Boosted Backpropagation Learning for Training Deep Modular Networks

Total Page:16

File Type:pdf, Size:1020Kb

Boosted Backpropagation Learning for Training Deep Modular Networks Boosted Backpropagation Learning for Training Deep Modular Networks Alexander Grubb [email protected] J. Andrew Bagnell [email protected] School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA Abstract tor which is itself a network of simpler modules. Ap- proaches leveraging such modular networks have been Divide-and-conquer is key to building sophis- successfully applied to real-world problems like natural ticated learning machines: hard problems are language processing (NLP) (Lawrence et al., 2000; Ro- solved by composing a network of modules hde, 2002), optical character recognition (OCR) (Le- that solve simpler problems (LeCun et al., Cun et al., 1998; Hinton et al., 2006), and robotics 1998; Rohde, 2002; Bradley, 2009). Many (Bradley, 2009; Zucker et al., 2010). Figure1 shows such existing systems rely on learning algo- an example network for a robotic autonomy system rithms which are based on simple paramet- where imitation learning is used for feedback. ric gradient descent where the parametriza- tion must be predetermined, or more spe- These deep networks are typically composed of layers cialized per-application algorithms which are of learning modules with multiple inputs and outputs usually ad-hoc and complicated. We present along with various transforming modules, e.g. the acti- a novel approach for training generic mod- vation functions typically found in neural network lit- ular networks that uses two existing tech- erature, with the end goal of globally optimizing net- niques: the error propagation strategy of work behavior to perform a given task. These con- backpropagation and more recent research on structions offer a number of advantages over single descent in spaces of functions (Mason et al., learning modules, such as the ability to compactly rep- 1999; Scholkopf & Smola, 2001). Combin- resent highly non-linear hypotheses. A modular net- ing these two methods of optimization gives work is also a powerful method of representing and a simple algorithm for training heterogeneous building in prior knowledge about problem structure networks of functional modules using sim- and inherent sub-problems. (Bradley, 2009) ple gradient propagation mechanics and es- Some approaches to network optimization rely on tablished learning algorithms. The result- strictly local information, training each module using ing separation of concerns between learn- either synthetic or collected data specific to the func- ing individual modules and error propagation tion of that module. This is a common approach in mechanics eases implementation, enables a NLP and vision systems, where modules correlate to larger class of modular learning strategies, individual tasks such as part of speech classification and allows per-module control of complex- or image segmentation. The problem with this and ity/regularization. We derive and demon- other local training methods is the lack of end-to-end strate this functional backpropagation and optimization of the system as a whole, which can lead contrast it with traditional gradient descent to a compounding of errors and a degradation in per- in parameter space, observing that in our formance. These local-only training algorithms can be example domain the method is significantly useful as good initializations prior to global optimiza- more robust to local optima. tion, however. A traditional approach to global network optimiza- 1. Introduction tion is the well-studied technique of backpropagation (Rumelhart et al., 1986; Werbos, 1994) which has For difficult learning problems that necessitate com- been used for neural network training for over two plex internal structure, it is common to use an estima- decades. While initially used for training acyclic net- th works, extensions for recurrent and time-varying net- Appearing in Proceedings of the 27 International Confer- works (Werbos, 1994) have been developed. Backprop- ence on Machine Learning, Haifa, Israel, 2010. Copyright 2010 by the author(s)/owner(s). agation solves the problem of compounding errors be- Boosted Backpropagation Learning for Modular Networks tween interacting modules by propagating error infor- mation throughout a network, allowing for end-to-end optimization with respect to a global measure of error. Further, it can be interpreted as a completely modular (Bottou & Gallinari, 1991), object-oriented approach to semi-automatic differentiation that provides a sep- aration of concerns between modules in the network. Other approaches for complete optimization of net- works (Hinton et al., 2006; Larochelle et al., 2009) have also shown promise as alternatives to backpropagation, but many of these algorithms are restricted to specific system architectures, and further, often rely upon a ”fine-tuning” based on backpropagation. There have however been compelling results (Bengio et al., 2007) as to the usefulness of using local module training as an initial optimization step, allowing for rapid learning Figure 1. Modular network from the UPI perception and prior to the traditionally slower global optimization planning system for an off-road autonomous vehicle. Image step. courtesy (Bradley, 2009). The basic backpropagation algorithm has previously been used to provide error signals for gradient descent We have selected Euclidean functional gradients be- in parameter space, sometimes making network opti- cause of the flexibility provided in choosing base learn- mization sensitive to the specific parametrization cho- ers and the simplicity of implementing the algorithm