Oil Resources

Total Page:16

File Type:pdf, Size:1020Kb

Oil Resources Oil and gas TNO Built Environment and Geosciences TNO | Knowledge for business Geological Survey of the Netherlands PO Box 80015 3508 TA Utrecht The Netherlands The Netherlands: SmallOil but Resourcessweet Dutch Oilfield portfolio 562882 662882 762882 Oil production, 1960 - 2004 6104670 Legend 6104670 Dutch oil reserves in million Sm3 as at 1 January 2005 6 Oil field, stranded Area Reserves 2003 Reserves 2004 Oil field, production start in 5 years North-eastern Netherlands 16,0 16,0 5 West Netherlands 4,7 2,7 producing Oilfield Continental Shelf 17,2 15,0 4 3 abandonned Oilfield Total Netherlands 37,9 33,7 3 million Sm 2 1 6004670 6004670 0 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 200002 04 year Continental Shelf Production licence Rijswijk (West Netherlands) Production licence Schoonebeek (North-eastern Netherlands) 3 Number of proven oil accumulations as at 1 January 2004 Oil reserves and cumulative production in million Sm 1970-2005 140 Oil accumulation Territory Continental Shelf Producing 3 9 120 Closed in 1 - 5904670 5904670 100 Start of production between 3 2005 and 2009 - 1 80 Continental Shelf North-eastern Start of production unknown - - 60 Netherlands Production ceased 7 1 million Sm Sub-economi 11 14 40 Total 22 25 20 0 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 2000 02 04 year Remaining reserves 5804670 5804670 Cumulative production West Netherlands 562882 662882 762882 562882 662882 762882 6104670 6104670 Legend Dutch Oil plays Oil field Distribution Jurassic Posidonia oil source rock Geological time scale with composite stratigraphic column of the Netherlands and the Continental Shelf T ime in Era Period Epoch Group or Productive rock units Occurence of oil millions Formation and gas of years Netherlands Continental territory Shelf 6004670 6004670 2.4 Quaternary Upper North Sea sands Upper North Sea Neogene Middle North Sea Tertiary Paleogene Lower North Sea Dongen 65 Ekofisk Upper Ommelanden Ommelanden chalk Cretaceous Texel Cretaceous Holland Holland Greensand Lower Cretaceous Vlieland Vlieland Sandstone Delfland Clay Deep Coevorden 143 Various Scruff formations Upper Jurassic Lower and Upper Graben Jurassic Middle Jurassic 5904670 5904670 Middle Werkendam Altena Posidonia Lower Jurassic 208 Upper Triassic Keuper Triassic Middle Triassic Muschelkalk Röt Röt Fringe Sandstone Lower Triassic Low. Germanic Trias Main Buntsandstein & Solling 245 Z3 Carbonate Zechstein Upper Permian Z2 Carbonate Zechstein Permian Upper Rotliegend Slochteren Formation Lower Permian Lower Rotliegend 290 Stephanian Various sandstone Westphalian Limburg units in the Westphalian Limburg Group Silesian Basal Namurian Carboniferous Namurian Dinantian 363 5804670 5804670 Devonian Paleozoic Mesozoic Cenozoic 409 Silurian 439 Clay-claystone Anhydrite Gas Ordovician Limestone Rock salt Oil 510 Marl Dolomite Gas and/or oil Sandstone Volcanic rocks Jurassic sourcerock Cambrian Coal seams 570 distribution (Posidonia) vs Precambrian location of oil fields 562882 662882 762882 Poster Mijnlieff 05mj-05 Poster.
Recommended publications
  • A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
    bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019.
