Fate of Sodium Pertechnetate-Technetium-99M
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Novel Application of Quantitative Single-Photon Emission Computed
Original Article | Nuclear Medicine https://doi.org/10.3348/kjr.2017.18.3.543 pISSN 1229-6929 · eISSN 2005-8330 Korean J Radiol 2017;18(3):543-550 Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves’ Disease Hyun Joo Kim, MD1, 2, Ji-In Bang, MD1, Ji-Young Kim, MD, PhD1, Jae Hoon Moon, MD, PhD3, Young So, MD, PhD4, Won Woo Lee, MD, PhD1, 5 Departments of 1Nuclear Medicine and 3Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; 2Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Korea; 4Department of Nuclear Medicine, Konkuk University Medical Center, Seoul 05030, Korea; 5Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 08826, Korea Objective: Since Graves’ disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. Materials and Methods: A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of 99mTc- pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and %uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean x thyroid volume) from the SPECT/CT, and clinical/ biochemical variables, were investigated. -
Physician Perchlorate Fact Sheet
Physician Fact Sheet PERCHLORATE Environmental Epidemiology and Toxicology Division HIGHLIGHTS: Perchlorate competitively inhibits the uptake of iodide by the thyroid gland potentially affecting thyroid function. Pregnant women and their developing fetus may be more susceptible to the effects of perchlorate because of the stress that pregnancy places on the thyroid gland. Disruption of thyroid function could put pregnant women at greater risk for pregnancy-related complications such as preeclampsia, placental abruption, and low birth weight infants. An adequate iodine intake may negate the potential effects. Exposure levels that affect thyroid function have not been well demonstrated in humans. Currently, a National Primary Drinking Water Regulation for perchlorate does not exist. For more information, call the Texas Department of Health Environmental Epidemiology and Toxicology Division at (800)588-1248. What is Perchlorate? How does perchlorate get into the body? -1 Perchlorate (ClO4 ) is the most oxygenated member of Drinking water contaminated with perchlorate is the a series of compounds made up of chlorine and most likely way that perchlorate can get into the body. oxygen. It can form an acid or a salt in combination Perchlorate is not well absorbed through the skin. with a hydrogen ion (H+) or another cation such as sodium, potassium, or ammonium ion. Perchlorate What health effects are associated with salts, which have been widely used as an oxidizer in perchlorate? solid propellants for rockets and missiles since the mid- 1940s, have a finite shelf-life and must periodically be Perchlorate competitively inhibits the uptake of iodide replaced. As a result, large volumes of perchlorate by the thyroid gland through its effect on a transport have been disposed of since the 1950s. -
Evaluation of Thyroid to Background Ratios in Hyperthyroid Cats Ann Bettencourt
Evaluation of Thyroid to Background Ratios in Hyperthyroid Cats Ann Bettencourt Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Biomedical and Veterinary Sciences Gregory Daniel David Panciera Marti Larson July 2, 2014 Blacksburg, VA Keywords: Pertechnetate, Radioiodine, Thyroid:Background Ratio, Scintigraphy, Feline, Thyroid Evaluation of Thyroid to Background Ratios in Hyperthyroid Cats Ann Bettencourt Abstract Hyperthyroidism is the most common feline endocrinopathy. 131I is the treatment of choice, and over 50,000 cats have been treated using an empirical fixed dose. Better treatment responses could be achieved by tailoring the dose based on the severity of disease. Scintigraphy is the best method to quantify the severity of the disease. Previously established scintigraphic quantitative methods, thyroid to salivary ratio (T:S ratio) and % dose uptake, are the most widely recognized measurements. Recently, the thyroid to background ratio (T:B ratio) has been proposed as an alternate method to assess function and predict 131I treatment response. The purpose of this study was to determine the best location of a background ROI, which should be reflective of blood pool activity. We also hypothesized that the T:B ratio using the determined background ROI would provide improved correlation to T4 when compared to T:S ratio and % dose uptake in hyperthyroid cats. Fifty-six hyperthyroid cats were enrolled. T4 was used as the standard measure of thyroid function and was obtained prior to thyroid scintigraphy and 131I therapy. Blood samples were collected at the time of scintigraphy and radioactivity within the sample was measured. -
Pharmacy Reengineering (PRE) V.0.5 Pre-Release Implementation
PHARMACY REENGINEERING (PRE) Version 0.5 Pre-Release Implementation Guide PSS*1*129 & PSS*1*147 February 2010 Department of Veterans Affairs Office of Enterprise Development Revision History Date Revised Patch Description Pages Number 02/2010 All PSS*1*147 Added Revision History page. Updated patch references to include PSS*1*147. Described files, fields, options and routines added/modified as part of this patch. Added Chapter 5, Additive Frequency for IV Additives, to describe the steps needed to ensure correct data is in the new IV Additive REDACTED 01/2009 All PSS*1*129 Original version REDACTED February 2010 Pharmacy Reengineering (PRE) V. 0.5 Pre-Release i Implementation Guide PSS*1*129 & PSS*1*147 Revision History (This page included for two-sided copying.) ii Pharmacy Reengineering (PRE) V. 0.5 Pre-Release February 2010 Implementation Guide PSS*1*129 & PSS*1*147 Table of Contents Introduction ................................................................................................................................. 1 Purpose ....................................................................................................................................1 Project Description ....................................................................................................................1 Scope ........................................................................................................................................3 Menu Changes ..........................................................................................................................4 -
Package Insert TECHNETIUM Tc99m GENERATOR for the Production of Sodium Pertechnetate Tc99m Injection Diagnostic Radiopharmaceuti
NDA 17693/S-025 Page 3 Package Insert TECHNETIUM Tc99m GENERATOR For the Production of Sodium Pertechnetate Tc99m Injection Diagnostic Radiopharmaceutical For intravenous use only Rx ONLY DESCRIPTION The technetium Tc99m generator is prepared with fission-produced molybdenum Mo99 adsorbed on alumina in a lead-shielded column and provides a means for obtaining sterile pyrogen-free solutions of sodium pertechnetate Tc99m injection in sodium chloride. The eluate should be crystal clear. With a pH of 4.5-7.5, hydrochloric acid and/or sodium hydroxide may have been used for Mo99 solution pH adjustment. Over the life of the generator, each elution will provide a yield of > 80% of the theoretical amount of technetium Tc99m available from the molybdenum Mo99 on the generator column. Each eluate of the generator should not contain more than 0.0056 MBq (0.15 µCi) of molybdenum Mo99 per 37 MBq, (1 mCi) of technetium Tc99m per administered dose at the time of administration, and not more than 10 µg of aluminum per mL of the generator eluate, both of which must be determined by the user before administration. Since the eluate does not contain an antimicrobial agent, it should not be used after twelve hours from the time of generator elution. PHYSICAL CHARACTERISTICS Technetium Tc99m decays by an isomeric transition with a physical half-life of 6.02 hours. The principal photon that is useful for detection and imaging studies is listed in Table 1. Table 1. Principal Radiation Emission Data1 Radiation Mean %/Disintegration Mean Energy (keV) Gamma-2 89.07 140.5 1Kocher, David C., “Radioactive Decay Data Tables,” DOE/TIC-11026, p. -
Loss of Pertechnetate from the Human Thyroid
LOSS OF PERTECHNETATE FROM THE HUMAN THYROID J. G. Shimmins Regional Dept. of Clinical Physics and Bioengineering, Western Regional Hospital Board, Glasgow, Scotland R. McG. Harden and W. D. Alexander University Department of Medicine, Western Infirmary, Glasgow, Scotland The pertechnetate ion, like the iodide ion, is Magnascanner V (3,6) were started immediately trapped by the thyroid gland (1 ). Several authors after injection and were continued for 45 mm when have claimed that pertechnetate is not bound in the five scans had normally been completed. The scan thyroid (2) and that the gland behaves as a single speed was 100 cm/sec, and the line spacing was compartment (3) . However, the finding of organic 1 cm. Venous blood samples were taken at 2, 8, 15, binding of 9DmTcin rats (4,5) raises the question 30 and 45 mm. One gram perchlorate was given of whether some such binding may not occur in man. orally as a crushed powder in nine subjects 50 mm In this study we have investigated the binding of after the intravenous administration of pertechne pertechnetate in the human gland by measuring the tate. The same amount was given orally to the re rate of pertechnetate discharge from it after per maining four 3 hr after intravenous administra chlorate administration and have compared this rate tion of pertechnetate. Scans were carried out for an of discharge with the normal loss rate of pertechne additional 45 min after perchlorate administration, tate from the thyroid (3). If pertechnetate is Un and blood samples were taken at 2, 8, 15 and 45 bound, it should be possible to discharge it from min. -
Radionuclide Thyroid Scans
Radionuclide Thyroid Scans Report 2003 1 Purpose The purpose of this guideline is to assist specialists in Nuclear Medicine and Radionuclide Radiology in recommending, performing, interpreting and reporting radionuclide thyroid scans. This guideline will assist individual departments in the formulation of their own local protocols. Background Thyroid scintigraphy is an effective imaging method for assessing the functionality of thyroid lesions including the uptake function of part or all of the thyroid gland. 99TCm pertechnetate is trapped by thyroid follicular cells. 123I-Iodide is both trapped and organified by thyroid follicular cells. Common Indications 1.1 Assessment of functionality of thyroid nodules. 1.2 Assessment of goitre including hyperthyroid goitre. 1.3 Assessment of uptake function prior to radio-iodine treatment 1.4 Assessment of ectopic thyroid tissue. 1.5 Assessment of suspected thyroiditis 1.6 Assessment of neonatal hypothyroidism Procedure 1 Patient preparation 1.1 Information on patient medication should be obtained prior to undertaking study. Patients on Thyroxine (Levothyroxine Sodium) should stop treatment for four weeks prior to imaging, patients on Tri-iodothyronine (T3) should stop treatment for two weeks if adequate images are to be obtained. 1.2 All relevant clinical history should be obtained on attendance, including thyroid medication, investigations with contrast media, other relevant medication including Amiodarone, Lithium, kelp, previous surgery and diet. 1.3 All other relevant investigations should be available including results of thyroid function tests and ultrasound examinations. 1.4 Studies should be scheduled to avoid iodine-containing contrast media prior to thyroid imaging. 2 1.5 Carbimazole and Propylthiouracil are not contraindicated in patients undergoing 99Tcm pertechnetate thyroid scans and need not be discontinued prior to imaging. -
EANM Practice Guideline/SNMMI Procedure Standard for RAIU and Thyroid Scintigraphy
European Journal of Nuclear Medicine and Molecular Imaging (2019) 46:2514–2525 https://doi.org/10.1007/s00259-019-04472-8 GUIDELINES EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy Luca Giovanella 1,2 & Anca M. Avram3 & Ioannis Iakovou4 & Jennifer Kwak5 & Susan A. Lawson3 & Elizabeth Lulaj6 & Markus Luster7 & Arnoldo Piccardo8 & Matthias Schmidt9 & Mark Tulchinsky10 & Frederick A. Verburg7 & Ely Wolin11 Received: 11 July 2019 /Accepted: 29 July 2019 / Published online: 7 August 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Introduction Scintigraphic evaluation of the thyroid gland enables determination of the iodine-123 iodide or the 99mTc-pertechnetate uptake and distribution and remains the most accurate method for the diagnosis and quantification of thyroid autonomy and the detection of ectopic thyroid tissue. In addition, thyroid scintigraphy and radioiodine uptake test are useful to discriminate hyperthyroidism