cells, blood thyroglobu- chometric test results and patient preference. lin levels are used to detect thyroid cancer recurrence. In this Hoang TD et al Desiccated thyroid extract compared study, the authors examined the ability of thyroglobulin levels with levothyroxine in the treatment of hypothyroidism: measured after initial thyroidectomy to accurately predict the A randomized, double-blind, crossover study. J Clin Endo- chance for future thyroid cancer recurrence in high risk patients. crinol Metab 2013;98:1982-90. Epub March 28, 2013. Piccardo, A. -
Fate of Sodium Pertechnetate-Technetium-99M
JOURNAL OF NUCLEAR MEDICINE 8:50-59, 1967 Fate of Sodium Pertechnetate-Technetium-99m Dr. Muhammad Abdel Razzak, M.D.,1 Dr. Mahmoud Naguib, Ph.D.,2 and Dr. Mohamed El-Garhy, Ph.D.3 Cairo, Egypt Technetium-99m is a low-energy, short half-life iostope that has been recently introduced into clinical use. It is available as the daughter of °9Mowhich is re covered as a fission product or produced by neutron bombardement of molyb denum-98. The aim of the present work is to study the fate of sodium pertechnetate 9OmTc and to find out any difference in its distribution that might be caused by variation in the method of preparation of the parent nuclide, molybdenum-99. MATERIALS & METHODS The distribution of radioactive sodium pertechnetate milked from 99Mo that was obtained as a fission product (supplied by Isocommerz, D.D.R.) was studied in 36 white mice, weighing between 150 and 250 gm each. Normal isotonic saline was used for elution of the pertechnetate from the radionuclide generator. The experimental animals were divided into four equal groups depending on the route of administration of the radioactive material, whether intraperitoneal, in tramuscular, subcutaneous or oral. Every group was further subdivided into three equal subgroups, in order to study the effect of time on the distribution of the pertechnetate. Thus, the duration between administration of the radio-pharma ceutical and sacrificing the animals was fixed at 30, 60 and 120 minutes for the three subgroups respectively. Then the animals were dissected and the different organs taken out.Radioactivityin an accuratelyweighed specimen from each organ was estimated in a scintillation well detector equipped with one-inch sodium iodide thallium activated crystal. -
Package Insert TECHNETIUM Tc99m GENERATOR for the Production of Sodium Pertechnetate Tc99m Injection Diagnostic Radiopharmaceuti
NDA 17693/S-025 Page 3 Package Insert TECHNETIUM Tc99m GENERATOR For the Production of Sodium Pertechnetate Tc99m Injection Diagnostic Radiopharmaceutical For intravenous use only Rx ONLY DESCRIPTION The technetium Tc99m generator is prepared with fission-produced molybdenum Mo99 adsorbed on alumina in a lead-shielded column and provides a means for obtaining sterile pyrogen-free solutions of sodium pertechnetate Tc99m injection in sodium chloride. The eluate should be crystal clear. With a pH of 4.5-7.5, hydrochloric acid and/or sodium hydroxide may have been used for Mo99 solution pH adjustment. Over the life of the generator, each elution will provide a yield of > 80% of the theoretical amount of technetium Tc99m available from the molybdenum Mo99 on the generator column. Each eluate of the generator should not contain more than 0.0056 MBq (0.15 µCi) of molybdenum Mo99 per 37 MBq, (1 mCi) of technetium Tc99m per administered dose at the time of administration, and not more than 10 µg of aluminum per mL of the generator eluate, both of which must be determined by the user before administration. Since the eluate does not contain an antimicrobial agent, it should not be used after twelve hours from the time of generator elution. PHYSICAL CHARACTERISTICS Technetium Tc99m decays by an isomeric transition with a physical half-life of 6.02 hours. The principal photon that is useful for detection and imaging studies is listed in Table 1. Table 1. Principal Radiation Emission Data1 Radiation Mean %/Disintegration Mean Energy (keV) Gamma-2 89.07 140.5 1Kocher, David C., “Radioactive Decay Data Tables,” DOE/TIC-11026, p. -
MEDICATION GUIDE PROPYLTHIOURACIL (Pro-Pil-Thi-O-Ur-A-Sil) Tablets Read This Medication Guide Before You Start Taking Propylthiouracil and Each Time You Get a Refill
MEDICATION GUIDE PROPYLTHIOURACIL (Pro-pil-thi-o-ur-a-sil) Tablets Read this Medication Guide before you start taking Propylthiouracil and each time you get a refill. There may be new information. This Medication Guide does not take the place of talking to your doctor about your medical condition or treatment. What is the most important information I should know about Propylthiouracil? Propylthiouracil can cause serious side effects, including: • Severe liver problems. In some cases, liver problems can happen in people who take Propylthiouracil including: liver failure, the need for liver transplant, or death. Stop taking Propylthiouracil and call your doctor right away if you have any of these symptoms: • fever • loss of appetite •nausea • vomiting • tiredness • itchiness • pain or tenderness in your right upper stomach area (abdomen) • dark (tea colored) urine • pale or light colored bowel movements (stools) • yellowing of your skin or whites of your eyes • Serious risks during pregnancy. Propylthiouracil may cause liver problems, liver failure and death in pregnant women and may harm your unborn baby. Propylthiouracil may also cause liver problems or death of infants born to women who take Propylthiouracil during certain trimesters of pregnancy. Propylthiouracil may be used when an antithyroid drug is needed during or just before the first trimester of pregnancy. If you get pregnant while taking Propylthiouracil, call your doctor right away about your therapy. What is Propylthiouracil? Propylthiouracil is a prescription medicine used to treat people who have Graves’ disease with hyperthyroidism or toxic multinodular goiter. Propylthiouracil is used when: • certain other antithyroid medicines do not work well. • thyroid surgery or radioactive iodine therapy is not a treatment option. -
Radionuclide Thyroid Scans
Radionuclide Thyroid Scans Report 2003 1 Purpose The purpose of this guideline is to assist specialists in Nuclear Medicine and Radionuclide Radiology in recommending, performing, interpreting and reporting radionuclide thyroid scans. This guideline will assist individual departments in the formulation of their own local protocols. Background Thyroid scintigraphy is an effective imaging method for assessing the functionality of thyroid lesions including the uptake function of part or all of the thyroid gland. 99TCm pertechnetate is trapped by thyroid follicular cells. 123I-Iodide is both trapped and organified by thyroid follicular cells. Common Indications 1.1 Assessment of functionality of thyroid nodules. 1.2 Assessment of goitre including hyperthyroid goitre. 1.3 Assessment of uptake function prior to radio-iodine treatment 1.4 Assessment of ectopic thyroid tissue. 1.5 Assessment of suspected thyroiditis 1.6 Assessment of neonatal hypothyroidism Procedure 1 Patient preparation 1.1 Information on patient medication should be obtained prior to undertaking study. Patients on Thyroxine (Levothyroxine Sodium) should stop treatment for four weeks prior to imaging, patients on Tri-iodothyronine (T3) should stop treatment for two weeks if adequate images are to be obtained. 1.2 All relevant clinical history should be obtained on attendance, including thyroid medication, investigations with contrast media, other relevant medication including Amiodarone, Lithium, kelp, previous surgery and diet. 1.3 All other relevant investigations should be available including results of thyroid function tests and ultrasound examinations. 1.4 Studies should be scheduled to avoid iodine-containing contrast media prior to thyroid imaging. 2 1.5 Carbimazole and Propylthiouracil are not contraindicated in patients undergoing 99Tcm pertechnetate thyroid scans and need not be discontinued prior to imaging. -
Evaluating and Managing Patients with Thyrotoxicosis
Thyroid Evaluating and Kirsten Campbell managing patients with Matthew Doogue thyrotoxicosis Background Thyrotoxicosis is common in the Australian population Thyrotoxicosis is common in the Australian community and and thus a frequent clinical scenario facing the general is frequently encountered in general practice. Graves disease, practitioner. The prevalence of thyrotoxicosis (subclinical toxic multinodular goitre, toxic adenoma and thyroiditis or overt) reported among those without a history of thyroid account for most presentations of thyrotoxicosis. disease in Australia is approximately 0.5% and this Objective increases with age.1,2 This article outlines the clinical presentation and evaluation of a patient with thyrotoxicosis. Management of Graves disease, Causes of thyrotoxicosis the most frequent cause of thyrotoxicosis, is discussed in Table 1 outlines the various causes of thyrotoxicosis. The most further detail. common cause is Graves disease followed by toxic multinodular Discussion goitre, the latter increasing in prevalence with age and iodine The classic clinical manifestations of thyrotoxicosis are deficiency.3,4 Other important causes include toxic adenoma and often easily recognised by general practitioners. However, thyroiditis. Exposure to excessive amounts of iodine (eg. iodinated the presenting symptoms of thyrotoxicosis are varied, with computed tomography [CT] contrast media, amiodarone) in the atypical presentations common in the elderly. Following presence of underlying thyroid disease, especially multinodular biochemical confirmation of thyrotoxicosis, a radionuclide goitre, can cause iodine induced thyrotoxicosis. Thyroiditis thyroid scan is the most useful investigation in diagnosing is a condition that may be suitable for management in the the underlying cause. The selection of treatment differs general practice setting. Patients should be monitored for the according to the cause of thyrotoxicosis and the wishes of the hypothyroid phase, which may occur with this condition. -
IRENAT 300 Mg/Ml, Solution Buvable En Gouttes
