<<

Appendix for Ref. 26 of “Modern Cosmology: Interactive Computer Simulations that use Recent Observational Surveys”

Jacob Moldenhauer1∗, Larry Engelhardt1, Keenan M. Stone1, Ezekiel Shuler1 1Department of Physics and , Francis Marion University, Florence, SC 29506, USA; (Dated: February 4, 2013)

1 A. G. Riess et al., “Type Ia Discoveries at z > 1 from the Hubble : Evidence for Past Deceleration and Constraints on Dark Enenrgy Evolution”, Astrophys. J., 607, 665 (2004); A.G. Riess et al., “New Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of ”, Astrophys. J. 659, 98 (2007). 2 P. Astier et al., “The Supernova Legacy Survey: Measurement of Ωm,ΩΛ and w from the First Year Data Set”, Astron. As- trophys., 447, 31 (2006). 3 T. Davis et al., “Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmo- logical Probes”, Astrophys. J. 666, 716 (2007). 4 M. Kowalski et al., “Improved Cosmological Constraints from New, Old and Combined Supernova Datasets”, Astrophys. J. 686, 749 (2008); Union data sets include M. Hamuy, et al., “The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae”, Astron. J., 112, 2408 (1996); K. Krisciunas et al., “Optical and Infrared Photometry of the Nearby Type Ia Supernovae 1999ee, 2000bh, 2000ca, and 2001ba”, Astron. J., 127, 1664 (2004a), K. Krisciunas et al.,“Optical and Infrared Photometry of the Type Ia Supernovae 1991T, 1991bg, 1999ek, 2001bt, 2001cn, 2001cz, and 2002bo”, Astron. J., 128, 3034 (2004b), K. Krisciunas et al.,“Optical and Infrared Photometry of the Type Ia Supernovae 1999da, 1999dk, 1999gp, 2000bk, and 2000ce”, Astron. J., 122, 1616 (2001); A. G. Riess et al., ‘Observational Evidence from Supernovae for an Acclerating Universe and a Cosmological Constant”, Astron. J., 116, 1009 (1998), A. G. Riess et al., “BVRI Light Curves for 22 Type Ia Supernovae”, Astron. J., 117, 707 (1999), A. G. Riess et al., “ Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Enenrgy Evolution”, Astrophys. J., 607, 665 (2004); A.G. Riess et al., “New Hubble Space Telescope Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of Dark Energy”, Astrophys. J. 659, 98 (2007). S. Jha et al., “UBVRI Light Curves of 44 Type Ia Supernovae”, Astron. J., 131, 527 (2006), S. Jha et al., “Improved Distances to Type Ia Supernovae with Multicolor Light Curve Shapes: MLCS2k2”, Astrophys. J., 659, 122 (2007); Perlmutter et al., “Measurements of Omega and Lambda from 42 High- Supernovae”, Astrophys. J., 517, 565 (1999); J. L. Tonry et al., “Cosmological Results from High-z Supernovae”, Astrophys. J., 594, 1 (2003); B. J. Barris et al., “23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z¿0.7”, Astrophys. J., 602, 571 (2004); R. A. Knop et al., “New Constraints on M , , and w from an Independent Set of Eleven High-Redshift Supernovae Observed with HST”, Astrophys. J., 598, 102 (2003); P. Astier et al., “The Supernova Legacy Survey: Measurement of Ωm,ΩΛ and w from the First Year Data Set”, Astron. Astrophys., 447, 31 (2006); G. Miknaitis et al., “The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry”, Astrophys. J., 666, 674 (2007); W. M. Wood-Vasey et al., Astrophys. J., “Observational Constraints on the Nature of the Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey”, 666, 694 (2007); P. M. Garnavich et al., “Supernova Limits on the Cosmic Equation of State”, Astrophys. J., 509, 74 (1998); B. P. Schmidt et al., “The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae”, Astrophys. J., 507, 46 (1998). 5 M. Hicken et al., “CfA3: 185 Type Ia Supernova Light Curves from the CfA”, Astrophys. J., 700, 1097 (2009). 6 R. Amanullah et al., “Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation”, Astrophys. J. 716, 712 (2010), arXiv:1004.1711. 7 N. Suzuki et al., “The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z¿1 and Building an Early-Type-Hosted Supernova Sample”, ApJ Dec. 20, (2011). 8 H. Wei, “Observational Constraints on Cosmological Models with the Updated Long -Ray Bursts”, J. Cosmol. As- tropart. Phys.JCAP1008:020, (2010). 9 D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S. A. Stanford, “Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements”, J. Cosmol. Astropart. Phys., JCAP02(2010)008. 10 E. Gaztanaga, A. Cabre, L. Hui, “Clustering of Luminous Red Galaxies IV: Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z)”, Mon. Not. R. Astron. Soc., 399, 1663 (2009). 11 B. A. Reid, et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering”, submitted Mon. Not. R. Astron. Soc.,

∗ Electronic address: [email protected] 2

TABLE I: Table I: Table of Observational Surveys we include for CosmoEJS. We list the Observational Survey Name (Type), Number in Survey, Redshift (z) Range, Description of the Survey, Parameters To Fit, Filename, Format of the data sets.

