A New Era of the Paleomagnetic Research in the Pre-Cenozoic of the Central Western Carpathians: Concepts, First Results and Ongoing Studies

Total Page:16

File Type:pdf, Size:1020Kb

A New Era of the Paleomagnetic Research in the Pre-Cenozoic of the Central Western Carpathians: Concepts, First Results and Ongoing Studies GEOLOGICA CARPATHICA 70, SMOLENICE, October 9–11, 2019 GEOLOGICA CARPATHICA 70, SMOLENICE, October 9–11, 2019 A new era of the paleomagnetic research in the pre-Cenozoic of the Central Western Carpathians: Concepts, first results and ongoing studies EMŐ MÁRTON1, DUŠAN PLAŠIENKA2, JOZEF MADZIN3, JACEK GRABOWSKI4, JANA BUČOVÁ3,5, ROMAN AUBRECHT2,3 and MARIÁN PUTIŠ6 1Mining and Geological Survey of Hungary, Paleomagnetic Laboratory, Columbus 17-23, H-1145 Budapest, Hungary; [email protected] 2Comenius University, Faculty of Natural Sciences, Department of Geology and Paleontology, Ilkovičova 6, 842 15 Bratislava, Slovakia; [email protected] 3Slovak Academy of Sciences, Earth Science Institute, Ďumbierska 1, 974 11, Banská Bystrica, Slovakia; [email protected] 4Polish Geological Institute — National Research Institute, Paleomagnetic Laboratory, Rakowiecka 4, 00-975 Warsaw, Poland; [email protected] 5DPP Žilina Ltd, Legionárska 8203, 010 01 Žilina, Slovakia; [email protected] 6Comenius University, Faculty of Natural Sciences, Department of Mineralogy and Petrology, Ilkovičova 6, 842 15 Bratislava, Slovakia; [email protected] Abstract: As a result of the critical revision of pre-Cenozoic paleomagnetic data from the Central Western Carpathians a team of Slovak, Hungarian and Polish researchers agreed to start systematic paleomagnetic investi- gations of the three nappe systems of this area. The new studies would improve the previous ones by using up-to date field, laboratory and statistical methods, as well as focus on formations which are widespread in the respective nappe units. The research started in the Hronic Unit, which is the topmost one, therefore less exposed to re-heating than the Fatric or Tatric nappe stacks. The so far obtained results suggest that during the Permian, the Hronicum was in near equatorial position in the northern hemisphere and at some distance from the European continent. Concerning the studied Triassic carbonates we conclude that they were remagnetized during the Late Cretaceous, basically before or in early stage of the deformation and transportation of the nappe unit. The Hronicum must have rotated about 35° in the CW sense after the Permian during a so far non-constrained period. A second, even larger (about 95°, taking into account the 60°CCW rotation measured on the Central Carpathian Paleogene flysch) general CW rotation can be connected to the closing of the Penninic Ocean. The ongoing studies in the Hronicum would aim at testing the oroclinal bending model by obtaining a robust data set for the area W of the Nízke Tatry Mts, on one hand, and start the systematic research on the Fatricum and Tatricum. Introduction • Incomplete laboratory analysis of the natural rema- nent magnetizations (this aspect will be explained in In a review paper Márton et al. (2015) compiled a paleo- the next chapter) magnetic data base for the Western Carpathians. The tabu- • “Spotlike” distribution of the paleomagnetic data, in lated data for the Central Western Carpathians were pub- time and even more in geographical sense. lished between the 1970s and 2010 and are of very different quality. The typical problems, mostly handi- capping the older results are: The concepts of the “new era” • The often poor documentation (e.g. for the studied localities neither the local tectonic positions nor the Of the nappe systems of the Central Western Car- paleomagnetic directions before tectonic corrections pathians, the uppermost one, and least affected by re- have been published). Thus the acquisition of the heating during nappe stacking (therefore most likely to remanence in relation to the geological age of the rock preserve original magnetization) is the Hronic Unit. For cannot be checked. this reason, a team of Slovak, Hungarian and Polish • Sometimes oriented hand samples were collected in researchers decided to start the systematic study on the field from which several specimens were drilled in the two most widespread age groups of the Hronicum, the laboratory. This method does not guarantee that the Permian red beds and igneous rocks and the Triassic the best material is sampled. Moreover, it introduces carbonates. The deeper buried rocks of the Fatricum and a systematic error in the orientation of the cores by Tatricum would be subjects of the next stage of our study. transferring the nearly always present uncertainity of It was also agreed that the field and laboratory methods the orientation of a hand sample. of the paleomagnetic processing should be harmonized. 