    [Show full text]
  • Developing a Geological Framework
    21/2/12 GeolFrameworkPaper_postreview_v2acceptchanges_editorcomments New insights from 3D geological models at analogue CO2 storage sites in Lincolnshire and eastern Scotland, UK. Alison Monaghan1*, Jonathan Ford2, Antoni Milodowski2, David McInroy1, Timothy Pharaoh2, Jeremy Rushton2, Mike Browne1, Anthony Cooper2, Andrew Hulbert2 and Bruce Napier2 1 British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK. 2 British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, UK. * Corresponding author (email [email protected] (Approx.15,600 words in total, 25 figures) SUMMARY: Subsurface 3D geological models of aquifer and seal rock systems from two contrasting analogue sites have been created as the first step in an investigation into methodologies for geological storage of carbon dioxide in saline aquifers. Development of the models illustrates the utility of an integrated approach using digital techniques and expert geological knowledge to further geological understanding. The models visualize a faulted, gently dipping Permo-Triassic succession in Lincolnshire and a complex faulted and folded Devono-Carboniferous succession in eastern Scotland. The Permo-Triassic is present in the Lincolnshire model to depths of -2 km OD, and includes the aquifers of the Sherwood Sandstone and Rotliegendes groups. Model-derived thickness maps test and refine Permian palaeogeography, such as the location of a carbonate reef and its associated seaward slope, and the identification of aeolian dunes. Analysis of borehole core samples established average 2D porosity values for the Rotliegendes (16%) and Sherwood Sandstone (20%) groups, and the Zechstein (5%) and Mercia Mudstone (<10%) groups, which are favourable for aquifer and seal units respectively. Core sample analysis has revealed a complex but well understood diagenetic history.
    [Show full text]
  • Tracing Medieval and Renaissance Alabaster Artwork Back to Quarries: a Multi-Isotope (Sr, S, O) Approach
    Tracing Medieval and Renaissance alabaster artwork back to quarries: A multi-isotope (Sr, S, O) approach. W. Kloppmann 1*, L. Leroux 2, P. Bromblet 3, C. Guerrot 1, E. Proust 1, A.H. Cooper 4, N. Worley 5, S.-A. Smeds 6, H. Bengtsson 7 1 BRGM, Unité Traçage isotopique et Datation, BP 6009, F-45060 Orléans cedex 2, France, 2 LRMH, USR3224 (MCC, CNRS, MNHN),29, rue de Paris, F-77420 Champs sur Marne, France, 3CICRP, 21, rue Guibal, F-13003 Marseille, France, 4British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK, 5 formerly British Gypsum Ltd. East Leake, Loughborough Leicestershire LE12 6HX, UK, 6Sveriges geologiska undersökning, Geological Survey of Sweden Box 670, SE-751 28 Uppsala, Sweden 7Upplandsmuseet (Uppland Museum), Fyristorg 2, SE-753 10 Uppsala, Sweden * Corresponding author; e-mail: [email protected] ABSTRACT Multi-isotope fingerprinting (sulphur, oxygen and strontium isotopes) has been tested to study the provenances of medieval and Renaissance French and Swedish alabaster artwork. Isotope signatures of historical English, French and Spanish alabaster source quarries or areas reveal highly specific, with a strong intra-group homogeneity and strong inter-group contrasts, especially for Sr and S isotopes. The chosen combination of isotope tracers is a good basis for forensic work on alabaster provenance allowing verification of hypotheses about historical trade routes as well as identification of fakes and their origin. The applied analytical techniques of continuous flow isotope ratio mass spectrometry (CF-IRMS) and thermal ionisation mass spectrometry (TIMS) only require micro-samples in the low mg range thus minimising the impact on artwork.
