Consolidation Activity

Total Page:16

File Type:pdf, Size:1020Kb

Consolidation Activity Jodrell Bank Discovery Centre www.jodrellbank.net A-level Physics: Radio Telescopes Consolidation questions For these questions, we will be considering galaxy NGC 660 (below), a rare polar-ring galaxy in the constellation of Pisces. NGC 660 consists of an ordinary spiral disk, surrounded by a polar ring almost three times the size. Like all galaxies, NGC 660 has a supermassive black hole at its centre. NGC 660 made the headlines in January 2013 because the central black hole threw out a huge eruption of gas, 10 times brighter than a supernova. It was caused by material being heated as it was drawn towards the black hole. The following information may be useful in answering the questions: G = 6.67 x 10-11 m3 kg-1 s-2 1 light year = 1.5 x 1015 m Mass of the Sun = 2 x 1030 Kg 1 Angstrom = 1 x 10-10 m 1 parsec (1 pc) = 3.1 x 1016 m Speed of light c = 3 x 108 m s-1 Part 1 – Gravity and orbits The force of gravity felt by a mass (m) orbiting around a second mass (M) is: Where r is the distance between the two masses and G is the universal gravitational constant. The centripetal force felt by an object undergoing circular motion about a central point is: Where m is the mass of the object, vrot is the rotational velocity and r is the distance between the object and the central point. The estimated visible mass of NGC 660 within the disc and polar-ring is 3 x 1040 Kg. The spiral disc contains approximately 75% of this visible mass. The estimated mass of NGC 660’s supermassive black hole is 4 x 1036 Kg. Jodrell Bank Discovery Centre www.jodrellbank.net 1. How much gravitational force would a sun-like star feel, orbiting very close to the central black hole of NGC 660, at distance of 0.1 parsecs? 2. How much gravitational force would an identical star feel, orbiting on the edge of the spiral disc of NGC 660, at a distance of 6,000 parsecs from the centre? 3. By considering circular motion, calculate the expected rotational velocities of the stars in questions 1 and 2. 4. What would be the rotational velocity of another identical star if it were orbiting on the edge of the polar-ring of NGC 660, at a distance of 15,000 parsecs? 5. Plot your three values for the rotational velocities of the stars on the graph below and then sketch the expected rotation curve for galaxy NGC 660. Jodrell Bank Discovery Centre www.jodrellbank.net The graph below shows the actual measured rotation curve for NGC 660, using radio telescopes observing the 21-cm neutral hydrogen emission line. The grey triangles represent data from the UK e-MERLIN network (centred at Jodrell Bank); the black line represents data from the Very Large Array of radio telescopes in New Mexico. 6. By using both your own graph and the observed data above a. describe the expected movement of matter in galaxies, based on your graph b. describe how the actual movement differs from expectation c. explain how this is evidence for the existence of dark matter in the universe 7. Using the observed data, estimate the total mass of NGC 660 (the polar-ring extends to approximately 15 kpc). 8. Approximately what percentage of the total mass of NGC 660 is visible? Jodrell Bank Discovery Centre www.jodrellbank.net Part 2 – Cosmology As light travels through the universe, it is stretched to longer wavelengths, due to the expansion of space. This “redshift” of light (z) can be used to calculate the apparent recessional velocity (vrec) of stars and galaxies by: Where λobs is the observed wavelength of light from the object, λ0 is the wavelength of light observed in a stationary frame and c is the speed of light. Edwin Hubble (left) was the first to notice the redshift of distant galaxies in 1929. He concluded that the universe was expanding. By plotting the recessional velocities of galaxies against distance (estimated by their apparent size) Hubble realised that recessional velocity was proportional to distance (see graph below). That is, the further away a galaxy is, the faster it is receding. Jodrell Bank Discovery Centre www.jodrellbank.net This relationship is known as Hubble’s law. The constant of proportionality between recessional velocity and distance is Hubble’s constant; H0. The relationship can therefore be written as: -1 Where vrec is measured in km s and d in Mega parsecs. -1 -1 The most recent estimate for H0 is 70 km s Mpc . The graph below shows the spectra of galaxy NGC 660, taken from the Sloan Digital Sky Survey. The labelled peaks and troughs are identified emission and absorption lines. The Hα line originates from Hydrogen and it is often the brightest wavelength in visible light astronomy. When measured in the lab, the Hα line has a wavelength of 6562.8 Angstroms. Jodrell Bank Discovery Centre www.jodrellbank.net 1. Using the spectrum, estimate the observed wavelength of the Hα line. 2. Describe what is meant by the term redshift. 