33 GEOLOGICA CARPATHICA 70, SMOLENICE, October 9–11, 2019 GEOLOGICA CARPATHICA 70, SMOLENICE, October 9–11, 2019 Concerning field methods, the samples should be drilled the respective demagnetization method is interpreted as and oriented in situ in all cases with magnetic compass. the more ancient. Based on the experiments with the In special conditions, like strong susceptibility and/or selected pilot specimens, the rest of the collection from remanence of some igneous rocks, in the vicinity of high the same group is demagnetized with either AF or ther- power lines or in outcrops protected by metal nets, mal method. orientation with sun compass is also necessary. It goes The paleomagnetic direction for each locality is com- without saying that the sampled object should be devoid puted from the more resistant (or the only) magnetic of any sign of recent or ancient slumping. component using standard statistical methods in two In the laboratory, the remanent magnetization (NRM) co-ordinate systems. One is the geographical, i.e. before in natural state as well as the anisotropy of magnetic sus- tectonic correction, the other is the paleogeographical ceptibility (AMS) is measured before the laboratory i.e., after tectonic correction. In case of geological analysis of the paleomagnetic signal. Some specimens objects, which are monoclinally tilted, typical of the out- (the number of them depends on the degree of unifor- crops suitable for paleomagnetic study in the Hronicum, mity of the NRM), from each outcrop are demagnetized decision about the pre- or post-deformation age of the in several steps with alternating field or with thermal remanence is made on an assemblage of localities, method, till the NRM signal is lost. Referring to item 3 which are geographically distributed and are of similar of the pre vious chapter, this is very important, since the ages. NRM can be composite (e.g. a primary magnetization It was also agreed on that in the case of the nappe sys- can be overprinted during regional or local heating as tems of the Central Western Carpathians the sampling well as by geological processes in an uplifted position). localities should be distributed as much as possible in During thermal demagnetization, the magnetic suscepti- E–W directions, so that the model of oroclinal bending bility is monitored in order to follow possible changes in can be tested. magnetic mineralogy, as heating can produce a new magne tic phase either with lower (e.g. magnetite or maghemite converted to hematite) or higher (e.g. pyrite Summary of the results so far obtained for converted to magnetite) susceptibilities. The magnetic the Hronic Unit mineral(s) originally present in the rock must be identi- fied with magnetic methods, like Curie-point measure- Permian red beds and volcanic rocks ment or the thermal demagnetization of laboratory induced remanence. Both types of rocks were studied from the Nízke Tatry As a result of demagnetization and re-measurement of Mts. (18 localities/sites, Fig. 2C) and only lava flows the remaining NRM after each step so called demagneti- from the Malé Karpaty Mts. (four sites, Fig. 2B). Except zation curves are produced, which can be analyzed for one locality of the red beds, all the studied rocks had linear segments. Sometimes the NRM is single compo- reversed polarity magnetizations. The majority is nent, more often it is composite (Fig. 1). In the latter case, characterized by shallow inclinations, suggesting it is usual, that the component which is more resistant to near-equatorial position in the northern hemisphere of the Hronicum during the Permian (8.2°) and suggesting N, up a net rotation (summary of the rotations taking place P15 N, up T10 after the Permian) of about 70° in the CW sense. Rocks SMP67 SMP 371B 1 unit basalt Middle Triassic collected from the area of the Malužiná valley have TH W E = 8 limestone steeper inclinations (corresponding to a paleolatitude of 0 AF mA/m 23.3°, similar to the expected Late Triassic latitude for 1 unit a position between Europe and Africa) and about 35° of = 4 mA/m °C 0. CW net rotation, after the acquisition of the paleomag- R0 = 180 mA/m °C k0 = 7455*10-6SI R0 =m1.4 A/m netic signal. W E k0 = 61.9*10-6SI S, down S, down Anisian–Norian carbonates Fig. 1. Examples of a single component (P15) and a composite (T10) magnetization, respectively. Both specimens were ther- Of the 14 localities studied one is from the Strážovské mally demagnetized in several steps, till the NRM (hollow circles on the right-side diagrams) was destroyed, while the susceptibilty vrchy Mts., the rest from the Nízke Tatry Mts. (Fig. 2A). monitored (full circles on the right-side diagrams). They have magnetizations of pre-deformation age. 34 GEOLOGICA CARPATHICA 70, SMOLENICE, October 9–11, 2019 GEOLOGICA CARPATHICA 70, SMOLENICE, October 9–11, 2019 A n 20°00´ ter Ca s rpa A We thia ns Wien Bratislava E a Eastern Alps Budapest s F t e F r F F n F Pannonian T High Tatra tra Basin a ts. F ern . F Zagreb uth M Dinarides Beograd So F Choč M H H H C um V. Fatra H H en . H H né Mts H H M ranisko ts. žovce B H Stra H H Low Tatra Žiar H H Čertovica M H H T ts thrust line T .
