Controversies in Medical Physics: a Compendium of Point/Counterpoint Debates Volume 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UW Med Phys Program Overview
UW Medical Physics Graduate Program Orientation 2019 Edward F. Jackson, PhD Chair, Department of Medical Physics & Program Director [email protected] Department Overview • One of 10 Basic Science departments in UW School of Medicine and Public Health • 93 faculty, including emeritus, joint, affiliate, adjunct, volunteer, and honorary fellow appointments • Faculty at SMPH: • 24 tenured/tenure track (many with joint appointments) • 5 clinical health science (CHS) track • 1 clinical teaching track • 10 Emeritus professors (including past Provost and two previous dept chairs) • 2 Joint department appointments (in Radiology) • 26 Affiliates (in Radiology, DHO, Engineering, Medicine, Psychiatry) UW-Madison Medical Physics “West Campus” Health-Centric LOCI Physics & Math Wisconsin Institutes of Discovery Morgridge Institute for Research Engineering, CS, Statistics Locations of Key Resources WIMR Towers Pharmacy Waisman School Center Tower 2 Tower 1 Children’s Hospital Medical School Nursing (Health Sciences Learning Center – School HSLC) Ebling Library University Hospital & Clinics VA Hospital 1. Wisconsin Institutes of Medical Research (WIMR 1) 2. UW Carbone Comprehensive Cancer Center 3. UW Hospitals & Clinics 4. UW School of Medicine and Public Health (SMPH) 2 3 4 1 Personnel You Should Know • Chair and Program Director: Ed Jackson, PhD WIMR 1016 • Assistant to the Chair: Alyssa Mohr WIMR 1018 Scheduling appointments with chair; conference room scheduling; car/van • Graduate Committee Chair: Tomy Varghese WIMR 1159 Initial approval of warrants; -
Institute for Clinical and Economic Review
INSTITUTE FOR CLINICAL AND ECONOMIC REVIEW FINAL APPRAISAL DOCUMENT BRACHYTHERAPY & PROTON BEAM THERAPY FOR TREATMENT OF CLINICALLY-LOCALIZED, LOW-RISK PROSTATE CANCER December 22, 2008 Senior Staff Daniel A. Ollendorf, MPH, ARM Chief Review Officer Julia Hayes, MD Lead Decision Scientist Pamela McMahon, PhD Sr. Decision Scientist Steven D. Pearson, MD, MSc President, ICER Associate Staff Michelle Kuba, MPH Sr. Technology Analyst Angela Tramontano, MPH Research Assistant © ICER, 2008 1 CONTENTS About ICER .................................................................................................................................. 3 Acknowledgments ...................................................................................................................... 4 Executive Summary .................................................................................................................... 5 Evidence Review Group Deliberation.................................................................................. 15 ICER Integrated Evidence Rating.......................................................................................... 21 Evidence Review Group Members........................................................................................ 24 Appraisal Overview.................................................................................................................. 28 Background ............................................................................................................................... -
小型飛翔体/海外 [Format 2] Technical Catalog Category
小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history. -
Data Science at OLCF
Data Science at OLCF Bronson Messer Scientific Computing Group Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory Mallikarjam “Arjun” Shankar Group Leader – Advanced Data and Workflows Group Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory ORNL is managed by UT-Battelle, LLC for the US Department of Energy OLCF Data/Learning Strategy & Tactics 1. Engage with applications – Summit Early Science Applications (e.g., CANDLE) – INCITE projects (e.g., Co-evolutionary Networks: From Genome to 3D Proteome, Jacobson, et al.) – Directors Discretionary projects (e.g., Fusion RNN, MiNerva) 2. Create leadership-class analytics capabilities – Leadership analytics (e.g., Frameworks: pbdR, TensorFlow + Horovod) – Algorithms requiring scale (e.g., non-negative matrix factorization) 3. Enable infrastructure for analytics/AI and data-intensive facilities – Workflows to include data from observations for analysis within OLCF – Analytics enabling technologies (e.g., container deployments for rapidly changing DL/ML frameworks, analytics notebooks, etc.) 2 Data Science at the OLCF Applications Supported through DD/ALCC: Selected Machine