Chapter 2: Literature Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Valens) Aqueduct in Istanbul
International Journal of the Physical Sciences Vol. 5(11), pp. 1660-1670, 18 September, 2010 Available online at http://www.academicjournals.org/IJPS ISSN 1992 - 1950 ©2010 Academic Journals Full Length Research Paper Out-of-plane seismic analysis of Bozdogan (Valens) aqueduct in Istanbul M. Arif Gurel*, Kasim Yenigun and R. Kadir Pekgokgoz Faculty of Engineering, Harran University, Civil Engineering Department, Osmanbey Campus, 63190, Sanliurfa, Turkey. Accepted 17 September, 2010 The Bozdogan (Valens) aqueduct in Istanbul is one of the most prominent water supply structures inherited from the Byzantine period. The paper investigates the out-of-plane seismic resistance of the aqueduct. The structural system of the aqueduct is composed of a series of piers connected to each other with arches at two tier levels. Taking advantage of the structural periodicity, only one pier of the highest part of the aqueduct is considered for the analysis instead of the whole structure. This pier is modelled as a cantilever prismatic element subjected to gravity load and increasing lateral load representing out-of-plane seismic loading. It is assumed that the pier is made of a no-tension material, with a linear stress-strain relationship in compression, and has infinite compression strength. To accomplish the solution, an efficient numerical model and solution procedure developed by La Mendola and Papia for investigating the stability of masonry piers under their own weight and an eccentric top load, is utilised and adapted to the problem at hand. The analysis showed that, although, the aqueduct can withstand out-of-plane earthquake ground motions of medium size and usually encountered periods, it is vulnerable to the ones containing long-period pulses. -
Bridges and Applications Bridges and Applications Bridges and Applications Arch Bridges
10/23/2014 Bridges and Applications Bridges and Applications • Bridges are used to span across distances that are difficult to otherwise pass through. • Rivers • Deep gorges • Other roadways Bridges and Applications Arch Bridges • There are four basic types of bridges – Arch – Beam – Suspension – Cable‐stayed • Each type has different design and is therefore better suited to different applications 1 10/23/2014 Arch Bridges Arch Bridges • Instead of pushing straight down, the weight of an arch bridge is carried outward along the curve of the arch to the supports at each end. Abutments, carry • These supports, called the abutments, carry the load the load and keep the ends of the bridge from spreading outward. and keep the ends of the bridge from spreading outward Arch Bridges Arch Bridges • When supporting its own weight and the • Today, materials like steel and pre‐stressed weight of crossing traffic, every part of the concrete have made it possible to build longer arch is under compression. and more elegant arches. • For this reason, arch bridges must be made of materials that are strong under compression. New River Gorge, – Rock West Virginia. – Concrete 2 10/23/2014 Arch Bridges Arch Bridges • Usually arch bridges employ vertical supports • Typically, arch bridges span between 200 and called spandrels to distribute the weight of 800 feet. the roadway to the arch below. Arch Bridges One of the most revolutionary arch bridges in recent years is the Natchez Trace Parkway Bridge in Franklin, Tennessee, which was opened to traffic in 1994. It's the first American arch bridge to be constructed from segments of precast concrete, a highly economical material. -
By the Persian Mathematician and Engineer Abubakr
1 2 The millennium old hydrogeology textbook “The Extraction of Hidden Waters” by the Persian 3 mathematician and engineer Abubakr Mohammad Karaji (c. 953 – c. 1029) 4 5 Behzad Ataie-Ashtiania,b, Craig T. Simmonsa 6 7 a National Centre for Groundwater Research and Training and College of Science & Engineering, 8 Flinders University, Adelaide, South Australia, Australia 9 b Department of Civil Engineering, Sharif University of Technology, Tehran, Iran, 10 [email protected] (B. Ataie-Ashtiani) 11 [email protected] (C. T. Simmons) 12 13 14 15 Hydrology and Earth System Sciences (HESS) 16 Special issue ‘History of Hydrology’ 17 18 Guest Editors: Okke Batelaan, Keith Beven, Chantal Gascuel-Odoux, Laurent Pfister, and Roberto Ranzi 19 20 1 21 22 Abstract 23 We revisit and shed light on the millennium old hydrogeology textbook “The Extraction of Hidden Waters” by the 24 Persian mathematician and engineer Karaji. Despite the nature of the understanding and conceptualization of the 25 world by the people of that time, ground-breaking ideas and descriptions of hydrological and hydrogeological 26 perceptions such as components of hydrological cycle, groundwater quality and even driving factors for 27 groundwater flow were presented in the book. Although some of these ideas may have been presented elsewhere, 28 to the best of our knowledge, this is the first time that a whole book was focused on different aspects of hydrology 29 and hydrogeology. More importantly, we are impressed that the book is composed in a way that covered all aspects 30 that are related to an engineering project including technical and construction issues, guidelines for maintenance, 31 and final delivery of the project when the development and construction was over. -