Recommended publications
  • House in Carpathians1
    Ethnologia Polona, 2014, 35, s. 25-77 Ethnologia Polona, vol. 35: 2014, 25 – 77 PL ISSN 0137 - 4079 HOUSE IN CARPATHIANS1 JIŘÍ LANGER AND HELENA BOČKOVÁ ROŽNOV POD RADHOŠTĚM and BRNO, CZECH REPUBLIC INTRODUCTION The problem of the folk culture has always been a great topic for the ethnographers. Since the last century an attention of many explorers from many countries has focused on it. A common interest in finding the answers to the questions of the causes of the specifications of their cultural manifestation in the Carpathians connected them. They seemed to be different from firmly rooted ideas about the typical features of individual nations. Anachronisms provoke everybody who was looking for the originalities of their own national or Slavonic culture. They served to the creating of romantic fanta- sies about the culture in the mountains surviving into the period in which European nations formed. From the point of view of a historian this culture is considered to be very young, having been created before our eyes. Our generation could still study it by the very watching. We know it from autopsy. It differed from neighbouring lower situated areas with the early evolution forms, transferring of their phenomena for long distances, strong penetration and co operation with neighbouring social environments and ethnic heterogeneity. This all enabled people in the mountains to survive even in the worst climatic and social conditions. The principles of the folk culture being thought to be specific for the whole Carpathians touching vast areas of Europe connected fairly different forms of the way of the life from the Balkan to White Russia and from the river Morava (CZ) as far as the coast of the Black Sea.
    [Show full text]
  • Guidelines for Wildlife and Traffic in the Carpathians
    Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Part of Output 3.2 Planning Toolkit TRANSGREEN Project “Integrated Transport and Green Infrastructure Planning in the Danube-Carpathian Region for the Benefit of People and Nature” Danube Transnational Programme, DTP1-187-3.1 April 2019 Project co-funded by the European Regional Development Fund (ERDF) www.interreg-danube.eu/transgreen Authors Václav Hlaváč (Nature Conservation Agency of the Czech Republic, Member of the Carpathian Convention Work- ing Group for Sustainable Transport, co-author of “COST 341 Habitat Fragmentation due to Trans- portation Infrastructure, Wildlife and Traffic, A European Handbook for Identifying Conflicts and Designing Solutions” and “On the permeability of roads for wildlife: a handbook, 2002”) Petr Anděl (Consultant, EVERNIA s.r.o. Liberec, Czech Republic, co-author of “On the permeability of roads for wildlife: a handbook, 2002”) Jitka Matoušová (Nature Conservation Agency of the Czech Republic) Ivo Dostál (Transport Research Centre, Czech Republic) Martin Strnad (Nature Conservation Agency of the Czech Republic, specialist in ecological connectivity) Contributors Andriy-Taras Bashta (Biologist, Institute of Ecology of the Carpathians, National Academy of Science in Ukraine) Katarína Gáliková (National
    [Show full text]
  • Neotectonics of the Polish Carpathians in the Light of Geomorphic Studies: a State of the Art
    Acta Geodyn. Geomater., Vol. 6, No. 3 (155), 291-308, 2009 NEOTECTONICS OF THE POLISH CARPATHIANS IN THE LIGHT OF GEOMORPHIC STUDIES: A STATE OF THE ART Witold ZUCHIEWICZ Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland *Corresponding author‘s e-mail: [email protected] (Received January 2009, accepted March 2009) ABSTRACT Neotectonics of the Carpathians used to be studied extensively, particular attention being paid to the effects of large-scale domal uplifts and open folding above marginal zones of thrusts and imbricated map-scale folds, and rarely to the characteristics of young faulting. Neotectonic faults tend to be associated with the margins of the Orava-Nowy Targ Basin, superposed on the boundary between the Inner and Outer Western Carpathians, as well as with some regions within the Outer Carpathians. The size of Quaternary tilting of the Tatra Mts. on the sub-Tatric fault were estimated at 100 to 300 m, and recent vertical crustal movements of this area detected by repeated precise levelling are in the range of 0.4-1.0 mm/yr in rate. Minor vertical block movements of oscillatory character (0.5-1 mm/yr) were detected along faults cutting the Pieniny Klippen Belt owing to repeated geodetic measurements performed on the Pieniny geodynamic test area. In the western part of the Western Outer Carpathians, middle and late Pleistocene reactivation of early Neogene thrust surfaces was suggested. Differentiated mobility of reactivated as normal Miocene faults (oriented (N-S to NNW-SSE and NNE-SSW) in the medial portion of the Dunajec River drainage basin appears to be indicated by the results of long-profile analyses of deformed straths, usually of early and middle Pleistocene age.