Learning Projects on Titan: 2016-2017 Program PI PI Employer Project Name Allocation (Titan core-hrs) Discovering Optimal Deep Learning and Neuromorphic Network Structures using Evolutionary ALCC Robert Patton ORNL 75,000,000 Approaches on High Performance Computers ALCC Gabriel Perdue FNAL Large scale deep neural network optimization for neutrino physics 58,000,000 ALCC Gregory Laskowski GE High-Fidelity Simulations of Gas Turbine Stages for Model Development using Machine Learning 30,000,000 High-Throughput Screening and Machine Learning for Predicting Catalyst Structure and Designing ALCC Efthimions Kaxiras Harvard U. 17,500,000 Effective Catalysts ALCC Georgia Tourassi ORNL CANDLE Treatment Strategy Challenge for Deep Learning Enabled Cancer Surveillance 10,000,000 DD Abhinav Vishnu PNNL Machine Learning on Extreme Scale GPU systems 3,500,000 DD J. -
Sophie Voisin
Sophie Voisin Contact Geographic Information Science & Technology Office: (865) 574-8235 Information Oak Ridge National Laboratory E-mail: [email protected] Oak Ridge, TN 37831-6017 Citizenship: France US Permanent Resident Biosketch Dr. Sophie Voisin received her PhD Degree in Computer Science and Image Processing from the University of Burgundy, France, in 2008. She was a visiting scholar with the Imaging, Robotics, and Intelligent Systems Laboratory at The University of Tennessee from October 2004 to December 2008 to work on her PhD research, and subsequently was involved in program development activities. In September 2010, she joined the Oak Ridge National Laboratory (ORNL) as a Postoctoral Reseach Associate to support various efforts related to applied signal processing, 2D and 3D image understanding, and high performance computing. Firstly, she worked at the ORNL Spallation Neutron Source performing quantitative analysis of neutron image data for various industrial and academic applications related to quality control, process monitoring, and to retrieve the structure of objects. Then, she joined the ORNL Biomedical Science & Engineering Center to develop on one hand image processing algorithms for eyegaze data analysis and on the other hand text processing techniques for social media data mining to correlate individuals' health history and their geographical exposure. Noteworthily she was part of the team that received a R&D 100 award for the developement of a personalized computer aid diagnostic system relying on eyegaze analysis for decision making. Since April 2014, she has been working for the Geographic Information Science & Technology group. Her research focuses on developing multispectral image processing algorithms for CPU and GPU platforms for high performance computing of satellite imagery. -
PART I GENERAL PROVISIONS R12 64E-5.101 Definitions
64E-5 Florida Administrative Code Index PART I GENERAL PROVISIONS R12 64E-5.101 Definitions ................................................................................................. I-1 64E-5.102 Exemptions ............................................................................................. I-23 64E-5.103 Records ................................................................................................... I-24 64E-5.104 Tests ... ................................................................................................... I-24 64E-5.105 Prohibited Use ........................................................................................ I-24 64E-5.106 Units of Exposure and Dose ................................................................... I-25 64E-5 Florida Administrative Code Index 64E-5 Florida Administrative Code Index PART II LICENSING OF RADIOACTIVE MATERIALS R2 64E-5.201 ...... Licensing of Radioactive Material .............................................................. II-1 64E-5.202 ...... Source Material - Exemptions .................................................................... II-2 R12 64E-5.203 ...... Radioactive Material Other than Source Material - Exemptions ................. II-4 SUBPART A LICENSE TYPES AND FEES R12 64E-5.204 ..... Types of Licenses ..................................................................................... II-13 SUBPART B GENERAL LICENSES 64E-5.205 ..... General Licenses - Source Material ......................................................... -
Undergraduate Course on Biomedical Imaging at a Liberal Arts College