1. NAME OF THE MEDICINAL PRODUCT Irenat Drops 300 mg sodium perchlorate, oral drops Sodium perchlorate monohydrate 2. QUALITATIVE AND QUANTITATIVE COMPOSITION 1 ml solution (approximately 15 drops) contains 344.2 mg sodium perchlorate monohydrate (equivalent to 300 mg sodium perchlorate) For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Oral drops 4. CLINICAL PARTICULARS 4.1 Therapeutic indications For the treatment of hyperthyroidism, for thyroid blockade in the context of radionuclide studies of other organs using radioactively labelled iodine or of immunoscintigraphy to detect tumours using antibodies labelled with radioiodine. For the detection of a congenital iodine organification defect (perchlorate discharge test). 4.2 Posology and method of administration Posology Adults receive 4-5 x 10 Irenat drops daily (equivalent to 800-1000 mg sodium perchlorate) or, exceptionally, 5 x 15 Irenat drops daily (equivalent to 1500 mg sodium perchlorate) as an initial dose for the first 1-2 weeks. The mean maintenance dose is 4 x 5 Irenat drops (equivalent to 400 mg sodium perchlorate) per day. Children between the ages of 6 and 14 are treated throughout with a dose of 3-6 x 1 or 4-6 x 2 Irenat drops (equivalent to 60-240 mg sodium perchlorate) daily. When used for the perchlorate discharge test following administration of the dose of radioiodine tracer, a single dose is given of 30-50 Irenat drops (equivalent to 600-1000 mg sodium perchlorate) or 300 mg-600 mg/m 2 body surface area in children. As pretreatment for radionuclide studies not involving the thyroid itself and using radioactively labelled drugs or antibodies containing iodine or technetium, Irenat drops should be administered at doses of 10 – 20 drops (equivalent to 200-400 mg sodium perchlorate) and, in isolated cases, up to 50 drops (equivalent to 1000 mg sodium perchlorate) so as to reduce exposure of the thyroid to radiation and to block uptake of radionuclide into certain compartments. -
Neo-Mercazole
NEW ZEALAND DATA SHEET 1 NEO-MERCAZOLE Carbimazole 5mg tablet 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains 5mg of carbimazole. Excipients with known effect: Sucrose Lactose For a full list of excipients see section 6.1 List of excipients. 3 PHARMACEUTICAL FORM A pale pink tablet, shallow bi-convex tablet with a white centrally located core, one face plain, with Neo 5 imprinted on the other. 4 CLINICAL PARTICULARS 4.1 Therapeutic indications Primary thyrotoxicosis, even in pregnancy. Secondary thyrotoxicosis - toxic nodular goitre. However, Neo-Mercazole really has three principal applications in the therapy of hyperthyroidism: 1. Definitive therapy - induction of a permanent remission. 2. Preparation for thyroidectomy. 3. Before and after radio-active iodine treatment. 4.2 Dose and method of administration Neo-Mercazole should only be administered if hyperthyroidism has been confirmed by laboratory tests. Adults Initial dosage It is customary to begin Neo-Mercazole therapy with a dosage that will fairly quickly control the thyrotoxicosis and render the patient euthyroid, and later to reduce this. The usual initial dosage for adults is 60 mg per day given in divided doses. Thus: Page 1 of 12 NEW ZEALAND DATA SHEET Mild cases 20 mg Daily in Moderate cases 40 mg divided Severe cases 40-60 mg dosage The initial dose should be titrated against thyroid function until the patient is euthyroid in order to reduce the risk of over-treatment and resultant hypothyroidism. Three factors determine the time that elapses before a response is apparent: (a) The quantity of hormone stored in the gland. (Exhaustion of these stores usually takes about a fortnight). -
Summary of Product Characteristics
Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Ultra-TechneKow FM 2.15-43.00 GBq radionuclide generator 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Sodium pertechnetate (99mTc) injection is produced by means of a (99Mo/99mTc) generator. Technetium (99mTc) decays with the emission of gamma radiation with a mean energy of 140 keV and a half-life of 6.01 hours to technetium (99Tc) which, in view of its long half-life of 2.13 x 105 years can be regarded as quasi stable. The radionuclide generator containing the parent isotope 99Mo, adsorbed on a chromatographic column delivers sodium pertechnetate (99mTc) injection in sterile solution. The 99Mo on the column is in equilibrium with the formed daughter isotope 99mTc. The generators are supplied with the following 99Mo activity amounts at activity reference time which deliver the following technetium (99mTc) amounts, assuming a 100% theoretical elution yield and 24 hours time from previous elution and taking into account that branching ratio of 99Mo is about 87%: 99mTc activity (maximum theoretical elutable 1.90 3.81 5.71 7.62 9.53 11.43 15.24 19.05 22.86 26.67 30.48 38.10 GBq activity at ART, 06.00 h CET) 99Mo activity (at ART, 06.00 h 2.15 4.30 6.45 8.60 10.75 12.90 17.20 21.50 25.80 30.10 34.40 43.00 GBq CET) The technetium (99mTc) amounts available by a single elution depend on the real yields of the kind of generator used itself declared by manufacturer and approved by National Competent Authority.