    [Show full text]
  • The Species Composition on Agricultural Terraces in Nw Part of Slovakia
    Ekológia (Bratislava) Vol. 33, No. 4, p. 307–320, 2014 doi:10.2478/eko-2014-0029 THE SPECIES COMPOSITION ON AGRICULTURAL TERRACES IN NW PART OF SLOVAKIA IVA MACHOVÁ, KAREL KUBÁT Jan Evangelista Purkyně University in Ústí nad Labem, Faculty of Environment, Králova výšina 7, 400 96 Ústí nad Labem, Czech Republic; e-mail: [email protected] Jan Evangelista Purkyně University in Ústí nad Labem, Faculty of Science, Za Válcovnou 8, 400 96 Ústí nad Labem, Czech Republic; e-mail: [email protected] Abstract Machová I., Kubát K.: The species composition on agricultural terraces in NW part of Slovakia. Ekológia (Bratislava), Vol. 33, No. 4, p. 307–320, 2014. The article contributes to a deeper understanding of agricultural terraces in NW Slovakia. The agri- cultural terraces found in 12 mountain ranges were characterised in detail on 32 localities. The slope parts of the studied terraces are on average only 2.3 m wide and current and former agricultural areas between them are on average 11 m wide. Furthermore, seventy phytosociological relevés were made on the terraces. Overall, 360 species of vascular plants were found in the relevés, 66 of which appeared regularly. The localities were evaluated by DCA analysis. The main factor influencing the species com- position appears to be the geological composition of the bedrock and, probably, the altitude as well. High coverage of the herb layer (median value 95%), low coverage of the shrub layer (median value 5%) and the absence or a very low coverage of the tree layer is typical for these terraces. Key words: NW Slovakia, agricultural terraces, vascular plants species, properties of the terraces.
    [Show full text]
  • Boudinage Arrangement Tracking of Hydrothermal Veins in the Shear Zone: Example from the Argentiferous Strieborna Vein (Western Carpathians)
    Journal of Geosciences, 64 (2019), 179–195 DOI: 10.3190/jgeosci.291 Original paper Boudinage arrangement tracking of hydrothermal veins in the shear zone: example from the argentiferous Strieborna vein (Western Carpathians) Stanislav JACKO1*, Roman FARKAŠOVSKÝ1, Julián KONDELA1, Tomáš MIKUŠ2, Barbora ŠČERBÁKOVÁ1, Diana DIRNEROVÁ1 1 Technical University of Košice, Institute of Geosciences, Letná 9, 040 01 Košice, Slovakia; [email protected] 2 Slovak Academy of Sciences, Earth Science Institute, Ďumbierska 1, 974 01 Banská Bystrica, Slovakia * Corresponding author Argentiferous Strieborna vein of the Rožňava ore field occurs at the southwestern margin of the Gemeric Unit (Slovakia). The hydrothermal mineralization of the vein closely related to the Early Cretaceous tectonometamorphic shortening of the Western Carpathians. For their emplacement, the vein used the steeply dipping, fan-like cleavage and dislocation set of the Alpine regional structure. Successively the vein was integrated into the sinistral transpressional regime of the Transgemeric shear zone. A polyphase vein filling comprises Variscan metasomatic siderite remnants and the Early Cretaceous syntectonic hydrothermal mineralization, the latter consisting of two mineralization phases, quartz–siderite and quartz–sulphidic. During Cretaceous shear zone transpressional events, the vein was segmented into five individual bodies and redistributed to kinematically and geometrically different tensional and compressional boudins. The vein asymmetry increase, different vertical mineralization content and spatial distribution of mineral phases representing individual mineralization periods directly relate to a rheological contrast between the vein and surrounding rocks stress and pressure shadows distribution. The actual form and distribution of the Strieborna vein segments is the product of four boudin evolution stages: (1) pre-deformation, (2) initial, (3) boudin-forming and (4) boudin-differentiation stage that controlled vertical mineralization distribution.
