Vortices with Magnetic Field Inversion in Noncentrosymmetric

Total Page:16

File Type:pdf, Size:1020Kb

Vortices with Magnetic Field Inversion in Noncentrosymmetric Vortices with magnetic field inversion in noncentrosymmetric superconductors Julien Garaud,1, ∗ Maxim N. Chernodub,1, 2, y and Dmitri E. Kharzeev3, 4, 5, z 1Institut Denis Poisson CNRS/UMR 7013, Universit´ede Tours, 37200 France 2Pacific Quantum Center, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia 3Department of Physics and Astronomy, Stony Brook University, New York 11794-3800, USA 4Department of Physics and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA 5Le Studium, Loire Valley Institute for Advanced Studies, Tours and Orl´eans,France (Dated: November 30, 2020) Superconducting materials with noncentrosymmetric lattices lacking space inversion symmetry exhibit a variety of interesting parity-breaking phenomena, including the magneto-electric effect, spin-polarized currents, helical states, and the unusual Josephson effect. We demonstrate, within a Ginzburg-Landau framework describing noncentrosymmetric superconductors with O point group symmetry, that vortices can exhibit an inversion of the magnetic field at a certain distance from the vortex core. In stark contrast to conventional superconducting vortices, the magnetic-field reversal in the parity-broken superconductor leads to non-monotonic intervortex forces, and, as a consequence, to the exotic properties of the vortex matter such as the formation of vortex bound states, vortex clusters, and the appearance of metastable vortex/anti-vortex bound states. I. INTRODUCTION noncentrosymmetric superconductors are supercon- ducting materials whose crystal structure is not symmet- ric under the spatial inversion. These parity-breaking materials have attracted much theoretical [1{6] and ex- perimental [7{11] interest, as they make it possible to investigate spontaneous breaking of a continuous sym- metry in a parity-violating medium (for recent reviews, see [12{14]). The parity-breaking nature of the supercon- ducting order parameter [8,9] in noncentrosymmetric su- perconductors leads to various unusual magneto-electric phenomena due to the mixing of singlet and triplet com- 0.015 0.05 0.1 0.2 0.5 1 3.2 ponents of the superconducting condensate, correlations between supercurrents and spin polarization, to the exis- jBj tence of helical states, and to unusual structure of vortex lattices. Figure 1. Inversion patterns of the magnetic field B of a vor- Moreover, parity breaking in noncentrosymmetric su- tex in a noncentrosymmetric superconductor. The magnetic perconductors also results in an unconventional Joseph- field forms helicoidal patterns around a straight static vortex. son effect, where the junction features a phase-shifted re- As the distance from the vortex core increases, the longitudi- lation for the Josephson current [15, 16]. Unconventional nal (parallel to the vortex core) component of the magnetic Josephson junctions consisting of two noncentrosymmet- field may change its sign. The magnetic field may exhibit sev- ric superconductors linked by a uniaxial ferromagnet eral sign reversals in the normal plane. In the picture, which were recently proposed as the element of a qubit that is a result of a numerical simulation of the Ginzburg-Landau avoids the use of an offset magnetic flux, enabling a sim- theory, the colors encode the amplitude of the magnetic field pler and more robust architecture [17]. B, in a normal plane with respect to the vortex line while the In the macroscopic description of such superconducting arrows show the orientation of the field. states, the lack of inversion symmetry yields new terms arXiv:2003.10917v2 [cond-mat.supr-con] 26 Nov 2020 in the Ginzburg-Landau free energy termed `Lifshitz in- variants'. These terms directly couple the magnetic field are invariant under spatial rotations. The correspond- with an electric current and thus lead to a variety of new ing Lifshitz invariant featuring these symmetries is de- effects that are absent in conventional superconductors. scribed by the simple, parity-violating isotropic term, The explicit form of the allowed Lifshitz invariant de- / Im( ∗D ) · B. This particular structure describes pends on the point symmetry group of the underlying noncentrosymmetric superconductors with O point group crystal structure. symmetry such as Li2Pt3B[9, 18], Mo3Al2C[19, 20], and In this paper, we consider a particular class of non- PtSbS [21]. centrosymmetric superconductors that break the dis- Vortex states in cubic noncentrosymmetric supercon- crete group of parity reversals and, at the same time, ductors feature a transverse magnetic field, in addition to 2 the ordinary longitudinal field. Consequently, they also II. THEORETICAL FRAMEWORK carry a longitudinal current on top of the usual trans- verse screening currents [22{24]. Therefore, as illustrated We consider noncentrosymmetric superconductors in Fig.1, both the superconducting current and the mag- with the crystal structure possessing the O point netic field form a helical-like structure that winds around group symmetry. Such materials are described by the the vortex core (for additional material illustrating the Ginzburg-Landau free energy F = R d3x F with the free- helical spatial structure of the magnetic streamlines, see energy density given by (see e.g. [12, 26]): AppendixB, and supplemental animations [25] described in AppendixC). Previous theoretical papers studied vor- B2 β F = + kjD j2 + γj · B + (j j2 − 2)2 ; (1) tices in the perturbative regime where the coupling to 8π 2 0 the Lifshitz invariant is small, either in the London limit where j = 2e Im ( ∗D ); we use ~=c=1. Here, the sin- (with a large Ginzburg-Landau parameter) [22, 23], or i' beyond it [24]. For currently known noncentrosymmetric gle component order parameter = j je is a com- materials, these approximations are valid since the mag- plex scalar field that is coupled to the vector potential nitude of the Lifshitz invariants, which can be estimated A of the magnetic field B = r×A through the gauge in a weak-coupling approximation, is typically small. We derivative D ≡ r − ieA, where e is a gauge coupling. propose here a general study of vortices, for all possi- The explicit breaking of the inversion symmetry is ac- ble values of the Lifshitz invariant coupling, both in the counted for by the Lifshitz invariant term with the pref- London limit and beyond. actor γ, which directly couples the magnetic field B and j = 2ej j2(r' − eA). In the absence of parity breaking, when γ = 0, the vector j matches the usual supercon- We demonstrate that vortices may feature an inversion ducting current. The parameter γ, which controls the of the magnetic field at a distance of about 4λL from the strength of the parity breaking, can be chosen to be pos- vortex center. Moreover, for rather high values of the itive without loss of generality. The other coupling con- coupling γ, alternating reversals may occur several times, stants k and β describe, respectively, the magnitude of at different distances from the vortex core. Such an in- the kinetic and potential terms in the free energy (1). version of the magnetic field is illustrated, in Fig.1. The The variation of the free energy (1) with respect to the reversal of the magnetic field, which is in stark contrast to scalar field ∗ yields the Ginzburg-Landau equation for conventional superconducting vortices, becomes increas- the superconducting condensate, ingly important for larger couplings of the Lifshitz invari- 2 2 ant term. This property of field inversion is responsible kD + 2ieγB · D = β(j j − 0) ; (2) for other unusual behaviors, also absent in conventional type-2 superconductors. Indeed, we show that it leads while the variation of the free energy with respect to the to the formation of vortex bound states, vortex clusters, gauge potential A gives the Amp`ere-Maxwell equation: and meta-stable pairs of vortex and anti-vortex. These B r× + γj = kj + 2γe2j j2B ≡ J : (3) phenomena should have numerous physical consequences 4π on the response of noncentrosymmetric superconductors to an external magnetic field. The supercurrent J, is defined via the variation of the free energy (1) with respect to the vector potential: J = δF/δA. Nonzero parity-breaking coupling γ gives The paper is organized as follows. In Sec.II, we intro- an additional contribution from the Lifshitz term, which duce the phenomenological Ginzburg-Landau theory that is proportional to B [26] (see also remark [27]). The describes the superconducting state of a noncentrosym- physical length scales of the theory are, respectively, the metric material with O point group symmetry. Next, in coherence length ξ and the London penetration depth Sec. III we investigate the properties of single vortices λ , both in the London limit and beyond it. We also demon- L strate that the parity-breaking superconductors can fea- k 1 ξ2 = ; and λ2 = : (4) ture an inversion of the longitudinal magnetic field. This L 2 2 2β 0 8πke 0 observation suggests that the intervortex interaction in parity-odd superconductors might be much richer than The Ginzburg-Landau parameter, κ = λL/ξ, is given by that for a conventional superconductor. Hence we de- the ratio of these characteristic length scales. rive analytically the intervortex interaction energy in the Note that since the parity-violating term in the London limit in Sec.IV. We show that the interaction Ginzburg-Landau model (1) is not positively defined, potential depends non-monotonically on the intervortex the strength of the parity violation cannot be arbitrar- distance, which leads to the existence of vortex bound ily large. For the free energy to be bounded from below states. Using numerical minimization of the Ginzburg- in the ground state, the parity-odd parameter γ cannot Landau free energy, we further observe that such bound exceed a critical value, states persist beyond the London limit. Our conclusions s and discussion of further prospects are given in the last k 0 6 γ < γ? ; where γ? = 2 2 = kλL : (5) section. 8πe 0 3 2 A detailed discussion of the positive definiteness, and 0.
Recommended publications
  • Awards and Distinctions
    Egor Babaev Professor at the Royal Institute of Technology, Sweden EDUCATION Undergraduate studies: A. F. Ioffe Institute of Physics and Technology, (Russia) Graduate studies: Department of Theoretical Physics University of Uppsala (Sweden) PhD (2001). POSTDOCTORAL APPOINTMENTS Sept. 2001-Aug. 2003 Postdoctoral research associate at Inst. for Theoretical Physics Uppsala University Sept. 2003-July 2006 Postdoctoral research associate at Cornell University FACULTY POSITIONS Sept. 2006-Aug. 2008 Assistant Professor at the Department for Theoretical Physics Royal Institute of Technology (KTH), Sweden. Sept. 2007-Dec. 2013 Assistant Professor Physics Department University of Massachusetts Amherst (during that period ~50% on leave at KTH) Sept. 2008- Fellow of the Royal Swedish Academy of Science hosted at the Royal Institute of Technology Sweden. May 2013 - Associate Professor at the Department for Theoretical Physics Royal Institute of Technology (KTH), Sweden. Nov 2015 – present Professor at the Department for Theoretical Physics Royal Institute of Technology (KTH), Sweden. AWARDS AND DISTINCTIONS 2015: Göran Gustafsson Prize in Physics from the Royal Swedish Academy of Sciences Citation: “för hans originella teoretiska forskning vilken redan har visat helt nya vägar att förstå komplexa system och processer inom materialfysiken” 2013: Outstanding Young Researcher grant Swedish Research Council ~US$2.5 millions 2011: University of Massachusetts Exceptional Merit Award Description: “The award is given for exceptional, meritorious performance
    [Show full text]
  • Superconducting Properties of Vacuum in Strong Magnetic Field Maxim Chernodub
    Superconducting properties of vacuum in strong magnetic field Maxim Chernodub To cite this version: Maxim Chernodub. Superconducting properties of vacuum in strong magnetic field. In- ternational Journal of Modern Physics D, World Scientific Publishing, 2014, 23, pp.1430009. 10.1142/S0218271814300092. hal-01058420 HAL Id: hal-01058420 https://hal.archives-ouvertes.fr/hal-01058420 Submitted on 9 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Journal of Modern Physics D !c World Scientific Publishing Company SUPERCONDUCTING PROPERTIES OF VACUUM SuperconductingIN properties STRONG of MAGNETIC vacuum in FIELD strong magnetic field M. N. CHERNODUB∗ CNRS, Laboratoire de Math´ematiques et Physique Th´eorique, Universit´eFran¸cois-Rabelais, F´ed´eration Denis Poisson - CNRS, Parc de Grandmont, Universit´ede Tours, 37200 France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium [email protected] Received: 13 March 2014 Received Accepted: Day 24 MonthMarch 2014 Year Published: 23 April 2014 Revised Day Month Year We discuss superconducting phases of vacuum induced by strong magnetic field in the Electroweak model and in Quantum Chromodynamics at zero temperature.
    [Show full text]
  • Type-1.5 Superconductivity in Muliband and Other
    Type-1.5 superconductivity in muliband and other multicomponent systems E. Babaev1,2, M. Silaev1,3 1Department of Theoretical Physics, The Royal Institute of Technology, Stockholm, SE-10691 Sweden 2 Department of Physics, University of Massachusetts Amherst, MA 01003 USA 3 Institute for Physics of Microstructures RAS, 603950 Nizhny Novgorod, Russia. Usual superconductors are classified into two categories as follows: type-1 when the ratio of the magnetic field penetration length (λ) to coherence length (ξ) κ = λ/ξ < 1/√2 and type-2 when κ > 1/√2. The boundary case κ = 1/√2 is also considered to be a special situation, frequently termed as “Bogomolnyi limit”. Here we discuss multicomponent systems which can possess three or more fundamental length scales and allow a separate superconducting state, which was recently termed “type-1.5”. In that state a system has the following hierarchy of coherence and penetration lengths ξ1 < √2λ<ξ2. We also briefly overview the works on single-component regime κ 1/√2 and comment on recent discussion by Brandt and Das in the proceedings of the previous conference≈ in this series. Prepared for the proceedings of International Conference on Superconductivity and Magnetism 2012 I. INTRODUCTION 1. Type-1, type-2 and type-1.5 superconductivity. The fundamental classification of superconductors is based on the their description in terms of the classical field theory: the Ginzburg-Landau (GL) model, and the fundamental length scales which it yields: the coherence length ξ and the magnetic field penetration length λ. There type-1 and type-2 regimes can be distinguished in many ways, through magnetic response, properties and stability of topological defects, orders of the phase transitions etc.
    [Show full text]
  • Nonperturbative Casimir Effects in Field Theories: Aspects of Confinement, Dynamical Mass Generation and Chiral Symmetry Breaking M
    Nonperturbative Casimir Effects in Field Theories: aspects of confinement, dynamical mass generation and chiral symmetry breaking M. N. Chernodub, V. A. Goy, A. V. Molochkov To cite this version: M. N. Chernodub, V. A. Goy, A. V. Molochkov. Nonperturbative Casimir Effects in Field Theo- ries: aspects of confinement, dynamical mass generation and chiral symmetry breaking. The XIIIth conference on Quark Confinement and the Hadron Spectrum, Jul 2018, Maynooth, Ireland. pp.006. hal-01987234 HAL Id: hal-01987234 https://hal.archives-ouvertes.fr/hal-01987234 Submitted on 9 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Nonperturbative Casimir Effects in Field Theories: aspects of confinement, dynamical mass generation and chiral symmetry breaking M. N. Chernodub∗ Institut Denis Poisson UMR 7013, Université de Tours, 37200 France Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia E-mail: [email protected] V. A. Goy Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia A. V. Molochkov Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia The Casimir effect is a quantum phenomenon rooted in the fact that vacuum fluctuations of quan- tum fields are affected by the presence of physical objects and boundaries.
    [Show full text]
  • Newsletter SPRING 2019 Issue No
    PHYSICSNewsletter SPRING 2019 Issue No. 19 UMassAmherst Physics Strain in Thin Sheets Addressing a physics problem that dates back to Galileo, three UMass Amherst researchers proposed a new approach to the theory of how thin sheets can be forced to conform to “geometrically incompatible” shapes – think gift-wrapping a basketball. Their new approach relies on weaving together two fundamental ideas of geometry and mechanics that were long thought to be irreconcilable. Theoretical physicist, Prof. Benny Davidovitch, polymer scientist Prof. Gregory Grason and Physics doctoral student Yiwei Sun, writing in Proceedings of the National Academy of Sciences, demonstrate via numerical simulations that naturally flat sheets forced to change their curvature can accommodate geometrically-required strain by developing microscopic wrinkles that bend the sheet instead of stretching it to the breaking point, a solution that furthermore costs less energy. This advance is important as biotechnologists increasingly attempt to control the level of strain encountered in thin films conforming to complex, curving and 3D shapes of the human body, for example, in flexible and wearable sensors for personalized health monitoring. Many of these devices rely on electrical properties of the film that are shown to be highly vulnerable to stretching but that can tolerate some bending. The figure shows what happens when a curved elastic shell is forced by confinement to change According to Benny, nonconformities that come with bending are so small from spherical to flat. If it wrinkles enough, the that, in practical terms, they cost almost no energy. “By offering efficient shell can flatten almost without stretching. Image strategies to manage the strain, predict it and control it, we offer a new courtesy of UMass Amherst/G.
    [Show full text]
  • Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws Egor Babaev, University of Massachusetts - Amherst
    University of Massachusetts Amherst From the SelectedWorks of Egor Babaev 2008 Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws Egor Babaev, University of Massachusetts - Amherst Available at: https://works.bepress.com/egor_babaev/21/ E gor B abae V Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws A superconductor is a state of matter in which electrons flow without resistance. A superfluid is a fluid devoid of viscosity. Superfluidity was first discovered in experiments on helium conducted by Petr Kapitsa in 1937. The lack of viscosity is a phenomenon which is highly counterintuitive from the point of view of the classical physics on which our intuition is based. This phenomenon has a quantum nature, i.e. it is related to the physics of the microworld, where particles are divided into two classes: bosons and fermions. One of the funda- Assistant Professor Egor Babaev mental properties of bosons is that at a The Royal Institute of Technology, sufficiently low temperature, multiple AlbaNova Physics Center, Sweden boson particles can occupy the same E-mail: [email protected] quantum mechanical state, which results CAS Fellow 2006/2007 in a large number of them behaving in a coherent manner. Having a large number of particles ‘conspire’ to behave coherently is a prerequisite for superflu- idity. It is precisely this type of collective behavior that makes it difficult for the system to dissipate energy. As a result, once you make such a liquid flow, the flow will essentially persist indefinitely, as opposed to the flow in a cup of tea which eventually stops some time after you stop stirring.
    [Show full text]
  • SUPERFLUID STATES of MATTER This Page Intentionally Left Blank SUPERFLUID STATES of MATTER
    SUPERFLUID STATES OF MATTER This page intentionally left blank SUPERFLUID STATES OF MATTER Boris Svistunov Egor Babaev Nikolay Prokof’ev Chapter 10 is written in coauthorship with Evgeny Kozik. Manuscript editing by Elizabeth Earl Phillips. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Boris Svistunov, Egor Babaev, and Nikolay Prokof’ev CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20141202 International Standard Book Number-13: 978-1-4398-0276-2 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Book of Abstracts Ii Contents
    Quark Confinement and the Hadron Spectrum XI Sunday, 7 September 2014 - Friday, 12 September 2014 St. Petersburg Book of Abstracts ii Contents Recent results on charmonium-like spectroscopy and transitions at Belle . 1 Hadronic effects within dispersive approach to QCD: tau lepton decay and vacuum polar- ization function ....................................... 1 Effective Field Theories for thermal calculations in Cosmology ............... 1 Jet broadening at NNLL in perturbation theory ........................ 2 Heavy quarkonium suppression in a fireball ......................... 2 Instanton mediated baryon number violation in gauge extended models. 3 Current status of Higgs physics ................................ 3 Recent results from CMD-3 detector at VEPP-2000 collider ................. 4 Chiral-symmetry breaking and confinement in Minkowski space ............. 4 Renormalons in the lattice: the pole mass and the gluon condensate ............ 5 On transport properties of charged drop in external electric field .............. 5 The hadronic corrections to muonic hydrogen Lamb shift from ChPT and the proton radius ................................................ 6 Chiral transition of fundamental and adjoint quarks ..................... 6 A model of random center vortex lines in continuous 2+1 dimensional space-time . 6 Heavy Hybrids in pNRQCD .................................. 7 Strangeness in the nuclear medium: experimental studies with the KLOE Drift Chamber. 7 ”The reaction pi- p -> pi- pi- pi+ p at COMPASS: developement of the
    [Show full text]
  • Book of Abstracts Ii Contents
    The 37th International Symposium on Lattice Field Theory (Lattice 2019) Sunday, 16 June 2019 - Saturday, 22 June 2019 Book of Abstracts ii Contents Trace anomaly under lattice regularization .......................... 1 Resonance information from lattice energy levels using chiral EFT ............. 1 + Coupled-channel ΛcK − PDs interaction from lattice QCD ............... 1 The Development of Hamiltonian Finite Volume Method of Two Body System within Partial Wave Mixing in Rest System ................................ 1 Baryonic states in supersymmetric Yang-Mills theory .................... 2 Matching Quasi Generalized Parton Distributions in the RI/MOM scheme . 2 Stress distribution in quark—anti-quark and single quark systems at nonzero temperature 3 Meson interactions at Large Nc from Lattice QCD ...................... 3 Recent progress on (implementing) the relativistic three-particle quantization condition 4 Bethe-Salpeter wavefunctions of hybrid charmonia ..................... 4 Status of the muon g-2 hadronic vacuum polarization calculation by RBC/UKQCD . 4 The general formalism of momentum transformation in the moving finite volume . 5 The hadronic contribution to the running of the electroweak mixing angle . 5 Information, dualities, and deconfinement .......................... 6 Analytic continuation of Thermal Correlators ........................ 6 Zb tetraquark channel and BB¯∗ interaction ......................... 6 Interglueball potential in SU(N) lattice gauge theory ..................... 7 Resurgence and fractional instanton of the SU(3) gauge theory in weak coupling regime 7 Lattice study on the twisted CP^{N-1} models on RxS^1 .................. 8 Vector current renormalisation in momentum subtraction schemes using the HISQ action 8 Lattice QCD on a modern vector processor .......................... 8 Electromagnetic finite-size effects to the hadronic vacuum polarisation .......... 9 Hadronic Light-by-Light contribution to g-2 update ..................... 9 iii Theoretical and practical progresses in the HAL QCD mehod .