sen. Recently, powerful methods for performing gradi- in a modular manner. We begin by briefly review- ent descent directly in a space of functions have been ing Euclidean functional gradient descent, followed by developed both for Reproducing Kernel Hilbert spaces the modified backpropagation algorithm for functional (Scholkopf & Smola, 2001) and for Euclidean function gradients. Following that we present a comparison of spaces (Mason et al., 1999; Friedman, 2000). parameterized gradient descent and our functional gra- The former, known as kernel methods, are well studied dient based method. in the literature and have been shown to be powerful means for learning non-linear hypotheses. The latter 2. Euclidean Functional Gradient methods have been shown to be a generalization of the Descent AdaBoost algorithm (Freund & Schapire, 1996), an- other powerful non-linear learning method where com- In the Euclidean function optimization setting, we seek plex hypotheses are built from arbitrary weak learners. to minimize a cost functional R[f], defined over a set of N sampled points fxngn=1 and accompanying loss func- In the following sections, we present a method for N tions flng defined over possible predictions combining functional gradient descent with backprop- n=1 N agation. Just as backpropagation allows a separation X of concerns between modules, the proposed approach R[f] = ln(f(xn)) cleanly separates the problem of credit assignment for n=1 modules in the network from the problem of learn- by searching over a Euclidean function space F (an L2 ing. This separation allows both a broader class of space of square-integrable functions) of possible func- learning machines to be applied within the network tions f. architecture than standard backpropagation enables, and enables complexity control and generalization per- The desired minimizing function for this cost func- formance to be managed independently by each mod- tional can be found using a steepest descent optimiza- ule in the network preventing the usual combinatorial tion procedure in function space directly, in contrast to search over all modules' internal complexities simulta- parameterized gradient descent where the gradient is neously. The approach further elucidates the notion evaluated with respect to the parameters of the func- of structural local optima|minima that hold in the tion. The functional gradient of R[f] in this Euclidean space of functions and hence are tied to the modular function space is given as (Gelfand & Fomin, 2000): structure|as contrasted with parametric local optima N N which are \accidents" of the chosen parameterization. X X 0 rf R[f] = rf ln(f(xn)) = ln(f(xn))δxn i=1 i=1 Boosted Backpropagation Learning for Modular Networks Algorithm 1 Projected Functional Gradient Descent space and reproducing kernel Hilbert space (RKHS). Given: initial function value f0, step size schedule In this setting we have a layered network of functions T fαtgt=1 fk, xnk = fk(xn(k−1)) where n 2 [1;N] indexes train- for t = 1;:::;T do ing examples and k 2 [1;K] indexes layers. Here xnk Compute gradient rf R[f]. represents the output of layer k for exemplar n, with Project gradient to hypothesis space H using least xn0 defined to be the training input and xnK the net- squares projection to find h∗. work output. ∗ Update f: ft ft−1 − αth . We seek to optimize a subset F ⊆ ff gK of these end for k k=1 functions directly while the rest of the functions fk 62 F remain fixed. These fixed functions are arbitrary activation or intermediate transformation functions in using the chain rule and the fact that rf f(xn) = δxn (Ratliff et al., 2009), where δ is the Dirac delta func- the network, and can range from a simple sigmoid xn function to an A* planner. tion centered at xn. The resulting gradient is itself a function composed of the sum of zero-width impulses The optimization of F is with respect to a set of loss centered at the points xn, scaled by the derivative functions defined over network outputs ln(xnK ).
Recommended publications
  • Backpropagation and Deep Learning in the Brain
    Backpropagation and Deep Learning in the Brain Simons Institute -- Computational Theories of the Brain 2018 Timothy Lillicrap DeepMind, UCL With: Sergey Bartunov, Adam Santoro, Jordan Guerguiev, Blake Richards, Luke Marris, Daniel Cownden, Colin Akerman, Douglas Tweed, Geoffrey Hinton The “credit assignment” problem The solution in artificial networks: backprop Credit assignment by backprop works well in practice and shows up in virtually all of the state-of-the-art supervised, unsupervised, and reinforcement learning algorithms. Why Isn’t Backprop “Biologically Plausible”? Why Isn’t Backprop “Biologically Plausible”? Neuroscience Evidence for Backprop in the Brain? A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: How to convince a neuroscientist that the cortex is learning via [something like] backprop - To convince a machine learning researcher, an appeal to variance in gradient estimates might be enough. - But this is rarely enough to convince a neuroscientist. - So what lines of argument help? How to convince a neuroscientist that the cortex is learning via [something like] backprop - What do I mean by “something like backprop”?: - That learning is achieved across multiple layers by sending information from neurons closer to the output back to “earlier” layers to help compute their synaptic updates. How to convince a neuroscientist that the cortex is learning via [something like] backprop 1. Feedback connections in cortex are ubiquitous and modify the
    [Show full text]
  • Training Autoencoders by Alternating Minimization
    Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort.