    [Show full text]
  • Lower Triassic Reservoir Development in the Northern Dutch Offshore
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Lower Triassic reservoir development in the northern Dutch offshore M. KORTEKAAS1*, U. BÖKER2, C. VAN DER KOOIJ3 & B. JAARSMA1 1EBN BV Daalsesingel 1, 3511 SV Utrecht, The Netherlands 2PanTerra Geoconsultants BV, Weversbaan 1-3, 2352 BZ Leiderdorp, The Netherlands 3Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands *Correspondence: [email protected] Abstract: Sandstones of the Main Buntsandstein Subgroup represent a key element of the well- established Lower Triassic hydrocarbon play in the southern North Sea area. Mixed aeolian and fluvial sediments of the Lower Volpriehausen and Detfurth Sandstone members form the main res- ervoir rock, sealed by the Solling Claystone and/or Röt Salt. It is generally perceived that reservoir presence and quality decrease towards the north and that the prospectivity of the Main Buntsandstein play in the northern Dutch offshore is therefore limited. Lack of access to hydrocarbon charge from the underlying Carboniferous sediments as a result of the thick Zechstein salt is often identified as an additional risk for this play. Consequently, only a few wells have tested Triassic reservoir and therefore this part of the basin remains under-explored. Seismic interpretation of the Lower Volprie- hausen Sandstone Member was conducted and several untested Triassic structures are identified. A comprehensive, regional well analysis suggests the presence of reservoir sands north of the main fairway. The lithologic character and stratigraphic extent of these northern Triassic deposits may suggest an alternative reservoir provenance in the marginal Step Graben system. Fluvial sands with (local) northern provenance may have been preserved in the NW area of the Step Graben system, as seismic interpretation indicates the development of a local depocentre during the Early Triassic.
    [Show full text]
  • Hydrocarbon Plays from West Poland: Zechstein Limestone and Main Dolomite
    Hydrocarbon Plays from West Poland: Zechstein Limestone and Main Dolomite Paweł Zdanowski & Tomasz Solarski PGNiG SA (Polish Oli & Gas Company), Exploration and Production Branch Underexplored Plays - Part III 31-X-2018 & 01-XI-2018 Stavanger Hydrocarbon Plays from West Poland: Zechstein Limestone (Ca1) and Main Dolomite (Ca2) Presentation outline: Palaeogeography of Zechstein • Southern Permian Basin and Northern Permian Basin • Correlation of carbonate units between SBP and NPB Zechstein Limestone (Brońsko Gas Field) • Hydrocarbon Play. • Pattern Recognition from Seismic. Main Dolomite (BMB and LMG oil & gas fields) • Hydrocarbon Play. • Pattern Recognition from Seismic. • Analysis of Seismic Attributes. • Seismic Modeling. Late Permian Paleogeography from Blakely (2014) Tucker, 2016 After Scotese, 2002 European Southern Permian Basin Zechstein Sea Connected to Pantalassa Ocean 2000km to N/NE. Possible connection to Paleo-Tethys through the Polish Sub-Basin to the SE ?? Palaeo-latitude: 10-20°. Climate extremely arid. After Scotese, 2012 Sketch map of Permian sedimentary basin in north-west Europe Dziękuję za uwagę Stavanger Warsaw Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, 2003 Polish Zechstein Basin ….stratigraphy Leine Na2 A2 Stassfurt Ca2 A1g Na1 A1d Werra Ca1 Wagner & Peryt. 1997 Słowakiewicz & Mikołajewski, 2009 Tucker, 2016 Comparison of the Zechstein development of the NPB with the classic SPB Evans et al. 2003 Madeleine et al. 2018 Zechstein Limestone – Ca1 (≈ Argyll Carbonate Member) Zechstein basin, showing the position of the Brandenburg-Wolsztyn-Pogorzela palaeo-High Basin facies of the Zechstein Limestone in Poland, showing the occurrence of isolated reefs related to the Brandenburg-Wolsztyn-Pogorzela palaeo-High. isolated reefs (rimmed platform) Peryt et al.