3. Calculate the redshift of NGC 660. 4. Calculate the recessional velocity of NGC 660. 5. Explain how Hubble’s observations are evidence for an expanding universe. 6. Calculate the distance to NGC 660 in Mega parsecs. NGC 660 is actually relatively close to the Milky Way. At shorter distances, Hubble’s law is not a good estimator of distance. By using other methods, the distance to NGC 660 has been estimated as 43 million light years, or 13.2 Mega parsecs. 7. Suggest one thing (other than inaccuracies in reading the Hα line from the spectrum) which might affect the accuracy of using Hubble’s law to calculate the distance to NGC 660. 8. Why is it important for astronomers to have several independent methods of determining the distance to galaxies? Jodrell Bank Discovery Centre www.jodrellbank.net Part 3 – Resolving power The resolving power of a telescope is described in terms of the smallest angle it can see in the sky. This is given by: Where λ is the wavelength being observed and D is the diameter of the telescope. The Lovell telescope (left) at Jodrell Bank has a diameter of 76.2 m. The resolution of radio telescopes can be improved by combining them in interferometer networks. A network of telescopes acts as one giant telescope, the diameter of which is equal to the furthest possible distance between two telescopes in the network. Jodrell Bank is the centre of the UK’s e-MERLIN network of seven radio telescopes. The furthest two points in this network are Jodrell Bank and Cambridge, 217 km apart. 1. The polar-ring of NGC 660 has a diameter of approximately 30,000 parsecs. Using the distance value of 13.2 Mega parsecs (or your previously calculated value) calculate the angular size of NGC 660 in the sky. 2. Would the Lovell telescope be able to resolve NGC 660, looking at the neutral hydrogen emission line (wavelength of 21cm)? 3. Would the e-MERLIN network be able to resolve NGC 660 at the same wavelength? 4. What would be the smallest possible diameter that a single telescope could be to resolve NGC 660 at this wavelength? 5. Give one advantage and one disadvantage of linking radio telescopes in interferometer networks, rather than building giant single dishes. Jodrell Bank Discovery Centre www.jodrellbank.net Jodrell Bank Discovery Centre www.jodrellbank.net Answers Part 1 – Gravity and orbits The correct M must be used in these calculations. M should be the mass within the orbit radius. 1. 5.6 x 1025 N (M = mass of black hole only, 4 x 1036 Kg) 2. 8.7 x 1019 N (M = mass within spiral disc only, 75% of 3 x 1040 Kg = 2.25 x 1040 Kg) 3. a) 290 km s-1 b) 90 km s-1 4. 66 km s-1 (M = total visible mass within NGC 660, 3 x 1040 Kg) 5. Three points should be plotted relatively accurately, with a curve similar in shape to the one below. 6. a) Using Newtonian physics, the velocity of the galactic matter is inversely proportional to the square-root of the distance from the centre. The velocity should drop off rapidly as distance from the centre is increased. b) Measurements show that although there is a slight decrease in speed towards approximately 8 kpc, the rotation of matter is almost at a constant throughout the galaxy, rather than decreasing sharply towards the edge. c) Assuming that gravity is the only force acting on the matter within the galaxy, the constant rotational velocity suggests that matter is spread evenly throughout the galaxy. This matter cannot be observed, which suggests there is more matter in the universe than is currently known; i.e. Dark Matter. 7. Read an appropriate rotational velocity off the graph, e.g. 160 km s-1 Rearrange equation to get M = (v2 r) / G M = 1.8 x 1041 Kg (for v = 160 km s-1) Any value correctly calculated from a sensible reading of v is acceptable. 8. 17% Part 2 – Cosmology 1. The Hα line on this spectrum is at 6,582.5 Angstroms. Any reading close to this, e.g. 6600 Angstroms is acceptable. Value should not be smaller than the lab value of 6,562.8 Angstroms. Jodrell Bank Discovery Centre www.jodrellbank.net 2. Redshift is the stretching of light to longer wavelengths as it travels through space, due to the expansion of the universe.