    [Show full text]
  • Q-Learning in Continuous State and Action Spaces
    -Learning in Continuous Q State and Action Spaces Chris Gaskett, David Wettergreen, and Alexander Zelinsky Robotic Systems Laboratory Department of Systems Engineering Research School of Information Sciences and Engineering The Australian National University Canberra, ACT 0200 Australia [cg dsw alex]@syseng.anu.edu.au j j Abstract. -learning can be used to learn a control policy that max- imises a scalarQ reward through interaction with the environment. - learning is commonly applied to problems with discrete states and ac-Q tions. We describe a method suitable for control tasks which require con- tinuous actions, in response to continuous states. The system consists of a neural network coupled with a novel interpolator. Simulation results are presented for a non-holonomic control task. Advantage Learning, a variation of -learning, is shown enhance learning speed and reliability for this task.Q 1 Introduction Reinforcement learning systems learn by trial-and-error which actions are most valuable in which situations (states) [1]. Feedback is provided in the form of a scalar reward signal which may be delayed. The reward signal is defined in relation to the task to be achieved; reward is given when the system is successfully achieving the task. The value is updated incrementally with experience and is defined as a discounted sum of expected future reward. The learning systems choice of actions in response to states is called its policy. Reinforcement learning lies between the extremes of supervised learning, where the policy is taught by an expert, and unsupervised learning, where no feedback is given and the task is to find structure in data.
    [Show full text]
  • Double Backpropagation for Training Autoencoders Against Adversarial Attack
    1 Double Backpropagation for Training Autoencoders against Adversarial Attack Chengjin Sun, Sizhe Chen, and Xiaolin Huang, Senior Member, IEEE Abstract—Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage and transmission, however, the current autoencoders are easily attacked, i.e., one can slightly modify an input but has totally different codes. The vulnerability is rooted the sensitivity of the autoencoders and to enhance the robustness, we propose to adopt double backpropagation (DBP) to secure autoencoder such as VAE and DRAW. We restrict the gradient from the reconstruction image to the original one so that the autoencoder is not sensitive to trivial perturbation produced by the adversarial attack. After smoothing the gradient by DBP, we further smooth the label by Gaussian Mixture Model (GMM), aiming for accurate and robust classification. We demonstrate in MNIST, CelebA, SVHN that our method leads to a robust autoencoder resistant to attack and a robust classifier able for image transition and immune to adversarial attack if combined with GMM. Index Terms—double backpropagation, autoencoder, network robustness, GMM. F 1 INTRODUCTION N the past few years, deep neural networks have been feature [9], [10], [11], [12], [13], or network structure [3], [14], I greatly developed and successfully used in a vast of fields, [15]. such as pattern recognition, intelligent robots, automatic Adversarial attack and its defense are revolving around a control, medicine [1]. Despite the great success, researchers small ∆x and a big resulting difference between f(x + ∆x) have found the vulnerability of deep neural networks to and f(x).
    [Show full text]
  • Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
    1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17].
    [Show full text]
  • Approaching Hanabi with Q-Learning and Evolutionary Algorithm
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Computer Science and Department of Computer Science and Information Technology Information Technology 12-2020 Approaching Hanabi with Q-Learning and Evolutionary Algorithm Joseph Palmersten [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds Part of the Computer Sciences Commons Recommended Citation Palmersten, Joseph, "Approaching Hanabi with Q-Learning and Evolutionary Algorithm" (2020). Culminating Projects in Computer Science and Information Technology. 34. https://repository.stcloudstate.edu/csit_etds/34 This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Approaching Hanabi with Q-Learning and Evolutionary Algorithm by Joseph A Palmersten A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science December, 2020 Starred Paper Committee: Bryant Julstrom, Chairperson Donald Hamnes Jie Meichsner 2 Abstract Hanabi is a cooperative card game with hidden information that requires cooperation and communication between the players. For a machine learning agent to be successful at the Hanabi, it will have to learn how to communicate and infer information from the communication of other players. To approach the problem of Hanabi the machine learning methods of Q- learning and Evolutionary algorithm are proposed as potential solutions.