Human Suspension Bridge.Pdf
Grades 60 minutes 3–5, 6–8 Human Suspension Bridge Create a bridge with your body. Instructions Materials Students create a suspension bridge with their bodies and PER CLASS: experience the forces that make a suspension bridge work. Two pieces of sturdy, wide rope, each 10–12 feet 1 Introduce the activity by showing different examples of Photographs of various suspension bridges suspension bridges, if available. (optional) 2 Next, demonstrate the force of tension. Let students know they will be making contact via their arms and get whatever consent is needed. Ask students to pair up and stand facing their partner. Have each team member grasp the other’s forearms. Both students lean back. Their arms should stretch out between them. Go around to several pairs and lean gently on top of their arms to test their structure. Explain that when you lean on them you are pushing down and causing their arms to stretch, or be put into tension. Find more activities at: www.DiscoverE.org 3 Now demonstrate the force of compression: Have partners press the palms of their hands together and lean toward one another, making an arch with their bodies. Go around to each pair and push on top of the arch. Explain that when you push down you cause them to push together, or to be put into compression. 4 To build the human bridge, select 16 students. Arrange students like so: • Two pairs of taller students—the “towers”—stand across from each other and hold the ropes (the cable) on their shoulders. • Four students act as anchors. -
Drawbridge Committee Notes from December 2, 2005 1 of 1
Lagoon Pond Drawbridge Committee Notes from Decemer 2, 2005 Present: Melinda Loberg and Mark London (Lagoon Pond Committee) and Steve McLaughlin (MassHighway) Location: MassHighway Offices, Boston Existing Bridge - As District 5 indicated, the Bridge Section is reviewing the Lichtenstein report so they can determine which preventative repairs are warranted, if any. Temporary Bridge - They are still awaiting the Coast Guard permit as well as the third, and hopefully final, review of the 100% design plans by the bridge and highway sections. He expects to advertise for construction in January or February, assuming the permit and approvals are forthcoming. - If it were advertised, say, on February 15, they would open bids about April 1, would award the contract about June 1, and would probably start construction in mid-June. - The completion date for the bridge is very dependent upon the ability to award the contract per the time-line above. Any delay could cause construction to be delayed up to one year. With the construction start in mid-June, the completion could take between one year and 18 months depending upon whether we get an accelerated schedule approved. - The cost estimate is now $6,026,130 not including the cost of securing the right of way from the owners of the house, but including about 10% for demolition of the existing bridge. Most of this will be for construction of foundations, transportation of materials, and labor. - The temporary bridge will likely be mostly or all newly built. MassHighway will own the structure and can reuse it elsewhere. - They believe that the present proposal for bikes and pedestrians are safe. -
Field Testing and Structural Analysis of Burr Arch Covered Bridges in Pennsylvania
Field Testing and Structural Analysis of Burr Arch Covered Bridges in Pennsylvania Douglas Rammer1, James Wacker2, Travis Hosteng3, Justin Dahlberg4 and Yaohua Deng5 ABSTRACT: The Federal Highway Administration sponsored a comprehensive research program on Historic Covered Timber Bridges in the USA. This national program's main purpose is to develop improved methods to preserve, rehabilitate, and restore timber bridge trusses that were developed during the early 1800s and, in many cases, are still in service today. One of the many ongoing research studies is aimed at establishing a procedure for safely and reliably load- rating historic covered bridges though physical testing and improved structural modelling. This paper focuses on recent field work and analysis of four Burr Arch through-truss-type covered bridges located in Lancaster County, Pennsylvania. An overview of field evaluation methods, loading testing, and structural modelling procedures are included along with a comparison of field measurements and structural model prediction of bridge behaviour. KEYWORDS: loading rating, structural analysis, covered bridges, historical landmark, burr