Recommended publications
  • Distant Arm - NGC772
    29 September 2016, Zeiss Cas 150/2250 Distant Arm - NGC772 Telescope: Zeiss Cassegrain 150/2250 Eyepieces: ATC53P - ATC Plossl, f=53mm, (42×, 530) ATC20K - ATC Kellner, f=20mm, (113×, 220) A-16 - Zeiss Abbe Ortho, f=16mm, (141×, 200) O-12.5 - CZJ Ortho, f=12.5mm, (180×, 140) Time: 2016/09/29 19:30-21:40UT Location: R´ıˇcanyˇ Weather: Clear sky with slight haze and decaying small thin clouds. Mount: Zeiss 1b Accessories: Baader/Zeiss T2 prism This was my typical backyard session. I could go out only for a short time after I put all three kids in to their beds. The night was still warm. Normally, I would try to take an advantage of it and go to some darker place. As I was alone with the kids for the whole week I was bound to stay in our backyard. During last couple of years, I have learnt to live with this handicap. There is always something interesting to look at, even with small refractors. Recently, I was explor- ing the capability of my largest telescope, 150mm Cassegrain. For this night, the main targets were two galaxies, NGC 660 and NGC 772, which I had troubles to locate two days before in 80mm refractor. I was curios how much of help the larger telescope would be. I did not jump to these two galaxies im- mediately. They were still low in the slight haze enhanced by the street lamps. I started a little bit higher in Andromeda with beau- tiful edge-on galaxy NGC 891 (V=10.0, 13:50 ×2:50, PA22◦).
    [Show full text]
  • Worksheet 3: the Big Bang Model – Founded by a Priest Edwin Hubble's Investigations Into the Redshift of Galaxy Spectra Were
    The expansion of the universe Matthias Borchardt Worksheet 3: The Big Bang model – founded by a priest Edwin Hubble’s investigations into the redshift of galaxy spectra were scientifically extremely valuable, opening up completely new possibilities for observational astronomy. But even though Hubble is often called the “father of the Big Bang model”, this is not historically justi- fied. Hubble was indeed the one who realised that galaxies further away from us are moving faster. However, he never challenged the concept that this movement is taking place within a vast, pre-existing space. The idea that space itself is constantly expanding, dragging the galaxies along with it, was first for- mulated by the Belgian priest and astrophysicist Georges Lemaître after studying the results of Hubble’s research more closely. Lemaître’s own research soon convinced him that a constantly expanding universe must have a point of origin. According to Lemaître, at this point, space was extremely small – but the universe was already present in its full diversity. He named this initial state the primeval atom – a kind of cell from which everything else was created and that has been constantly expanding ever since. The term “Big Bang” came from the famous British physicist and astronomer Fred Hoyle, who strictly rejected Lemaître’s ideas, instead jokingly speaking of a “Big Bang” that created the universe like an explosion. The striking idea of the Big Bang has been around ever since. The assumption that space is expanding also implies that we should expect redshift in the spectral lines. However, this redshift does not come from the Doppler effect.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • The Complex Gas Kinematics in the Nucleus of the Seyfert 2 Galaxy Ngc 1386: Rotation, Outflows, and Inflows D
    The Astrophysical Journal, 806:84 (22pp), 2015 June 10 doi:10.1088/0004-637X/806/1/84 © 2015. The American Astronomical Society. All rights reserved. THE COMPLEX GAS KINEMATICS IN THE NUCLEUS OF THE SEYFERT 2 GALAXY NGC 1386: ROTATION, OUTFLOWS, AND INFLOWS D. Lena1, A. Robinson1, T. Storchi-Bergman2,7, A. Schnorr-Müller3,4, T. Seelig1, R. A. Riffel5, N. M. Nagar6, G. S. Couto2, and L. Shadler1 1 School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623-5603, USA; [email protected] 2 Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil 3 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85741, Garching, Germany 4 CAPES Foundation, Ministry of Education of Brazil, 70040-020, Braslia, Brazil 5 Universidade Federal de Santa Maria, Departamento de Fisica, 97105-900, Santa Maria, RS, Brazil 6 Astronomy Department, Universidad de Concepción, Casilla 160-C, Concepción, Chile 7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 2014 October 3; accepted 2015 April 19; published 2015 June 9 ABSTRACT We present optical integral field spectroscopy of the circum-nuclear gas of the Seyfert 2 galaxy NGC 1386. The data cover the central 7″ ×9″ (530 × 680 pc) at a spatial resolution of 0″.9 (68 pc), and the spectral range − 5700–7000 Å at a resolution of 66 km s 1. The line emission is dominated by a bright central component, with two lobes extending ≈3″ north and south of the nucleus. We identify three main kinematic components.
