Boosted Backpropagation Learning for Training Deep Modular Networks Alexander Grubb
[email protected] J. Andrew Bagnell
[email protected] School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA Abstract tor which is itself a network of simpler modules. Ap- proaches leveraging such modular networks have been Divide-and-conquer is key to building sophis- successfully applied to real-world problems like natural ticated learning machines: hard problems are language processing (NLP) (Lawrence et al., 2000; Ro- solved by composing a network of modules hde, 2002), optical character recognition (OCR) (Le- that solve simpler problems (LeCun et al., Cun et al., 1998; Hinton et al., 2006), and robotics 1998; Rohde, 2002; Bradley, 2009). Many (Bradley, 2009; Zucker et al., 2010). Figure1 shows such existing systems rely on learning algo- an example network for a robotic autonomy system rithms which are based on simple paramet- where imitation learning is used for feedback. ric gradient descent where the parametriza- tion must be predetermined, or more spe- These deep networks are typically composed of layers cialized per-application algorithms which are of learning modules with multiple inputs and outputs usually ad-hoc and complicated. We present along with various transforming modules, e.g. the acti- a novel approach for training generic mod- vation functions typically found in neural network lit- ular networks that uses two existing tech- erature, with the end goal of globally optimizing net- niques: the error propagation strategy of work behavior to perform a given task. These con- backpropagation and more recent research on structions offer a number of advantages over single descent in spaces of functions (Mason et al., learning modules, such as the ability to compactly rep- 1999; Scholkopf & Smola, 2001).