arch 1 INTRODUCTION 123 established for historic covered bridges. Given the historic nature and unusual geometric features of these The Federal Highway Administration (FHWA), in structures, a procedure needs to be established detailing partnership with the USDA Forest Products Laboratory how to safely and reliably determine load ratings for and the National Park Service (NPS), sponsored a historic covered timber bridges through physical testing. comprehensive national research program on Historic Covered Timber Bridges in the USA. The main purpose Similarly, the complex behavior and unique details of is to develop improved methods to preserve, rehabilitate, covered bridges make structural modeling a daunting task and restore timber bridge trusses that were first developed for the typical bridge engineer. -
Waters of Rome Journal
TIBER RIVER BRIDGES AND THE DEVELOPMENT OF THE ANCIENT CITY OF ROME Rabun Taylor [email protected] Introduction arly Rome is usually interpreted as a little ring of hilltop urban area, but also the everyday and long-term movements of E strongholds surrounding the valley that is today the Forum. populations. Much of the subsequent commentary is founded But Rome has also been, from the very beginnings, a riverside upon published research, both by myself and by others.2 community. No one doubts that the Tiber River introduced a Functionally, the bridges in Rome over the Tiber were commercial and strategic dimension to life in Rome: towns on of four types. A very few — perhaps only one permanent bridge navigable rivers, especially if they are near the river’s mouth, — were private or quasi-private, and served the purposes of enjoy obvious advantages. But access to and control of river their owners as well as the public. ThePons Agrippae, discussed traffic is only one aspect of riparian power and responsibility. below, may fall into this category; we are even told of a case in This was not just a river town; it presided over the junction of the late Republic in which a special bridge was built across the a river and a highway. Adding to its importance is the fact that Tiber in order to provide access to the Transtiberine tomb of the river was a political and military boundary between Etruria the deceased during the funeral.3 The second type (Pons Fabri- and Latium, two cultural domains, which in early times were cius, Pons Cestius, Pons Neronianus, Pons Aelius, Pons Aure- often at war. -
A Look at Bridges: a Study of Types, Histories, and the Marriage of Engineering and Architecture Cody Chase Connecticut College
Connecticut College Digital Commons @ Connecticut College Architectural Studies Integrative Projects Art History and Architectural Studies 2015 A Look at Bridges: A Study of Types, Histories, and the Marriage of Engineering and Architecture Cody Chase Connecticut College Follow this and additional works at: http://digitalcommons.conncoll.edu/archstudintproj Recommended Citation Chase, Cody, "A Look at Bridges: A Study of Types, Histories, and the Marriage of Engineering and Architecture" (2015). Architectural Studies Integrative Projects. Paper 73. http://digitalcommons.conncoll.edu/archstudintproj/73 This Article is brought to you for free and open access by the Art History and Architectural Studies at Digital Commons @ Connecticut College. It has been accepted for inclusion in Architectural Studies Integrative Projects by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. CODY CHASE SENIOR INTEGRATIVE PROJECT: INDEPENDENT STUDY ARCHITECTURAL STUDIES CONNECTICUT COLLEGE 2015 A"LOOK"INTO"BRIDGES" A"Study"of"Types,"Histories,"and"the"Marriage"of" Engineering"and"Architecture" " Cody"Chase"‘15" Architectural"Studies"Major,"Art"History"Minor" Senior"IntegraHve"Project" " Why Bridges? Where to begin? TYPES OTHER • Arch • Glossary • Beam/Girder/Stringer • Materials • Truss • History of Failures • Suspension • Models • Cable-Stayed • Moveable Span What makes a bridge stand up? FORCES ***Compression: -
Historic Bridges of Somerset County Pennsylvania
HISTORIC BRIDGES OF SOMERSET COUNTY PENNSYLVANIA Scott D. Heberling Pennsylvania Department of Transportation Federal Highway Administration HISTORIC BRIDGES OF SOMERSET COUNTY PENNSYLVANIA Scott D. Heberling Photographs by Scott D. Heberling and Stephen Simpson except as noted Layout and design by Christopher Yohn This publication was produced by Heberling Associates, Inc. for the Pennsylvania Department of Transportation and the Federal Highway Administration © 2010 Pennsylvania Department of Transportation ISBN-10: 0-89271-126-4 ISBN-13: 978-0-89271-126-0 CONTENTS 1 Somerset County’s Historic Bridges 3 Bridge Building in Pennsylvania 6 Stone Arch Bridges 10 Wooden Covered Bridges 21 Metal Truss Bridges 35 Concrete Bridges 43 Bridge Location Map 44 Sources Glessner Bridge Salisbury Viaduct Somerset County’s Historic Bridges Somerset County, high in the Laurel Highlands of southwestern Pennsylvania, is renowned for its stunning