    [Show full text]
  • Triassic Reservoir Development in the Northern Dutch Offshore Is Also Seen in the Offshore of the United Kingdom and Denmark
    Triassic reservoir development in the northern Dutch offshore AUTHOR Casper I. van der Kooij 1 DATE 22 February 2016 VERSION 27 July 2016 at 13:46 SUPERVISORS dr. Marloes Kortekaas 2 and dr. João Trabucho 1 1 Utrecht University, Sedimetology Group, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands 2 EBN B.V. Daalsesingel 1, 3511 SV, Utrecht, The Netherlands Internship report C.I. van der Kooij (2016) 2 Internship report C.I. van der Kooij (2016) 1 Hegoland, German North Sea 1. The Volpriehausen and Detfurth formations. The formation boundary is at the thick interval of white aeolian ‘Katersande’ seen on the top of the ‘Lange Anna’ sea stack and on the top of the cliff. 1 Taken by Dirk Vorderstraße: https://www.flickr.com/photos/107086296@N08/10559645584 3 Internship report C.I. van der Kooij (2016) 4 Internship report C.I. van der Kooij (2016) Abstract The Triassic Main Buntsandstein Sugbroup (RBM) play is established in the Southern North Sea. After the Rotliegend play, the RBM play is the most prolific hydrocarbon play in Dutch exploration. In the DEFAB area a P50 GIIP of 80 BCM (unrisked) of gas is still to be found (EBN, 2016). The Lower Volpriehausen Sandstone Member (RBMVL) deposits form the main reservoir rock in the RBM play. It is generally perceived that the reservoir quality decreases towards the north and that Triassic prospectivity is limited in the northern Dutch offshore. However, the northern Dutch offshore is relatively under-explored and only a few wells have actually tested Triassic reservoir rocks in this region.
    [Show full text]
  • 3D Seismic Reflection Data Reveal Syn-Depositional Halokinesis in The
    This manuscript is a EarthArxiv preprint and had been submitted for publication in the AAPG Bulletin. Please note that this manuscript has not been peer-reviewed. Subsequent versions of this manuscript may, thus, have slightly different content. If accepted, the final version of this manuscript will be available via the “Peer-reviewed Publication DOI” link on the right- hand side of this webpage. Please feel free to contact any of the authors directly; We welcome your feedback. 1 3D seismic reflection data reveal syn-depositional halokinesis in the 2 Zechstein Supergroup (Lopingian), Central North Sea, UK 3 Amir Joffe 1*, Christopher A-L. Jackson2, Leonardo M. Pichel3 4 1. Basins Research Group (BRG), Department of Earth Science and Engineering, Imperial 5 College London, South Kensington Campus, SW7 2BP, UK 6 2. Department of Earth and Environmental Sciences, The University of Manchester, 7 Williamson Building, Oxford Road, Manchester, M13 9PL, UK 8 3. Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, 9 Norway 10 Abstract 11 Salt tectonics is typically caused by the flow of mobile evaporites in response to post- 12 depositional gravity gliding and/or differential loading by overburden sediments. This situation 13 is considerably more complex near the margins of salt basins, where carbonate and clastic rocks 14 may be deposited at the same time and interbedded with, more mobile, evaporite strata. In these 15 cases, syn-depositional salt flow may occur due to density differences in the deposited 16 lithologies, although our understanding of this process and related produces is relatively poor. 17 We here use 3D seismic reflection and borehole data from the Devil’s Hole Horst, West Central 18 Shelf, offshore UK to understand the genesis, geometry and kinematic of intra-Zechstein 19 Supergroup (Lopingian) minibasins and their effect on post-depositional salt deformation.
    [Show full text]
  • Induced Seismicity of the Groningen Gas Field: History and Recent Developments K
    Induced seismicity of the Groningen gas field: History and recent developments K. van Thienen-Visser1 and J. N. Breunese1 Abstract For the large Groningen field, the first seismic event was Induced seismicity of the Groningen gas field is caused by recorded in 1991. The largest magnitude was an ML 3.6 event the production of gas. Because of the large areal extent of the on 16 August 2012. Even though the magnitude of the event reservoir, the long history of depletion, and the available data sets was, seismologically speaking, not high, intensities as high as VI (which exist as a result of consequences and public unrest caused were observed because of the shallow depth of the event (3 km, by induced seismicity), the field presents a valuable case for i.e., reservoir depth) and the soft surface soils in the area (TNO, studying the relationships among geologic, flow-dynamic, geo- 2013a), causing damage to houses in the area. mechanical, and seismological models. Gas production from the Until 2012, a maximum magnitude of 3.9, with a probabil- Groningen field started in 1963. Induced seismicity of the field ity of exceedance of 16% (van Eck et al., 2006), was seen as the first was recorded in 1991 (ML 2.4). During the subsequent 10 upper size limit for induced seismicity in the north of the Nether- years, induced seismicity stayed at a rate of about five events (ML lands. However, since 2003, seismicity in the field has increased ≥ 1.5) per year. Starting in 2003, the number of events and mag- in number and magnitude.