from destructive thyrotoxicosis and iodine-induced hyperthyroidism, respectively. Methods Several radiopharmaceuticals are available to help in differentiating benign from malignant cytologically indeterminate thyroid nodules and for supporting clinical decision-making. This joint practice guideline/procedure standard from the European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) provides recommendations based on the available evidence in the literature. Conclusion The purpose of this practice guideline/procedure standard is to assist imaging specialists and clinicians in recommending, performing, and interpreting the results of thyroid scintigraphy (including positron emission tomography) with various radiopharmaceuticals and radioiodine uptake test in patients with different thyroid diseases. Keywords Thyroid . Scintigraphy . Radioiodine uptake test . 99mTc-sestaMIBI, 18F-fluorodeoxyglucose Preamble approval of the Committee on Guidelines and Board of Directors of both organizations. -
Hypothyroidism
Hypothyroidism Alejandro Diaz, MD,*† Elizabeth G. Lipman Diaz, PhD, CPNP‡ *Miami Children’s Hospital, Miami, FL †The Herbert Wertheim College of Medicine, Florida International University, Miami, FL ‡University of Miami School of Nursing and Health Studies, Miami, FL Educational Gap Congenital hypothyroidism is one the most common causes of preventable intellectual disability. Awareness that not all cases are detected by the newborn screening is important, particularly because early diagnosis and treatment are essential in preserving cognitive abilities. Objectives After completing this article, readers should be able to: 1. Identify the causes of congenital and acquired hypothyroidism in infants and children. 2. Interpret an abnormal newborn screening result and understand indications for further evaluation and treatment. 3. Recognize clinical signs and symptoms of hypothyroidism. 4. Understand the importance of early diagnosis and treatment of congenital hypothyroidism. 5. Understand the presentation, diagnostic process, treatment, and prognosis of Hashimoto thyroiditis. 6. Differentiate thyroid-binding globulin deficiency from central hypothyroidism. AUTHOR DISCLOSURE Drs Diaz and Lipman Diaz have disclosed no financial relationships 7. Identify sick euthyroid syndrome and other causes of abnormal thyroid relevant to this article. This commentary does function test results. not contain a discussion of an unapproved/ investigative use of a commercial product/ device. ABBREVIATIONS CH congenital hypothyroidism BACKGROUND FT3 free triiodothyronine FT4 free thyroxine The thyroid gland produces hormones that have important functions related to energy HT Hashimoto thyroiditis metabolism, control of body temperature, growth, bone development, and maturation LT4 levothyroxine of the central nervous system, among other metabolic processes throughout the body. rT3 reverse triiodothyronine The thyroid gland develops from the endodermal pharynx. -
IRENAT 300 Mg/Ml, Solution Buvable En Gouttes
1. NAME OF THE MEDICINAL PRODUCT Irenat Drops 300 mg sodium perchlorate, oral drops Sodium perchlorate monohydrate 2. QUALITATIVE AND QUANTITATIVE COMPOSITION 1 ml solution (approximately 15 drops) contains 344.2 mg sodium perchlorate monohydrate (equivalent to 300 mg sodium perchlorate) For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Oral drops 4. CLINICAL PARTICULARS 4.1 Therapeutic indications For the treatment of hyperthyroidism, for thyroid blockade in the context of radionuclide studies of other organs using radioactively labelled iodine or of immunoscintigraphy to detect tumours using antibodies labelled with radioiodine. For the detection of a congenital iodine organification defect (perchlorate discharge test). 