    [Show full text]
  • Background and Introduction
    Chapter One: Background and Introduction Chapter One Background and Introduction title chapter page 17 © Libor Vojtíšek, Ján Lacika, Jan W. Jongepier, Florentina Pop CHAPTER?INDD Chapter One: Background and Introduction he Carpathian Mountains encompass Their total length of 1,500 km is greater than that many unique landscapes, and natural and of the Alps at 1,000 km, the Dinaric Alps at 800 Tcultural sites, in an expression of both km and the Pyrenees at 500 km (Dragomirescu geographical diversity and a distinctive regional 1987). The Carpathians’ average altitude, how- evolution of human-environment relations over ever, of approximately 850 m. is lower compared time. In this KEO Report, the “Carpathian to 1,350 m. in the Alps. The northwestern and Region” is defined as the Carpathian Mountains southern parts, with heights over 2,000 m., are and their surrounding areas. The box below the highest and most massive, reaching their offers a full explanation of the different delimi- greatest elevation at Slovakia’s Gerlachovsky tations or boundaries of the Carpathian Mountain Peak (2,655 m.). region and how the chain itself and surrounding areas relate to each other. Stretching like an arc across Central Europe, they span seven countries starting from the The Carpathian Mountains are the largest, Czech Republic in the northwest, then running longest and most twisted and fragmented moun- east and southwards through Slovakia, Poland, tain chain in Europe. Their total surface area is Hungary, Ukraine and Romania, and finally 161,805 sq km1, far greater than that of the Alps Serbia in the Carpathians’ extreme southern at 140,000 sq km.
    [Show full text]
  • Geological Framework of the Tatra Mountains- Podhale Geothermal System (Carpathians)
    Bulletin d’Hydrogiologie No 17 (1999) Centre d’Hydrogiologie, Universiti de Neuchdtel ED~IONSPET ERLwc Geological framework of the Tatra Mountains- Podhale geothermal system (Carpathians) by J6zef Wieczorek GEOCONSULTMG, Smoluchowskiego4/1,30-083 Krak6w, Poland, in cooperation with PEC Geotermia Podhalanska S. A. Zakopane ABSTRACT The Podhale (Western Carpathians) region lying between the Tatra Mts. and the Pieniny Klippen Belt is known as an area rich in thermal water exploited for heating purposes as well as recreation (swimming pools). The thermal springs at the foot of the Tatra Mts. (Jaszczurowka, Oravice) are the surhce manifestations of an active geothermal system. Numerous drilling data have cohedthe existence of low-enthalpy geothermal reservoir under the entire Podhale basin. The thermal waters are associated with carbonates of highly fractured Nummulite Eocene and with Mesozoic rocks (carbonates of Middle Triassic, sandstones of Lower Jurassic).Two geothermal doublets were completed for themal water exploitation in the northern part of Podhale basin where thermal waters of 80-90°C occur at the depth -2000-3000m. KEVWORDS Thermal waters, geothermal system, geology, Carpathians 1. Entroduction The Podhale (Western Carpathians) region lying between the Tatra Mts. and the Pieniny Klippen Belt is known as an area rich in low-enthalpy thermal water (SOKOLOWSKI, 1992, CHOWANJEC & POPRAWA 1998). The Tatra Mts. massif elevated in Miocene and mainly in post-Miocene period form a recharge area of 350 km2however, the Pieniny Klippen Belt is considered an impermeable barrier for fluid flow. The Tatra Mts.-Podhale segment of the Inner Carpathians form an alpine-type artesian geothermal system, which is only a part of a much larger Inner Carpathian geothemml region, situated on both sides of Poland-Slovakian border around the Tatra Mts.