    [Show full text]
  • REGIONAL GEOLOGY by Graham K. Lott
    CHAPTER II REGIONAL GEOLOGY by Graham K. Lott The ‘quarrying’ and use of local stone in Notting- the Triassic comprises a thick succession of non- hamshire, for both building and decorative purposes, marine, green-grey to reddish brown sandstones, dates back to Roman times. However, the lithological siltstones and mudstones, the latter including thinly units that characterise the geological succession interbedded, grey-green, dolomitic, very fine grained within the county contain only a few beds of stone sandstones (known locally as skerry). In contrast, the suitable for these purposes. This lack of indigenous early Jurassic marine succession is only sporadically stone useful for decorative carving is reflected in the exposed along the northern edge of the low-lying composition of the suite of carved stone fragments Vale of Belvoir and comprises a succession of grey that have been studied as part of this Corpus project. limestones and mudstones (Lias Group). The eastern By far the majority of the stones examined consist part of the county is locally blanketed by extensive of lithologies (primarily sandstones and limestones) tracts of glacial and alluvial sediments (unconsolidated sourced from outside the county border. sands, gravels, clays and muds) of Quaternary age. carboniferous THE GEOLOGY OF NOTTINGHAMSHIRE Pennine Coal Measures Group Nottinghamshire has a relatively simple geological The Carboniferous rocks that crop out in the west of succession comprising a sequence of eastwards- the county form part of the Pennine Coal Measures dipping sedimentary rock units whose outcrops Group. This succession is best known economically extend from north to south across the county (see for its coal reserves but also contains a number of Fig.
    [Show full text]
  • Geology of the Groningen Field – an Overview
    Netherlands Journal of Geosciences — Geologie en Mijnbouw |96 – 5 | s3–s15 | 2017 doi:10.1017/njg.2017.22 Geology of the Groningen field – an overview JandeJager1,∗ & Clemens Visser2 1 Nassaukade 42, 2281 XD Rijswijk, the Netherlands 2 Nederlandse Aardolie Maatschappij B.V., Schepersmaat 2, 9405 TA Assen, the Netherlands ∗ Corresponding author. Email: [email protected] Manuscript received: 27 February 2017, accepted: 21 July 2017 Abstract After more than half a century of production and with some 350 wells, the Groningen gas field must be one of the best-studied gas fields in the world. Initially, it was considered to be relatively simple and behaving like one big tank. Now that it is entering a phase of declining production it has become clear that many subtleties are not fully understood yet. Prediction and management of subsidence and induced earth tremors require a detailed understanding of the field geology. In addition, an optimum gas recovery is only possible if details of, for example, reservoir quality distribution and faulting, that did not appear relevant before, are well understood. The large Groningen field comprises a structurally high block during much of its history, probably already from Devonian times onwards. The desert sandstones of the Rotliegend reservoir exhibit a strong south-to-north proximal–distal relationship. Whilst diagenesis has in many fields led to deterioration of reservoir properties, this effect is small in the Groningen field. The field is dipping to the north, and bounded by a series ofnormal faults in the west, south and east. Almost all faults are normal extensional faults, but locally inverse reactivation has led to small pop-up structures.