natural beauty and expansive rural landscapes. It is also rich in history. The county’s many historic farms, villages, and winding country roads contribute to a strong “sense of place” that appeals to residents and visitors alike. The people who have called Somerset County home for thousands of years have created a unique cultural environment unlike any other. From the ancient settlements in the “Turkeyfoot” region of the south, to the rolling farm country of Brothers Valley in the center, to the coal patch towns of the north, history is everywhere in Somerset County. Something interesting always seems to lie just around the next bend in the road. The county’s development was shaped by its hydrology and rugged topography. Although its forested hills hid immeasurable mineral wealth just below the surface they also limited the areas suitable for settlement and agriculture. -
Springtime in Provence ◆ Burgundy ◆ Beaujolais Cruising the Rhône and Saône Rivers
SPRINGTIME IN PROVENCE ◆ BURGUNDY ◆ BEAUJOLAIS CRUISING THE RHÔNE AND SAÔNE RIVERS Beaune Deluxe Small River Ship Chalon-sur-Saône e SWITZERLAND n r ô e v a i S R Geneva FRANCE Mâcon Beaujolais Trévoux Chamonix Lyon Mont Blanc Tournon Tain-l’Hermitage Pont Du Gard e r e n v ô i h Orange R UNESCO R World Heritage Site Châteauneuf-du-Pape Av ig non Cruise Itinerary Arles Aix-en-Provence Land Routing Mediterranean Marseille Sea Air Routing Join this exclusive, nine-day French sojourn in world-famous Provence and in the Burgundy Itinerary and Beaujolais wine regions during springtime, May 15 to 23, 2019 the best time of year to visit. Cruise from Provençal Arles to historic Lyon along the fabled Rhône and Marseille, Arles, Avignon, Orange, Saône Rivers aboard the exclusively chartered, Pont du Gard, Tournon, Lyon, Beaune deluxe Amadeus Provence, launched in 2017. Day Dock in the heart of port towns and visit the 1 Depart the U.S. wonderfully preserved Roman Amphitheater in Arles, the medieval Papal Palace of Avignon, the Roman city 2 Marseille, France/Arles/Embark Amadeus Provence of Orange and the legendary Hôtel-Dieu in Beaune. 3 Arles/Avignon Enjoy a walking tour of Lyon, France’s gastronomique 4 Avignon gateway, and an excursion to the Beaujolais vineyards for a private wine tasting at the Château Montmelas. 5 Avignon/Châteauneuf-du-Pape for Orange and Pont du Gard/ The carefully designed Pre-Cruise Option immerses Saint-Étienne-des-Sorts you in the vibrant culture of the quintessential 6 Tournon and Tain-l’Hermitage/Lyon Provençal region. -
Digital Modelling and Representations: Design and Works by Riccardo Morandi and Sergio Musmeci
Proceedings of the IMProVe 2011 International conference on Innovative Methods in Product Design June 15 th – 17 th , 2011, Venice, Italy Digital modelling and representations: Design and works by Riccardo Morandi and Sergio Musmeci Curti G. (a) , Polimeni B. (a) , Raschi S. (a) (a) Università degli Studi Mediterranea Reggio Calabria Facoltà di Architettura Article Information Abstract Keywords: Purpose: digital modelling, The purpose of this abstract is as a contribution to research on the representation of flat or representation techniques, variously shaped curves. The study is focused on the ability to model surfaces with traditional traditional CAD systems, CAD systems. ruled surfaces, Method: minimal surfaces. The analysis is focused on the possibility of determining the morphological configurations of architectural coverings and other structures by means of the traditional, CAD, instruments. Corresponding author Result: Gabriella Curti The characteristics of the architecture are highlighted by a process which starts from the Tel.:334-6698169 "pure form" and arrives at the completed, built structure. Fax.:0965-3222235 Discussion & Conclusion: e-mail: [email protected] Our approach requires that a special focus be given to the works of R. Morandi and S. Address:Contrada Melissari-Feo di Musmeci who used shaped surfaces for particular architectural structures in various ways. Vito (RC) communicating the original ideas. Digital modelling 1 Introduction facilitates the awareness of forms and spaces otherwise not easily accessible for "non-experts". This use of the 3D In the field of Digital modeling, there are many Graphic representation methods can increase the programmers who are working on the relationships knowledge of architectural spaces, and can be entered between geometrical and mathematical spaces, from into by a conscious observer, accompany him on a analog to digital representation. -
Systematic Thesis on Network Arches 2013 by Per Tveit, Dr. Ing. Uia, Norway
Systematic Thesis on Network Arches 2013 By Per Tveit, dr. ing. UiA, Norway Co-authors: B. Brunn, M. Chan, W. Graße, F. Millanes, M. Ortega, R. Presland, R. Lee, L. Šašek, F. Schanack, P. Steere, G. Wollmann, T. Zoli. The author prefers network arches with concrete ties and H profiles in the arch. A network arch of this type normally saves around ