An Artificial Neural Network Approach for Pattern Recognition Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Backpropagation and Deep Learning in the Brain
Backpropagation and Deep Learning in the Brain Simons Institute -- Computational Theories of the Brain 2018 Timothy Lillicrap DeepMind, UCL With: Sergey Bartunov, Adam Santoro, Jordan Guerguiev, Blake Richards, Luke Marris, Daniel Cownden, Colin Akerman, Douglas Tweed, Geoffrey Hinton The “credit assignment” problem The solution in artificial networks: backprop Credit assignment by backprop works well in practice and shows up in virtually all of the state-of-the-art supervised, unsupervised, and reinforcement learning algorithms. Why Isn’t Backprop “Biologically Plausible”? Why Isn’t Backprop “Biologically Plausible”? Neuroscience Evidence for Backprop in the Brain? A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: How to convince a neuroscientist that the cortex is learning via [something like] backprop - To convince a machine learning researcher, an appeal to variance in gradient estimates might be enough. - But this is rarely enough to convince a neuroscientist. - So what lines of argument help? How to convince a neuroscientist that the cortex is learning via [something like] backprop - What do I mean by “something like backprop”?: - That learning is achieved across multiple layers by sending information from neurons closer to the output back to “earlier” layers to help compute their synaptic updates. How to convince a neuroscientist that the cortex is learning via [something like] backprop 1. Feedback connections in cortex are ubiquitous and modify the -
Training Autoencoders by Alternating Minimization
Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort. -
Q-Learning in Continuous State and Action Spaces
-Learning in Continuous Q State and Action Spaces Chris Gaskett, David Wettergreen, and Alexander Zelinsky Robotic Systems Laboratory Department of Systems Engineering Research School of Information Sciences and Engineering The Australian National University Canberra, ACT 0200 Australia [cg dsw alex]@syseng.anu.edu.au j j Abstract. -learning can be used to learn a control policy that max- imises a scalarQ reward through interaction with the environment. - learning is commonly applied to problems with discrete states and ac-Q tions. We describe a method suitable for control tasks which require con- tinuous actions, in response to continuous states. The system consists of a neural network coupled with a novel interpolator. Simulation results are presented for a non-holonomic control task. Advantage Learning, a variation of -learning, is shown enhance learning speed and reliability for this task.Q 1 Introduction Reinforcement learning systems learn by trial-and-error which actions are most valuable in which situations (states) [1]. Feedback is provided in the form of a scalar reward signal which may be delayed. The reward signal is defined in relation to the task to be achieved; reward is given when the system is successfully achieving the task. The value is updated incrementally with experience and is defined as a discounted sum of expected future reward. The learning systems choice of actions in response to states is called its policy. Reinforcement learning lies between the extremes of supervised learning, where the policy is taught by an expert, and unsupervised learning, where no feedback is given and the task is to find structure in data. -
PATTERN RECOGNITION LETTERS an Official Publication of the International Association for Pattern Recognition
PATTERN RECOGNITION LETTERS An official publication of the International Association for Pattern Recognition AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.5 ISSN: 0167-8655 DESCRIPTION . Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition. Examples include: • Statistical, structural, syntactic pattern recognition; • Neural networks, machine learning, data mining; • Discrete geometry, algebraic, graph-based techniques for pattern recognition; • Signal analysis, image coding and processing, shape and texture analysis; • Computer vision, robotics, remote sensing; • Document processing, text and graphics recognition, digital libraries; • Speech recognition, music analysis, multimedia systems; • Natural language analysis, information retrieval; • Biometrics, biomedical pattern analysis and information systems; • Special hardware architectures, software packages for pattern recognition. We invite contributions as research reports or commentaries. Research reports should be concise summaries of methodological inventions and findings, with strong potential of wide applications. Alternatively, they can describe significant and novel applications -
Double Backpropagation for Training Autoencoders Against Adversarial Attack
1 Double Backpropagation for Training Autoencoders against Adversarial Attack Chengjin Sun, Sizhe Chen, and Xiaolin Huang, Senior Member, IEEE Abstract—Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage and transmission, however, the current autoencoders are easily attacked, i.e., one can slightly modify an input but has totally different codes. The vulnerability is rooted the sensitivity of the autoencoders and to enhance the robustness, we propose to adopt double backpropagation (DBP) to secure autoencoder such as VAE and DRAW. We restrict the gradient from the reconstruction image to the original one so that the autoencoder is not sensitive to trivial perturbation produced by the adversarial attack. After smoothing the gradient by DBP, we further smooth the label by Gaussian Mixture Model (GMM), aiming for accurate and robust classification. We demonstrate in MNIST, CelebA, SVHN that our method leads to a robust autoencoder resistant to attack and a robust classifier able for image transition and immune to adversarial attack if combined with GMM. Index Terms—double backpropagation, autoencoder, network robustness, GMM. F 1 INTRODUCTION N the past few years, deep neural networks have been feature [9], [10], [11], [12], [13], or network structure [3], [14], I greatly developed and successfully used in a vast of fields, [15]. such as pattern recognition, intelligent robots, automatic Adversarial attack and its defense are revolving around a control, medicine [1]. Despite the great success, researchers small ∆x and a big resulting difference between f(x + ∆x) have found the vulnerability of deep neural networks to and f(x). -
A Wavenet for Speech Denoising
A Wavenet for Speech Denoising Dario Rethage∗ Jordi Pons∗ Xavier Serra [email protected] [email protected] [email protected] Music Technology Group Music Technology Group Music Technology Group Universitat Pompeu Fabra Universitat Pompeu Fabra Universitat Pompeu Fabra Abstract Currently, most speech processing techniques use magnitude spectrograms as front- end and are therefore by default discarding part of the signal: the phase. In order to overcome this limitation, we propose an end-to-end learning method for speech denoising based on Wavenet. The proposed model adaptation retains Wavenet’s powerful acoustic modeling capabilities, while significantly reducing its time- complexity by eliminating its autoregressive nature. Specifically, the model makes use of non-causal, dilated convolutions and predicts target fields instead of a single target sample. The discriminative adaptation of the model we propose, learns in a supervised fashion via minimizing a regression loss. These modifications make the model highly parallelizable during both training and inference. Both computational and perceptual evaluations indicate that the proposed method is preferred to Wiener filtering, a common method based on processing the magnitude spectrogram. 1 Introduction Over the last several decades, machine learning has produced solutions to complex problems that were previously unattainable with signal processing techniques [4, 12, 38]. Speech recognition is one such problem where machine learning has had a very strong impact. However, until today it has been standard practice not to work directly in the time-domain, but rather to explicitly use time-frequency representations as input [1, 34, 35] – for reducing the high-dimensionality of raw waveforms. Similarly, most techniques for speech denoising use magnitude spectrograms as front-end [13, 17, 21, 34, 36]. -
An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods
An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods Sholom M. Weiss and Ioannis Kapouleas Department of Computer Science, Rutgers University, New Brunswick, NJ 08903 Abstract distinct production rule. Unlike decision trees, a disjunctive set of production rules need not be mutually exclusive. Classification methods from statistical pattern Among the principal techniques of induction of production recognition, neural nets, and machine learning were rules from empirical data are Michalski s AQ15 applied to four real-world data sets. Each of these data system [Michalski, Mozetic, Hong, and Lavrac, 1986] and sets has been previously analyzed and reported in the recent work by Quinlan in deriving production rules from a statistical, medical, or machine learning literature. The collection of decision trees [Quinlan, 1987b]. data sets are characterized by statisucal uncertainty; Neural net research activity has increased dramatically there is no completely accurate solution to these following many reports of successful classification using problems. Training and testing or resampling hidden units and the back propagation learning technique. techniques are used to estimate the true error rates of This is an area where researchers are still exploring learning the classification methods. Detailed attention is given methods, and the theory is evolving. to the analysis of performance of the neural nets using Researchers from all these fields have all explored similar back propagation. For these problems, which have problems using different classification models. relatively few hypotheses and features, the machine Occasionally, some classical discriminant methods arecited learning procedures for rule induction or tree induction 1 in comparison with results for a newer technique such as a clearly performed best. -
Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17]. -
Training Generative Adversarial Networks in One Stage
Training Generative Adversarial Networks in One Stage Chengchao Shen1, Youtan Yin1, Xinchao Wang2,5, Xubin Li3, Jie Song1,4,*, Mingli Song1 1Zhejiang University, 2National University of Singapore, 3Alibaba Group, 4Zhejiang Lab, 5Stevens Institute of Technology {chengchaoshen,youtanyin,sjie,brooksong}@zju.edu.cn, [email protected],[email protected] Abstract Two-Stage GANs (Vanilla GANs): Generative Adversarial Networks (GANs) have demon- Real strated unprecedented success in various image generation Fake tasks. The encouraging results, however, come at the price of a cumbersome training process, during which the gen- Stage1: Fix , Update 풢 풟 풢 풟 풢 풟 풢 풟 erator and discriminator풢 are alternately풟 updated in two 풢 풟 stages. In this paper, we investigate a general training Real scheme that enables training GANs efficiently in only one Fake stage. Based on the adversarial losses of the generator and discriminator, we categorize GANs into two classes, Sym- Stage 2: Fix , Update 풢 풟 metric GANs and풢 Asymmetric GANs,풟 and introduce a novel One-Stage GANs:풢 풟 풟 풢 풟 풢 풟 풢 gradient decomposition method to unify the two, allowing us to train both classes in one stage and hence alleviate Real the training effort. We also computationally analyze the ef- Fake ficiency of the proposed method, and empirically demon- strate that, the proposed method yields a solid 1.5× accel- Update and simultaneously eration across various datasets and network architectures. Figure 1: Comparison풢 of the conventional풟 Two-Stage GAN 풢 풟 Furthermore,풢 we show that the proposed풟 method is readily 풢 풟 풢 풟 풢 풟 training scheme (TSGANs) and the proposed One-Stage applicable to other adversarial-training scenarios, such as strategy (OSGANs). -