4.2 Posology and method of administration Posology Adults receive 4-5 x 10 Irenat drops daily (equivalent to 800-1000 mg sodium perchlorate) or, exceptionally, 5 x 15 Irenat drops daily (equivalent to 1500 mg sodium perchlorate) as an initial dose for the first 1-2 weeks. The mean maintenance dose is 4 x 5 Irenat drops (equivalent to 400 mg sodium perchlorate) per day. Children between the ages of 6 and 14 are treated throughout with a dose of 3-6 x 1 or 4-6 x 2 Irenat drops (equivalent to 60-240 mg sodium perchlorate) daily. When used for the perchlorate discharge test following administration of the dose of radioiodine tracer, a single dose is given of 30-50 Irenat drops (equivalent to 600-1000 mg sodium perchlorate) or 300 mg-600 mg/m 2 body surface area in children. As pretreatment for radionuclide studies not involving the thyroid itself and using radioactively labelled drugs or antibodies containing iodine or technetium, Irenat drops should be administered at doses of 10 – 20 drops (equivalent to 200-400 mg sodium perchlorate) and, in isolated cases, up to 50 drops (equivalent to 1000 mg sodium perchlorate) so as to reduce exposure of the thyroid to radiation and to block uptake of radionuclide into certain compartments. -
Summary of Product Characteristics
Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Ultra-TechneKow FM 2.15-43.00 GBq radionuclide generator 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Sodium pertechnetate (99mTc) injection is produced by means of a (99Mo/99mTc) generator. Technetium (99mTc) decays with the emission of gamma radiation with a mean energy of 140 keV and a half-life of 6.01 hours to technetium (99Tc) which, in view of its long half-life of 2.13 x 105 years can be regarded as quasi stable. The radionuclide generator containing the parent isotope 99Mo, adsorbed on a chromatographic column delivers sodium pertechnetate (99mTc) injection in sterile solution. The 99Mo on the column is in equilibrium with the formed daughter isotope 99mTc. The generators are supplied with the following 99Mo activity amounts at activity reference time which deliver the following technetium (99mTc) amounts, assuming a 100% theoretical elution yield and 24 hours time from previous elution and taking into account that branching ratio of 99Mo is about 87%: 99mTc activity (maximum theoretical elutable 1.90 3.81 5.71 7.62 9.53 11.43 15.24 19.05 22.86 26.67 30.48 38.10 GBq activity at ART, 06.00 h CET) 99Mo activity (at ART, 06.00 h 2.15 4.30 6.45 8.60 10.75 12.90 17.20 21.50 25.80 30.10 34.40 43.00 GBq CET) The technetium (99mTc) amounts available by a single elution depend on the real yields of the kind of generator used itself declared by manufacturer and approved by National Competent Authority. -
SODIUM PERTECHNETATE ( Tc) INJECTION (NON-FISSION
Document QAS/08.283/FINAL-REV September 2009 RESTRICTED SODIUM PERTECHNETATE ( 99mTc) INJECTION (NON-FISSION): Revised Final text for addition to The International Pharmacopoeia (January September 2009) [Note from the Secretariat: This monograph was adopted at the Forty-third WHO Expert Committee on Specifications for Pharmaceutical Preparations in October 2008 for addition to the 4 th Edition of the International Pharmacopoeia Further minor modifications have been applied to this text to be in line with the decisions taken when formatting the rest of the individual radiopharmaceuticals monographs] NATRII PERTECHNETATIS ( 99m Tc) SINE FISSIONE FORMATI INJECTIO SODIUM PERTECHNETATE ( 99mTc) INJECTION (NON-FISSION) This monograph applies to sodium pertechnetate ( 99m Tc) injection obtained from generators containing molybdenum-99 (99 Mo) produced by neutron irradiation of molybdenum and extracted from generator columns. Description. Sodium pertechnetate ( 99m Tc) injection (non-fission) is a clear, colourless solution. Technetium-99m has a half-life of 6.02 hours. Category. Diagnostic. Labelling. Label must state that the injection has been prepared from molybdenum-99 produced from non-fission. Level of molybdenum-99 per vial may be required. Additional information. Wherever V is used within the tests of this monograph, V is the maximum recommended dose , in millilitres . Requirements Complies with the monograph for “Parenteral Preparations” and with that for “Radiopharmaceuticals” . Document QAS/08.283/FINAL page 2 Definition. Sodium pertechnetate ( 99m Tc) injection (non-fission) is a sterile solution of technetium-99m in the form of pertechnetate ion, suitable for intravenous administration and that contains sufficient sodium chloride to make the solution isotonic with blood. The injection contains not less than 90% and not more than 110% of the content of technetium-99m stated on the label at the reference date and time stated on the label.