Survey Name Number Redshift (z) Description of the Survey Parameters Filename Format (Type) in Survey Range To Fit 2004 release of 186 supernovae including the Riess 186 0.01 → 1.755 ”gold” sample of 157 supernovae and additional Ωm,ΩΛ,Ωk sn data riess.txt (z, µ(z), σ) 1 (SNe) ”silver” by which includes other older datasets. H0, w0, wa Supernovae Legacy Survey Collaboration of 115 SNLS I 115 0.05 → 1.01 supernovae including 71 from the first year Ωm,ΩΛ,Ωk snls.txt (z, µ(z), σ) 2 (SNe) SNLS and others by . H0, w0, wa Compilation of 192 supernovae by3 Davis 192 0.016 → 1.755 including supernoave from ESSENCE Survey Ωm,ΩΛ,Ωk DavisSN2007data.txt (z, µ(z), σ) (SNe) and other older sets. H0, w0, wa The Supernova Cosmology Project (SCP) Union Union 307 0.015 → 1.551 compilaton of 307 supernovae compiled by4 sn z mu dmu.txt (z, µ(z), σ) (SNe) and including supernovae from SNLS,ESSENCE Ωm,ΩΛ,Ωk Survey, HST, and other older sets listed above. H0, w0, wa The Constitution compilation of 397 supernovae 5 Constitution 397 0.015 → 1.551 by released in 2009 and includes supernovae Ωm,ΩΛ,Ωk sn data const.txt (z, µ(z), σ) (SNe) from the above surveys. H0, w0, wa The Supernoave Cosmology Project (SCP) Union2 557 0.015 → 1.40 Union 2 compilation of 557 supernovae Ωm,ΩΛ,Ωk sn z mu dmu union2.txt (z, µ(z), σ) 6 (SNe) by including many of the above older sets. H0, w0, wa The Supernovae Cosmology Project (SCP) Union2.1 580 0.015 → 1.40 Union 2.1 compilation of 580 supernovae Ωm,ΩΛ,Ωk sn z mu dmu union21.txt (z, µ(z), σ) 7 (SNe) by including many of the above older sets. H0, w0, wa 8 Wei low 2010 release by of 109 Ωm,ΩΛ,Ωk (GRB) 50 0.33 → 1.331 long Gamma-Ray Bursts (GRBs) H0, w0, wa Wei Low.txt (z, µ(z), σ) Wei high with the well-known Amati relation, Ωm,ΩΛ,Ωk 8 (GRB) 59 1.44 → 8.1 calibrated 59 GRBs as high-redshift . H0, w0, wa Wei High.txt (z, µ(z), σ) 12 measurements of H(z) derived from differential Ages 12 0.0 → 1.75 ages measurements of the expansion history of the Ωm,ΩΛ,Ωk agesdata plus.txt (z, H(z), σ) 9 (H(z)) universe using LRG galaxy clusters . H0, w0, wa SDSS 0.24 3 direct measurements of H(z) from the Sloan DR6, DR7 3 0.34 Digital Sky Survey (SDSS) Data Releases 6 and 7 Ωm,ΩΛ,Ωk SDSSDR67Hz.txt (z, H(z), σ) 10 (H(z)) 0.43 from LRG galaxy clusters . H0, w0, wa 1 direct measurement of H(z) from the first year BOSS I 1 0.57 release of the Baryon Oscillation Spectroscopic Ωm,ΩΛ,Ωk BOSSIHz.txt (z, H(z), σ) 11 (H(z)) Survey (BOSS) project from the SDSS-III . H0, w0, wa 19 measurements of H(z), 12 from Ages (above) MaStroBC03 19 0.0 → 1.75 added to the latest from old elliptical galaxies Ωm,ΩΛ,Ωk MaStroBC03.txt (z, H(z), σ) 12 (H(z)) from M. Moresco, et al. . H0, w0, wa SDSS 2 measurements of the ratio rs(zd)/DV (z) from Ωm,ΩΛ,Ωk DR7 2 0.20 the (SDSS) Data H0, w0, wa SDSSDR7BAO.txt (z, rs/DV , σ) 13 (BAO) 0.35 Release 7 of LRG galaxy clusters . Ωc,Ωb Ωm,ΩΛ,Ωk 6dFGS 1 0.106 1 measurement of the ratio rs(zd)/DV (z) from H0, w0, wa 6dFBAO.txt (z, rs/DV , σ) 14 (BAO) the 6 degree-Field Galaxy Survey (6dFGS) . Ωc,Ωb 0.44 Ωm,ΩΛ,Ωk WiggleZ 3 0.60 3 measurements of the ratio rs(zd)/DV (z) from H0, w0, wa WiggleZ.txt (z, rs/DV , σ) 15 (BAO) 0.73 the WiggleZ . Ωc,Ωb 1 measurement of the ratio rs(zd)/DV (z) from BOSS I 1 0.57 the first year release of the Baryon Oscillation Ωm,ΩΛ,Ωk BOSSIBAO.txt (z, rs/DV , σ) (BAO) Spectroscopic Survey (BOSS) project from the H0, w0, wa 16 SDSS-III . Ωc,Ωb Ωm,ΩΛ,Ωk All 7 7 0.0106 → 0.73 We compiled all 7 BAO into one list for a H0, w0, wa bao 7.txt (z, rs/DV , σ) (BAO) quick comparison. Ωc,Ωb 3 measurements of the CMB from the Seven-Year Ωm,ΩΛ,Ωk WMAP 3 1090.3 Wilkinson Microwave Anisotropy Probe (WMAP) H0, w0, wa cmbsurf.txt (la, R, z∗) 17 −1 (CMB) Observations with Cov from errors. Ωc,Ωb cov.txt

(2012) arxiv:1203.6641. 12 Moresco, M., Cimatti, A., Jimenez, R., Pozzetti, L. et al, “Improved constraints on the expansion rate of the Universe up to z 1.1 from the spectroscopic evolution of cosmic chronometers”, 2012, JCAP accepted (arXiv:1201.3609 , Moresco et al. 2012a); Moresco, M., Verde, L., Pozzetti, L., Jimenez, R., Cimatti, A., “New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z 1.75”, 2012, JCAP accepted (arXiv:1201.6658, Moresco et al. 2012b). 3

13 W. J. Percival et al. “Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample”, Mon. Not. R. Astron. Soc.Volume 401, 2148 (2010), arXiv:0907.1660. 14 F. Beutler, et al., “The 6df Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant”, Mon. Not. R. As- tron. Soc.416 pp. 3017-3032, (2010) arxiv:1106.3366. 15 C. Blake et al., “The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z = 0.9”, Mon. Not. R. Astron. Soc.415, 2876, (2011); C. Blake et al., “The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z = 0.6”, Mon. Not. R. Astron. Soc.415, 2892, (2011). 16 L. Anderson, et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Os- cillations in the Data Release 9 Spectroscopic Galaxy Survey”, submitted Mon. Not. R. Astron. Soc., (2012) arxiv:1203.6594. 17 J.Dunkley, E.Komatsu, D.L.Larson, and M.R.Nolta The WMAP Team likelihood http://lambda.gsfc.nasa.gov/; D. Lar- son et al., “Seven-Year Wilikinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WAMP-Derived Parameters”, Astrophys. J. Suppl. Ser. 192, 16 (2011), arXiv:1001.4635; N. Jarosik et al., “Seven-Year Wilikinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results”, Astrophys. J. Suppl. Ser. 192, 14 (2011), arXiv:1001.4744; E. Komatsu et al., “Seven-Year Wilikinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation”, Astrophys. J. Suppl. Ser. 192, 18 (2011), arXiv:1001.4538; B. Gold et al., “Seven-Year Wil- ikinson Microwave Anisotropy Probe (WMAP) Observations: Galatic Foreground Emission”, Astrophys. J. Suppl. Ser. 192, 15 (2011); C. L. Bennett, et al., “Seven-Year Wilikinson Microwave Anisotropy Probe (WMAP) Observations: Are there Cosmic Microwave Background Anomalies”, Astrophys. J. Suppl. Ser. 192, 17 (2011); J. L. Weiland, et al., “Seven-Year Wilikinson Microwave Anisotropy Probe (WMAP) Observations: Palnets and Celestial Calibration”, Astrophys. J. Suppl. Ser. 192, 19 (2011).