    [Show full text]
  • Geology of Gas and Oil Under the Netherlands
    Geology of Gas and Oil under the Netherlands Geology of Gas and Oil under the Netherlands Selection of papers presented at the 1993 International Conference of the American Association of Petroleum Geologists, held in The Hague Edited by H.E. Rondeel Institute of Earth Sciences, Vrije Unlversiteit, Amsterdam, the Netherlands D.A.J. Batjes The Hague, the Netherlands W.H. Nieuwenhuijs Delft University of Technology, Delft, the Netherlands The Royal Geological and Mining Society of the Netherlands· KNGMG Kluwer Academic Publishers DORDRECHT I BDSTON I LONDON Library of Congress Cataloging-in-Publication Data Geology of gas and 011 under the Netherlands I edlted by H.E. Rondeel. D.A.J. BatjBS and W.H. Nleuwenhuljs. p. em. 1. Natural gas--Geology--Netherlands. 2. Petroleu.--Geology­ -Netherlands. I. Rondeel. H. E. II. Batjes. D. A. J. III. Nl euwenhu 1 jS. W. H. TN897.N4G46 1996 553.2'85'09492--de20 95-25226 ISBN-13: 978-94-010-6541-2 e-ISBN-13: 978-94-009-0121-6 DOl: 10.1007/978-94-009-0121-6 Published by Kluwer Academic Publishers, P.O. Box 17, 3300 AA Dordrecht, The Netherlands Kluwer Academic Publishers incorporates the publishing programmes of D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, The Netherlands Printed on acid-free paper All rights reserved ©1996 Kluwer Academic Publishers Softcover reprint of the hardcover 1st edition 1996 No part of the material protected by this copyright notice may be reproduced or utiHzed in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.
    [Show full text]
  • 3D View of the Base of the Zechstein in the SPBA Area, (Viewed from the South; Red Colours Are Shallow and Blue Indicates the Greatest Depths)
    SPBA-Compleet 22-04-10 13:41 Pagina x 3D view of the base of the Zechstein in the SPBA area, (viewed from the south; red colours are shallow and blue indicates the greatest depths). The section crosses the entire area, a distance of 1525 km. The vertical scale is 1 : 300 000. SPBA-Compleet 22-04-10 13:41 Pagina 1 Chapter 1 — Introduction, stratigraphic framework and mapping Chapter 1 Introduction, stratigraphic framework and mapping Authors Contributors Bibliographic reference Hans Doornenbal (TNO), Oscar Abbink (TNO), Ed Duin (TNO), Michiel Dusar (GSB), Peer Hoth (BGR), United Kingdom: Bruce Napier, Peter Balson, Robert Knox and Susan Stoker, Belgium: Pascal Vancampenhout, Doornenbal, J.C., Abbink, O.A., Duin, E.J.T., Dusar, M., Hoth, P., Jasionowski, M., Lott, G.K., Mathiesen, A., Papiernik, B., Marek Jasionowski (PGI), Graham Lott (BGS), Anders Mathiesen (GEUS), Bartek Papiernik (AGH University Denmark: Torben Bidstrup and Ole Vejbæk, Germany: Gaby Merzbach and Marina Fischer, the Netherlands: Carla Elmers, Peryt, T.M., Veldkamp, J.G. & Wirth, H., 2010. Introduction, stratigraphic framework and mapping. In: Doornenbal, J.C. of Science & Technology), Tadeusz Peryt (PGI), Hans Veldkamp (TNO) and Holger Wirth (BGR) Jenny Hettelaar, Henk Kombrink, Gion Kuper, Erik Simmelink and Boris Webbers, Poland: Marek Hajto, Rafał Kudrewicz, and Stevenson, A.G. (editors): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. Grzegorz Machowski and Anna Sowizdzal (Houten): 1-9. 1 Introduction 1.1 Topography and bathymetry In Belgium, geological publications can be found on the GNOSIS website (Generalized Natural Online Sciences Spatial Information System of the federal scientific institutes in Belgium; www.gnosis.be/gnosis/index.jsp).
    [Show full text]