    [Show full text]
  • Linear Prediction-Based Wavenet Speech Synthesis
    LP-WaveNet: Linear Prediction-based WaveNet Speech Synthesis Min-Jae Hwang Frank Soong Eunwoo Song Search Solution Microsoft Naver Corporation Seongnam, South Korea Beijing, China Seongnam, South Korea [email protected] [email protected] [email protected] Xi Wang Hyeonjoo Kang Hong-Goo Kang Microsoft Yonsei University Yonsei University Beijing, China Seoul, South Korea Seoul, South Korea [email protected] [email protected] [email protected] Abstract—We propose a linear prediction (LP)-based wave- than the speech signal, the training and generation processes form generation method via WaveNet vocoding framework. A become more efficient. WaveNet-based neural vocoder has significantly improved the However, the synthesized speech is likely to be unnatural quality of parametric text-to-speech (TTS) systems. However, it is challenging to effectively train the neural vocoder when the target when the prediction errors in estimating the excitation are database contains massive amount of acoustical information propagated through the LP synthesis process. As the effect such as prosody, style or expressiveness. As a solution, the of LP synthesis is not considered in the training process, the approaches that only generate the vocal source component by synthesis output is vulnerable to the variation of LP synthesis a neural vocoder have been proposed. However, they tend to filter. generate synthetic noise because the vocal source component is independently handled without considering the entire speech To alleviate this problem, we propose an LP-WaveNet, production process; where it is inevitable to come up with a which enables to jointly train the complicated interactions mismatch between vocal source and vocal tract filter.
    [Show full text]
  • Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning
    Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 01, 2017 Lecture 11 Recurrent Neural Networks I CMSC 35246 Introduction Sequence Learning with Neural Networks Lecture 11 Recurrent Neural Networks I CMSC 35246 Some Sequence Tasks Figure credit: Andrej Karpathy Lecture 11 Recurrent Neural Networks I CMSC 35246 MLPs only accept an input of fixed dimensionality and map it to an output of fixed dimensionality Great e.g.: Inputs - Images, Output - Categories Bad e.g.: Inputs - Text in one language, Output - Text in another language MLPs treat every example independently. How is this problematic? Need to re-learn the rules of language from scratch each time Another example: Classify events after a fixed number of frames in a movie Need to resuse knowledge about the previous events to help in classifying the current. Problems with MLPs for Sequence Tasks The "API" is too limited. Lecture 11 Recurrent Neural Networks I CMSC 35246 Great e.g.: Inputs - Images, Output - Categories Bad e.g.: Inputs - Text in one language, Output - Text in another language MLPs treat every example independently. How is this problematic? Need to re-learn the rules of language from scratch each time Another example: Classify events after a fixed number of frames in a movie Need to resuse knowledge about the previous events to help in classifying the current. Problems with MLPs for Sequence Tasks The "API" is too limited. MLPs only accept an input of fixed dimensionality and map it to an output of fixed dimensionality Lecture 11 Recurrent Neural Networks I CMSC 35246 Bad e.g.: Inputs - Text in one language, Output - Text in another language MLPs treat every example independently.
    [Show full text]
  • A Guide to Recurrent Neural Networks and Backpropagation
    A guide to recurrent neural networks and backpropagation Mikael Bod´en¤ [email protected] School of Information Science, Computer and Electrical Engineering Halmstad University. November 13, 2001 Abstract This paper provides guidance to some of the concepts surrounding recurrent neural networks. Contrary to feedforward networks, recurrent networks can be sensitive, and be adapted to past inputs. Backpropagation learning is described for feedforward networks, adapted to suit our (probabilistic) modeling needs, and extended to cover recurrent net- works. The aim of this brief paper is to set the scene for applying and understanding recurrent neural networks. 1 Introduction It is well known that conventional feedforward neural networks can be used to approximate any spatially finite function given a (potentially very large) set of hidden nodes. That is, for functions which have a fixed input space there is always a way of encoding these functions as neural networks. For a two-layered network, the mapping consists of two steps, y(t) = G(F (x(t))): (1) We can use automatic learning techniques such as backpropagation to find the weights of the network (G and F ) if sufficient samples from the function is available. Recurrent neural networks are fundamentally different from feedforward architectures in the sense that they not only operate on an input space but also on an internal state space – a trace of what already has been processed by the network. This is equivalent to an Iterated Function System (IFS; see (Barnsley, 1993) for a general introduction to IFSs; (Kolen, 1994) for a neural network perspective) or a Dynamical System (DS; see e.g.