Undergraduate Course on Biomedical Imaging at a Liberal Arts College Michael E. Dursta aMiddlebury College, Middlebury, VT 05753, USA ABSTRACT This paper presents an intermediate-level undergraduate course on the physical principles of biomedical optics and imaging. Through in-class labs, Mathematica simulations, field trips, and group presentations, students learn about fundamental imaging concepts in optical microscopes. After developing an understanding of the role of the Fourier transform in image formation, the course shifts to non-optical imaging, including x-ray computed tomography, ultrasound, and magnetic resonance imaging. The significance of this course is its hands- on nature, and this paper offers examples of laboratory exercises and simulations to promote active learning in the classroom. Keywords: biomedical optics, imaging, undergraduate course, lab exercises, Mathematica simulations 1. INTRODUCTION In this paper, I present an intermediate-level physics course on biomedical imaging, with the goal of sharing resources to aid in the development of similar undergraduate optics courses.1{6 I introduced this course for three reasons: to provide an interdisciplinary physics course to support a liberal arts education, to attract students who are underrepresented in physics to the major, and to bring my research on biomedical optics into the classroom. Beyond the students' interest in the subject matter, this course works well because the physical phenomena are both visual and hands-on in nature, although simulations and a field trip to a hospital radiology department are required for most non-optical imaging techniques. Beginning with the study of geometric optics, students explore the concepts of image formation by building a microscope from scratch. -
Medical Physics
FACULTY OF SCIENCE MEDICAL PHYSICS Clinical Medical and Health Physics is an exciting and expanding field that applies our fundamental knowledge of physics to the prevention, diagnosis and treatment of a variety of human conditions. Ultrasound, Magnetic Resonance, Computed Tomography, Nuclear Medicine, X-rays, Radiation Therapy, are all branches of medical physics in which continued research is being conducted by a very large group of dedicated researchers consisting of highly qualified physicists, engineers and radiologists. The program at UWinnipeg leads to a Bachelor of Science degree (4-year Honours) and provides excellent preparation for entry into a graduate program, such as the two-year MSc program at the University of Manitoba through the Division of Medical Physics at CancerCare Manitoba. (Currently, the recommended training for medical physicists is a degree at the graduate level.) Many graduates go on to become members of the Canadian College of Physicists in Medicine (CCPM) by passing written examinations. CCPM certification is becoming widely accepted in Canada and other countries and is often required at senior levels in medical physics. Also, please see other related fact sheets: “Physics” and “Computational Physics” SAMPLE CAREERS Most medical physicists work in hospital diagnostic imaging departments, cancer treatment facilities, or hospital-based research establishments, while others work in universities, government, and industry. Here are a few examples of specific positions: clinical medical physicist; radiation safety officer for medical radioisotope facilities; radiotherapy physicist who helps design/construct radiotherapy treatment equipment or who researches the use of heat and lasers in cancer treatment. SAMPLE COURSES Human Anatomy and Physiology: This course deals with the biological study of the human organism; microscopic and gross anatomy; cellular and general physiology, and human genetics. -
A Theological Reading of the Gideon-Abimelech Narrative
YAHWEH vERsus BAALISM A THEOLOGICAL READING OF THE GIDEON-ABIMELECH NARRATIVE WOLFGANG BLUEDORN A thesis submitted to Cheltenham and Gloucester College of Higher Education in accordance with the requirements of the degree of Doctor of Philosophy in the Faculty of Arts & Humanities April 1999 ABSTRACT This study attemptsto describethe contribution of the Abimelech narrative for the theologyof Judges.It is claimedthat the Gideonnarrative and the Abimelechnarrative need to be viewed as one narrative that focuseson the demonstrationof YHWH'S superiority over Baalism, and that the deliverance from the Midianites in the Gideon narrative, Abimelech's kingship, and the theme of retribution in the Abimelech narrative serve as the tangible matter by which the abstracttheological theme becomesnarratable. The introduction to the Gideon narrative, which focuses on Israel's idolatry in a previously unparalleled way in Judges,anticipates a theological narrative to demonstrate that YHWH is god. YHwH's