    [Show full text]
  • Evidence for the Big Bang
    fact sheet Evidence for the Big Bang What is the Big Bang theory? The Big Bang theory is an explanation of the early development of the Universe. According to this theory the Universe expanded from an extremely small, extremely hot, and extremely dense state. Since then it has expanded and become less dense and cooler. The Big Bang is the best model used by astronomers to explain the creation of matter, space and time 13.7 billion years ago. What evidence is there to support the Big Bang theory? Two major scientific discoveries provide strong support for the Big Bang theory: • Hubble’s discovery in the 1920s of a relationship between a galaxy’s distance from Earth and its speed; and • the discovery in the 1960s of cosmic microwave background radiation. When scientists talk about the expanding Universe, they mean that it has been increasing in size ever since the Big Bang. But what exactly is getting bigger? Galaxies, stars, planets and the things on them like buildings, cars and people aren’t getting bigger. Their size is controlled by the strength of the fundamental forces that hold atoms and sub-atomic particles together, and as far as we know that hasn’t changed. Instead it’s the space between galaxies that’s increasing – they’re getting further apart as space itself expands. How do we know the Universe is expanding? Early in the 20th century the Universe was thought to be static: always the same size, neither expanding nor contracting. But in 1924 astronomer Edwin Hubble used a technique pioneered by Henrietta Leavitt to measure distances to remote objects in the sky.
    [Show full text]
  • A Guide to Hubble Space Telescope Objects
    James L. Chen A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance Graphics by Adam Chen The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 A Guide to Hubble Space Telescope Objects Their Selection, Location, and Signifi cance James L. Chen Graphics by Adam Chen Author Graphics Designer James L. Chen Adam Chen Gore , VA , USA Baltimore , MD , USA ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-18871-3 ISBN 978-3-319-18872-0 (eBook) DOI 10.1007/978-3-319-18872-0 Library of Congress Control Number: 2015940538 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • A Spitzer High-Resolution Mid-Infrared Spectral Atlas of Starburst Galaxies
    The Astrophysical Journal Supplement Series, 184:230–247, 2009 October doi:10.1088/0067-0049/184/2/230 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SPITZER HIGH-RESOLUTION MID-INFRARED SPECTRAL ATLAS OF STARBURST GALAXIES J. Bernard-Salas1, H. W. W. Spoon1, V. Charmandaris2,3,4, V. Lebouteiller1, D. Farrah1,5, D. Devost6, B. R. Brandl7, Yanling Wu1,8, L. Armus8,L.Hao1,9, G. C. Sloan1, D. Weedman1, and J. R. Houck1 1 Cornell University, 222 Space Sciences Bld., Ithaca, NY 14853, USA 2 Department of Physics, University of Crete, GR-71003, Heraklion, Greece 3 IESL/Foundation for Research & Technology-Hellas, GR-71110, Heraklion, Greece 4 Chercheur Associe,´ Observatoire de Paris, F-75014, Paris, France 5 Department of Physics and Astronomy, University of Sussex, Brighton, East Sussex BN1 9QH, UK 6 CFHT Corporation, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743, USA 7 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands 8 Spitzer Science Center, MS 220-06, California Institute of Technology, Pasadena, CA 91125, USA 9 Department of Astronomy, University of Texas at Austin, Austin, TX 78712-0259, USA Received 2009 March 6; accepted 2009 August 14; published 2009 September 16 ABSTRACT We present an atlas of Spitzer/IRS high-resolution (R ∼ 600) 10–37 μm spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons (PAHs). Six out of the eight objects with a known active galactic nucleus (AGN) component show emission of the high excitation [Ne v] line.
    [Show full text]
  • Dust Temperatures in the Infrared Space Observatory1atlas of Bright Spiral Galaxies
    Dust Temperatures in the Infrared Space Observatory1Atlas of Bright Spiral Galaxies George J. Bendo,2;3;4 Robert D. Joseph,3 Martyn Wells,5 Pascal Gallais,6 Martin Haas,7 Ana M. Heras,8;9 Ulrich Klaas,7 Ren´eJ.Laureijs,8;9 Kieron Leech,9;10 Dietrich Lemke,7 Leo Metcalfe,8 Michael Rowan-Robinson,11 Bernhard Schulz,9;12 and Charles Telesco13 ABSTRACT We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60 - 180 µm data, 1 2 we fit blackbodies with λ− emissivities and average temperatures of 31 K or λ− emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60 - 850 µm range in eight galaxies, we fit blackbodies 1 2 β β with λ− , λ− ,andλ− (with β variable) emissivities to the data. The best results were with the λ− emissivities, where the temperatures were 30 K and the emissivity coefficient β ranged from 0.9 to 1.9. These results produced gas to dust ratios that∼ ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities. Subject headings: galaxies: ISM | galaxies: spiral | dust 1. Introduction 2Steward Observatory, 933 North Cherry Ave, Tucson, AZ 85721 USA; [email protected] The far-infrared emission from galaxies is emitted by 3University of Hawaii, Institute for Astronomy, 2680 Woodlawn interstellar dust heated by a variety of energy sources.
    [Show full text]
  • H-Alpha Imaging of Early-Type (Sa-Sab) Spiral Galaxies I
    Hα Imaging of Early-Type(Sa-Sab) Spiral Galaxies I1 Salman Hameed2, Nick Devereux2 Astronomy Department, New Mexico State University, Las Cruces, NM 88003 ABSTRACT Hα and continuum images are presented for 27 nearby early-type(Sa-Sab) spiral galaxies. Contrary to popular perception, the images reveal copious massive star formation in some of these galaxies. A determination of the Hα morphology and a measure of the Hα luminosity suggests that early-type spirals can be classified into two broad categories based on the luminosity of largest H II region in the disk. The first category includes galaxies for which the 39 −1 individual H II regions have LHα < 10 ergs . Most of the category 1 galaxies appear to be morphologically undisturbed, but show a wide diversity in nuclear Hα properties. The second category includes galaxies which have at least one 39 −1 H II region in the disk with LHα ≥ 10 ergs . All category 2 galaxies show either prominent dust lanes or other morphological peculiarities such as tidal tails which suggests that the anomalously luminous H II regions in category 2 galaxies may have formed as a result of a recent interaction. The observations, which are part of an on-going Hα survey, reveal early-type spirals to be a heterogeneous class of galaxies that are evolving in the current epoch. We have also identified some systematic differences between the classifications of spiral galaxies in the Second General Catalog (RC2) and the Revised Shapley- Ames Catalog (RSA) which may be traced to subtle variations in the application of the criteria used for classifying spiral galaxies.
    [Show full text]
  • HC3N Observations of Nearby Galaxies Xue-Jian Jiang (蒋雪健)1, 5, Jun-Zhi Wang (王均智)2, Yu Gao (高煜)1, 5, and Qiu-Sheng Gu (顾秋生)3, 4, 5
    A&A 600, A15 (2017) Astronomy DOI: 10.1051/0004-6361/201629066 & c ESO 2017 Astrophysics HC3N observations of nearby galaxies Xue-Jian Jiang (蒋êe)1; 5, Jun-Zhi Wang (王Gz)2, Yu Gao (高\)1; 5, and Qiu-Sheng Gu (~Ë生)3; 4; 5 1 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing, PR China e-mail: [email protected] 2 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, 200030 Shanghai, PR China 3 School of Astronomy and Space Sciences, Nanjing University, 210093 Nanjing, PR China 4 Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093 Nanjing, PR China 5 Collaborative Innovation Center of Modern Astronomy and Space Exploration, 210093 Nanjing, PR China Received 7 June 2016 / Accepted 22 December 2016 ABSTRACT Aims. We aim to systematically study the properties of the different transitions of the dense molecular gas tracer HC3N in galaxies. Methods. We have conducted single-dish observations of HC3N emission lines towards a sample of nearby gas-rich galaxies. HC3N(J = 2−1) was observed in 20 galaxies with the Effelsberg 100-m telescope. HC3N(J = 24−23) was observed in nine galaxies with the 10-m Submillimeter Telescope (SMT). Results. HC3N 2−1 is detected in three galaxies: IC 342, M 66, and NGC 660 (>3σ). HC3N 24−23 is detected in three galaxies: IC 342, NGC 1068, and IC 694. These are the first measurements of HC3N 2−1 in a relatively large sample of external galaxies, although the detection rate is low.
    [Show full text]
  • A Classical Morphological Analysis of Galaxies in the Spitzer Survey Of
    Accepted for publication in the Astrophysical Journal Supplement Series A Preprint typeset using LTEX style emulateapj v. 03/07/07 A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G) Ronald J. Buta1, Kartik Sheth2, E. Athanassoula3, A. Bosma3, Johan H. Knapen4,5, Eija Laurikainen6,7, Heikki Salo6, Debra Elmegreen8, Luis C. Ho9,10,11, Dennis Zaritsky12, Helene Courtois13,14, Joannah L. Hinz12, Juan-Carlos Munoz-Mateos˜ 2,15, Taehyun Kim2,15,16, Michael W. Regan17, Dimitri A. Gadotti15, Armando Gil de Paz18, Jarkko Laine6, Kar´ın Menendez-Delmestre´ 19, Sebastien´ Comeron´ 6,7, Santiago Erroz Ferrer4,5, Mark Seibert20, Trisha Mizusawa2,21, Benne Holwerda22, Barry F. Madore20 Accepted for publication in the Astrophysical Journal Supplement Series ABSTRACT The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S4G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs (1959) morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S4G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im.
    [Show full text]
  • Isaac Newton Institute of Chile in Eastern Europe and Eurasia Casilla
    1 Isaac Newton Institute of Chile in Eastern Europe and Eurasia Casilla 8-9, Correo 9, Santiago, Chile e-Mail: [email protected] Web-address: www.ini.cl ͓S0002-7537͑95͒03301-4͔ The Isaac Newton Institute, ͑INI͒ for astronomical re- and luminosity functions ͑LFs͒ of the cluster Main Sequence search was founded in 1978 by the undersigned. The main ͑MS͒ for two fields extending from a region near the center office is located in the eastern outskirts of Santiago. Since of the cluster out to Ӎ 10 arcmin. The photometry of these 1992, it has expanded into several countries of the former fields produces a narrow MS extending down to VӍ27, Soviet Union in Eastern Europe and Eurasia. much deeper than any previous ground based study on this As of the year 2003, the Institute is composed of fifteen system and comparable to previous HST photometry. The V, Branches in nine countries ͑see figure on following page͒. V-I CMD also shows a deep white dwarf cooling sequence These are: Armenia ͑19͒, Bulgaria ͑28͒, Crimea ͑35͒, Kaza- locus, contaminated by many field stars and spurious objects. khstan ͑18͒, Kazan ͑12͒, Kiev ͑11͒, Moscow ͑23͒, Odessa We concentrate the present work on the analysis of the ͑35͒, Petersburg ͑33͒, Poland ͑13͒, Pushchino ͑23͒, Special MSLFs derived for two annuli at different radial distance Astrophysical Observatory, ‘‘SAO’’ ͑49͒, Tajikistan ͑9͒, from the center of the cluster. Evidence of a clear-cut corre- Uzbekistan ͑24͒ and Yugoslavia ͑23͒. The quantities in pa- lation between the slope of the observed LFs before reaching rentheses give the number of scientific staff, the grand total the turn-over, and the radial position of the observed fields of which is 355 members.
    [Show full text]