    [Show full text]
  • Identity and Programmes 0 P.7
    1 TABLE OF CONTENTS Identity and Programmes 0 p.7 Materials and Energy Sciences 1 p.19 Life and Health Sciences 2 p.29 Earth, Ecology and Environmental Sciences 3 p.63 Computer Science, Mathematics and Mathematical Physics 4 p.81 Human and Social Sciences 5 p.91 2018 est une année de croissance et d’activités intenses pour LE STUDIUM, l’institut d’Etudes Avancées de la Vallée de la Loire. L’attractivité et le rayonnement du STUDIUM ont permis la réalisation cumulative de ses deux programmes-cadres : Ambition Recherche et Développement 2020, et le Programme Général SMART LOIRE VALLEY PROGAMME, intégré dans les Actions Marie Sklodowska-Curie de l’Union Européenne pour ses Fellowships. LE STUDIUM, à l’issue de plusieurs appels à projets ciblés ou ouverts à toutes les disciplines scientifiques, recueille et fait évaluer par des pairs indépendants puis par son Conseil Scientifique des projets et des profils de haut niveau venant enrichir les équipes de recherche de la région Centre-Val de Loire. Une moyenne mensuelle de 20 chercheurs invités sur des résidences d’un an, et plus de 300 chercheurs conviés au travers différents manifestations scientifiques et formats de bourse (Workshops, Conferences, Summer Schools, Experts Days, Consortia), découvrent l’écosystème régional et deviennent à la suite de leur passage les futurs ambassadeurs de la Loire Valley Intelligence à travers le monde. Il convient de souligner l’engagement des acteurs du quotidien qui créent et maintiennent cette Qualité propre à LE STUDIUM: qualité de ses processus d’évaluation, qualité fondamentale de l’accueil et attention portée à l’environnement pour ceux qui viennent le plus souvent de très loin vivre dans notre région la science qui s’y élabore.
    [Show full text]
  • Spontaneous Electromagnetic Superconductivity and Superfluidity
    Spontaneous electromagnetic superconductivity and superfluidity of QCD×QED vacuum in strong magnetic field M. N. Chernodub∗† CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, Gent, Belgium E-mail: [email protected] Jos Van Doorsselaere Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, Gent, Belgium E-mail: [email protected] Henri Verschelde Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, Gent, Belgium E-mail: [email protected] It was recently shown that the vacuum in the background of a strong enough magnetic field may become an electromagnetic superconductor due to interplay between strong and electromagnetic forces. The superconducting ground state of the QCD×QED sector of the vacuum is associated with magnetic–field–assisted emergence of quark–antiquark condensates which carry quantum numbers of charged r mesons (i.e., of electrically charged vector particles made of lightest, u and d, quarks and antiquarks). Here we demonstrate that this exotic electromagnetic superconduc- tivity of vacuum is also accompanied by even more exotic superfluidity of the neutral r mesons. The superfluid component – despite being electrically neutral – turns out to be sensitive to an external electric field as the superfluid may ballistically be accelerated by a test background elec- tric field along the magnetic–field axis. In the ground state both superconducting and superfluid components are inhomogeneous periodic functions of the transversal (with respect to the axis of the magnetic field) spatial coordinates.
    [Show full text]
  • Vortices with Magnetic Field Inversion in Noncentrosymmetric Superconductors Julien Garaud, Maxim N
    Vortices with magnetic field inversion in noncentrosymmetric superconductors Julien Garaud, Maxim N. Chernodub, Dmitri E. Kharzeev To cite this version: Julien Garaud, Maxim N. Chernodub, Dmitri E. Kharzeev. Vortices with magnetic field inversion in noncentrosymmetric superconductors. Physical Review B, American Physical Society, 2020, 102 (18), pp.184516. 10.1103/PhysRevB.102.184516. hal-02542879 HAL Id: hal-02542879 https://hal.archives-ouvertes.fr/hal-02542879 Submitted on 9 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vortices with magnetic field inversion in non-centrosymmetric superconductors J. Garaud,1, ∗ M. N. Chernodub,1, 2, y and D. E. Kharzeev3, 4, 5, z 1Institut Denis Poisson CNRS/UMR 7013, Universit´ede Tours, 37200 France 2Pacific Quantum Center, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia 3Department of Physics and Astronomy, Stony Brook University, New York 11794-3800, USA 4Department of Physics and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA 5Le Studium, Loire Valley Institute for Advanced Studies, Tours and Orl´eans,France (Dated: March 25, 2020) Superconducting materials with non-centrosymmetric lattices lacking the space inversion symme- try exhibit a variety of interesting parity-breaking phenomena, including magneto-electric effect, spin-polarized currents, helical states, and unusual Josephson effect.
    [Show full text]