    [Show full text]
  • Feedforward Neural Networks and Word Embeddings
    Feedforward Neural Networks and Word Embeddings Fabienne Braune1 1LMU Munich May 14th, 2017 Fabienne Braune (CIS) Feedforward Neural Networks and Word Embeddings May 14th, 2017 · 1 Outline 1 Linear models 2 Limitations of linear models 3 Neural networks 4 A neural language model 5 Word embeddings Fabienne Braune (CIS) Feedforward Neural Networks and Word Embeddings May 14th, 2017 · 2 Linear Models Fabienne Braune (CIS) Feedforward Neural Networks and Word Embeddings May 14th, 2017 · 3 Binary Classification with Linear Models Example: the seminar at < time > 4 pm will Classification task: Do we have an < time > tag in the current position? Word Lemma LexCat Case SemCat Tag the the Art low seminar seminar Noun low at at Prep low stime 4 4 Digit low pm pm Other low timeid will will Verb low Fabienne Braune (CIS) Feedforward Neural Networks and Word Embeddings May 14th, 2017 · 4 Feature Vector Encode context into feature vector: 1 bias term 1 2 -3 lemma the 1 3 -3 lemma giraffe 0 ... ... ... 102 -2 lemma seminar 1 103 -2 lemma giraffe 0 ... ... ... 202 -1 lemma at 1 203 -1 lemma giraffe 0 ... ... ... 302 +1 lemma 4 1 303 +1 lemma giraffe 0 ... ... ... Fabienne Braune (CIS) Feedforward Neural Networks and Word Embeddings May 14th, 2017 · 5 Dot product with (initial) weight vector 2 3 2 3 x0 = 1 w0 = 1:00 6 x = 1 7 6 w = 0:01 7 6 1 7 6 1 7 6 x = 0 7 6 w = 0:01 7 6 2 7 6 2 7 6 ··· 7 6 ··· 7 6 7 6 7 6x = 17 6x = 0:017 6 101 7 6 101 7 6 7 6 7 6x102 = 07 6x102 = 0:017 T 6 7 6 7 h(X )= X · Θ X = 6 ··· 7 Θ = 6 ··· 7 6 7 6 7 6x201 = 17 6x201 = 0:017 6 7
    [Show full text]
  • Long Short-Term Memory 1 Introduction
    LONG SHORTTERM MEMORY Neural Computation J urgen Schmidhuber Sepp Ho chreiter IDSIA Fakultat f ur Informatik Corso Elvezia Technische Universitat M unchen Lugano Switzerland M unchen Germany juergenidsiach ho chreitinformatiktumuenchende httpwwwidsiachjuergen httpwwwinformatiktumuenchendehochreit Abstract Learning to store information over extended time intervals via recurrent backpropagation takes a very long time mostly due to insucient decaying error back ow We briey review Ho chreiters analysis of this problem then address it by introducing a novel ecient gradientbased metho d called Long ShortTerm Memory LSTM Truncating the gradient where this do es not do harm LSTM can learn to bridge minimal time lags in excess of discrete time steps by enforcing constant error ow through constant error carrousels within sp ecial units Multiplicative gate units learn to op en and close access to the constant error ow LSTM is lo cal in space and time its computational complexity p er time step and weight is O Our exp eriments with articial data involve lo cal distributed realvalued and noisy pattern representations In comparisons with RTRL BPTT Recurrent CascadeCorrelation Elman nets and Neural Sequence Chunking LSTM leads to many more successful runs and learns much faster LSTM also solves complex articial long time lag tasks that have never b een solved by previous recurrent network algorithms INTRODUCTION Recurrent networks can in principle use their feedback connections to store representations of recent input events in form of activations
    [Show full text]
  • Long Short-Term Memory M
    Long Short-Term Memory M. Stanley Fujimoto CS778 – Winter 2016 30 Jan 2016 Why • List the alphabet forwards List the alphabet backwards • Tell me the lyrics to a song Start the lyrics of the song in the middle of a verse • Lots of information that you store in your brain is not random access You learned them as a sequence • How can we incorporate this into the machine learning algorithm? “Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016. https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/. Why – Use Cases • Predict the next word in a sentence The woman took out ________ purse • Predict the next frame in a video • All these tasks are easier when you know what happened earlier in the sequence “Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016. https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/. Why – Markov Models • Traditional Markov model approaches are limited because their states must be drawn from a modestly sized discrete state space S • Standard operations become infeasible when the set of possible hidden states grows large • Markov models are computationally impractical for modeling long-range dependencies Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.” arXiv:1506.00019 [cs], May 29, 2015. http://arxiv.org/abs/1506.00019. Why – Neural Network “Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
    [Show full text]