prophet defines the general theological background and theme for the narrative by accusing Israel of having abandonedYHwH despite his deeds in their history and having worshipped foreign gods instead. YHWH calls Gideon to demolish the idolatrous objects of Baalism in response, so that Baalism becomes an example of any idolatrous cult. Joash as the representativeof Baalism specifies the defined theme by proposing that whichever god demonstrateshis divine power shall be recognised as god. The following episodesof the battle against the Midianites contrast Gideon's inadequateresources with his selfish attempt to be honoured for the victory, assignthe victory to YHWH,who remains in control and who thus demonstrateshis divine power, and show that Baal is not presentin the narrative. -
A 50-100 Kwe Gas-Cooled Reactor for Use on Mars
SANDIA REPORT SAND2006-2189 Unlimited Release Printed April 2006 A 50-100 kWe Gas-cooled Reactor For Use On Mars Curtis D. Peters Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. -
Nrc Regulatory Issue Summary 2005-23 Clarification of the Physical Presence Requirement During Gamma Stereotactic Radiosurgery Treatments
UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR MATERIAL SAFETY AND SAFEGUARDS WASHINGTON, D.C. 20555 October 7, 2005 NRC REGULATORY ISSUE SUMMARY 2005-23 CLARIFICATION OF THE PHYSICAL PRESENCE REQUIREMENT DURING GAMMA STEREOTACTIC RADIOSURGERY TREATMENTS ADDRESSEES All gamma stereotactic radiosurgery (GSR) licensees. INTENT The U.S. Nuclear Regulatory Commission (NRC) is issuing this regulatory issue summary (RIS) to clarify the definition of the term “physically present,” as used in 10 CFR 35.615(f)(3). No specific action or written response is required. BACKGROUND In March 2005, during a licensing visit to a GSR facility, the NRC staff observed that the authorized medical physicist (AMP) did not remain physically present throughout one of the GSR treatments, as required by 10 CFR 35.615(f)(3). Instead, during the treatment, the AMP walked to the other end of the GSR suite and entered a treatment planning room located more than 30.5 meters (100 feet) away from the GSR treatment console. While discussing this incident with the licensee, the NRC staff recognized that the licensee was misinterpreting the physical presence requirement for GSR treatments. Based on the licensee’s interpretation of the regulations, the licensee considered any location within the GSR suite, including the treatment planning room, to be within hearing distance of normal voice from the GSR treatment console. The licensee believed that, within the contiguous boundary of its GSR suite, the human voice has sufficient volume, without electronic amplification, to alert the AMP of an emergency at essentially any location within its suite and the AMP could respond in a timely manner. -
American Academy of Arts and Letters NEWS RELEASE
American Academy of Arts and Letters NEWS RELEASE 633 WEST 155 STREET, NEW YORK, NY 10032 Contact: Souhad Rafey (212) 368-5900 [email protected] www.artsandletters.org EXHIBITION THE AMERICAN ACADEMY OF ARTS AND LETTERS ANNOUNCES ARTISTS 2011 INVITATIONAL EXHIBITION OF VISUAL ARTS Rosaire Appel MARCH 10 – APRIL 10 Amy Bennett Willard Boepple February 17, 2011 – Over 110 paintings, photographs, sculptures, and works on paper by 35 con- temporary artists will be exhibited at the galleries of the American Academy of Arts and Letters John Bradford on historic Audubon Terrace (Broadway between 155 and 156 Streets) from Thursday, March 10 Katherine Bradford through Sunday, April 10, 2011. Exhibiting artists were chosen from a pool of nearly 200 nominees Troy Brauntuch submitted by the 250 members of the Academy, America’s most prestigious honorary society of Nathan Carter architects, artists, writers, and composers. Robert Chambers Willie Cole ART AWARDS AND PURCHASE PROGRAM The Academy’s art awards and purchase programs serve to acknowledge artists at various stages of Adam Cvijanovic their careers, from helping to establish younger artists to rewarding older artists for their accumu- Donna Dennis lated body of work. Paintings and works on paper are eligible for purchase and placement in mu- Bryan Drury seum collections nationwide through the Hassam, Speicher, Betts and Symons Funds. Works by Jim John Duff Nutt (The Morgan Library & Museum, New York, NY), Chris Martin (Museum of Contemporary Angela Dufresne Art, Chicago, IL), Judy Linn (Dallas Museum of Art, Dallas, TX), and Charles Gaines (Minneapo- lis Institute of Arts, Minneapolis, MN) are among the twelve works purchased last year.