Approaching Hanabi with Q-Learning and Evolutionary Algorithm
St. Cloud State University theRepository at St. Cloud State Culminating Projects in Computer Science and Department of Computer Science and Information Technology Information Technology 12-2020 Approaching Hanabi with Q-Learning and Evolutionary Algorithm Joseph Palmersten [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds Part of the Computer Sciences Commons Recommended Citation Palmersten, Joseph, "Approaching Hanabi with Q-Learning and Evolutionary Algorithm" (2020). Culminating Projects in Computer Science and Information Technology. 34. https://repository.stcloudstate.edu/csit_etds/34 This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Approaching Hanabi with Q-Learning and Evolutionary Algorithm by Joseph A Palmersten A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science December, 2020 Starred Paper Committee: Bryant Julstrom, Chairperson Donald Hamnes Jie Meichsner 2 Abstract Hanabi is a cooperative card game with hidden information that requires cooperation and communication between the players. For a machine learning agent to be successful at the Hanabi, it will have to learn how to communicate and infer information from the communication of other players. To approach the problem of Hanabi the machine learning methods of Q- learning and Evolutionary algorithm are proposed as potential solutions. -
Linear Prediction-Based Wavenet Speech Synthesis
LP-WaveNet: Linear Prediction-based WaveNet Speech Synthesis Min-Jae Hwang Frank Soong Eunwoo Song Search Solution Microsoft Naver Corporation Seongnam, South Korea Beijing, China Seongnam, South Korea [email protected] [email protected] [email protected] Xi Wang Hyeonjoo Kang Hong-Goo Kang Microsoft Yonsei University Yonsei University Beijing, China Seoul, South Korea Seoul, South Korea [email protected] [email protected] [email protected] Abstract—We propose a linear prediction (LP)-based wave- than the speech signal, the training and generation processes form generation method via WaveNet vocoding framework. A become more efficient. WaveNet-based neural vocoder has significantly improved the However, the synthesized speech is likely to be unnatural quality of parametric text-to-speech (TTS) systems. However, it is challenging to effectively train the neural vocoder when the target when the prediction errors in estimating the excitation are database contains massive amount of acoustical information propagated through the LP synthesis process. As the effect such as prosody, style or expressiveness. As a solution, the of LP synthesis is not considered in the training process, the approaches that only generate the vocal source component by synthesis output is vulnerable to the variation of LP synthesis a neural vocoder have been proposed. However, they tend to filter. generate synthetic noise because the vocal source component is independently handled without considering the entire speech To alleviate this problem, we propose an LP-WaveNet, production process; where it is inevitable to come up with a which enables to jointly train the complicated interactions mismatch between vocal source and vocal tract filter. -
Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning
Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 01, 2017 Lecture 11 Recurrent Neural Networks I CMSC 35246 Introduction Sequence Learning with Neural Networks Lecture 11 Recurrent Neural Networks I CMSC 35246 Some Sequence Tasks Figure credit: Andrej Karpathy Lecture 11 Recurrent Neural Networks I CMSC 35246 MLPs only accept an input of fixed dimensionality and map it to an output of fixed dimensionality Great e.g.: Inputs - Images, Output - Categories Bad e.g.: Inputs - Text in one language, Output - Text in another language MLPs treat every example independently. How is this problematic? Need to re-learn the rules of language from scratch each time Another example: Classify events after a fixed number of frames in a movie Need to resuse knowledge about the previous events to help in classifying the current. Problems with MLPs for Sequence Tasks The "API" is too limited. Lecture 11 Recurrent Neural Networks I CMSC 35246 Great e.g.: Inputs - Images, Output - Categories Bad e.g.: Inputs - Text in one language, Output - Text in another language MLPs treat every example independently. How is this problematic? Need to re-learn the rules of language from scratch each time Another example: Classify events after a fixed number of frames in a movie Need to resuse knowledge about the previous events to help in classifying the current. Problems with MLPs for Sequence Tasks The "API" is too limited. MLPs only accept an input of fixed dimensionality and map it to an output of fixed dimensionality Lecture 11 Recurrent Neural Networks I CMSC 35246 Bad e.g.: Inputs - Text in one language, Output - Text in another language MLPs treat every example independently.