    [Show full text]
  • Contemporary Geomorphic Processes in the Polish Carpathians Under Changing Human Impact
    21 by Adam Lajczak1, Wlodzimierz Margielewski2, Zofia Raczkowska3 Jolanta Swiechowicz4 Contemporary geomorphic processes in the Polish Carpathians under changing human impact 1 Pedagogical University, Institute of Geography, 2 Podchorazych Str., 30-084 Cracow, Poland. E-mail: [email protected] 2 Polish Academy of Sciences, Institute of Nature Conservation, 33 A. Mickiewicza Ave., 31-120 Cracow, Poland 3 Polish Academy of Sciences, Institute of Geography and Spatial Organization, 22 Sw. Jana Str., Cracow, Poland 4 Jagiellonian University in Krakow, Institute of Geography and Spatial Management, 7 Gronostajowa Str., 30-387 Cracow, Poland The paper presents activity of contemporary The Polish Carpathians are relatively densely populated (127 2 geomorphic processes in the Polish Carpathians, taking persons/km ), and more than 65% of the population live in rural areas (Dlugosz and Soja, 1995). For this reason man exerts a strong into account human impact on relief transformation in influence on the course of geomorphic processes, but recent processes the past several centuries. and their effects also pose a threat to man. According to Slaymaker Landsliding in the flysch Carpathians is a principal (2010), human activity is a key driver in present-day landscape process in slope transformation, posing the most serious evolution in mountain areas. threat to man, both in the mountains and the foothills. The aim of this paper is to present such mutual relationships within areas showing four types of relief, indicating the most important On the other hand, unsuitable housing on slopes initiates process, type of geomorphic hazard and type and effect of human mass movements, frequently with catastrophic influence on relief transformation, as well as tendencies in these consequences.
    [Show full text]
  • Eastern Carpathian Foredeep, Poland) for Geothermal Purposes
    energies Review Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes Anna Chmielowska * , Anna Sowizd˙ zał˙ and Barbara Tomaszewska Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Avenue, 30-059 Kraków, Poland; [email protected] (A.S.); [email protected] (B.T.) * Correspondence: [email protected] Abstract: There are many oil and gas fields around the world where the vast number of wells have been abandoned or suspended, mainly due to the depletion of reserves. Those abandoned oil and gas wells (AOGWs) are often located in areas with a prospective geothermal potential and might be retrofitted to a geothermal system without high-cost drilling. In Poland, there are thousands of wells, either operating, abandoned or negative, that might be used for different geothermal applications. Thus, the aim of this paper is not only to review geothermal and petroleum facts about the Eastern Carpathian Foredeep, but also to find out the areas, geological structures or just AOGWs, which are the most prospective in case of geothermal utilization. Due to the inseparability of geological settings with both oil and gas, as well as geothermal conditionings, firstly, the geological background of the analyzed region was performed, considering mainly the autochthonous Miocene formation. Then, Citation: Chmielowska, A.; geothermal and petroleum detailed characteristics were made. In the case of geothermal parameters, Sowizd˙ zał,˙ A.; Tomaszewska, B. such as formation’s thickness, temperatures, water-bearing horizons, wells’ capacities, mineralization Prospects of Using Hydrocarbon and others were extensively examined.
    [Show full text]
  • Western Carpathians, Poland)
    Geological Quarterly, 2006, 50 (1): 169–194 Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland) Nestor OSZCZYPKO Oszczypko N. (2006) — Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol. Quart., 50 (1): 169–194. Warszawa. The Outer Carpathian Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the east- ern parts of the oceanic Alpine Tethys. Following closure of this oceanic basin during the Late Cretaceous and collision of the Inner Western Carpathian orogenic wedge with the Outer Carpathian passive margin at the Cretaceous-Paleocene transition, the Outer Carpathian Basin domain was transformed into a foreland basin that was progressively scooped out by nappes and thrust sheets. In the pre- and syn-orogenic evolution of the Outer Carpathian basins the following prominent periods can be distinguished: (1) Middle Juras- sic-Early Cretaceous syn-rift opening of basins followed by Early Cretaceous post-rift thermal subsidence, (2) latest Creta- ceous-Paleocene syn-collisional inversion, (3) Late Paleocene to Middle Eocene flexural subsidence and (4) Late Eocene-Early Miocene synorogenic closure of the basins. In the Outer Carpathian domain driving forces of tectonic subsidence were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of nappes and slab-pull. Similar to other orogenic belts, folding of the Outer Carpathians commenced in their internal parts and progressed in time towards the continental foreland. This process was initi- ated at the end of the Paleocene at the Pieniny Klippen Belt/Magura Basin boundary and was completed during early Burdigalian in the northern part of the Krosno Flysch Basin.
    [Show full text]
  • Stable Isotopes in Lakes of the High Tatra Mountains, Western Carpathians, Slovakia
    STABLE ISOTOPES IN LAKES OF THE HIGH TATRA MOUNTAINS, WESTERN CARPATHIANS, SLOVAKIA J. MICHALKO*, D. BODIS*, P. MALIK, K. MARHEVKOVA**, S. SCHERER* * Geological Survey of Slovak Republic, ** Faculty of Natural Sciences, Comenius University Bratislava, Slovakia XA0100612 Abstract Data of oxygen, hydrogen and sulphate sulphur stable isotopes from the lakes of the Vysoke Tarry Mts., acquired in the framework of IAEA No. 8675/RB project "Stable isotopes in lakes of High Tatra mountains, Western Carpathians, Slovakia" represent the first set of this kind information on the territory of Slovakia. Moreover a complete set of chemical composition of waters was taken and compared to preceding results and contemporary state of acidification was evaluated. Values of studied chemical compounds respond to their source - initial precipitation waters and bedrock character with influence of biochemical processes. Acidification is due to inactive geological background (granites), high contribution of SOX and NOX from atmospheric deposition and low buffering ability of soil. Acidification of lakes is lowered from 1980 and is approaching to level before acidification, probably as consequence of industry crisis in Eastern Europe after 1989. Water samples from the Furkotska dolina valley water system follow the MWL with natural trend of increasing content of heavy isotopes with lowering altitude. In depth profiles of single lakes' isotope composition does not change - due to natural conditions during sampling campaigns (spring and fall homothermy?), all waters are meteoric in origin without signs of evaporation. Water of the Strbske pleso lake is enriched to heavy isotopes, all samples fit an evaporation line. This could be explained by longer residence time of water, or by the recharging from the last phases of the snowmelt.
    [Show full text]
  • Stages of Development in the Polish Carpathian Foredeep Basin
    Cent. Eur. J. Geosci. • 4(1) • 2012 • 138-162 DOI: 10.2478/s13533-011-0044-0 Central European Journal of Geosciences Stages of development in the Polish Carpathian Foredeep Basin Review article Nestor Oszczypko1∗∗, Marta Oszczypko – Clowes1† 1 Institute of Geological Sciences, Jagiellonian University, 30-063 Kraków, Poland Received 27 September 2011; accepted 16 November 2011 Abstract: In southern Poland, Miocene deposits have been recognised both in the Outer Carpathians and the Carpathian Foredeep (PCF). In the Outer Carpathians, the Early Miocene deposits represent the youngest part of the flysch sequence, while in the Polish Carpathian Foredeep they are developed on the basement platform. The inner foredeep (beneath the Carpathians) is composed of Early to Middle Miocene deposits, while the outer foredeep is filled up with the Middle Miocene (Badenian and Sarmatian) strata, up to 3,000 m thick. The Early Miocene strata are mainly terrestrial in origin, whereas the Badenian and Sarmatian strata are marine. The Carpathian Foredeep developed as a peripheral foreland basin related to the moving Carpathian front. The main episodes of intensive subsidence in the PCF correspond to the period of progressive emplacement of the Western Carpathians onto the foreland plate. The important driving force of tectonic subsidence was the emplacement of the nappe load related to subduction roll-back. During that time the loading effect of the thickening of the Carpathian accretionary wedge on the foreland plate increased and was followed by progressive acceleration of total subsidence. The mean rate of the Carpathian overthrusting, and north to north-east migration of the axes of depocentres reached 12 mm/yr at that time.
    [Show full text]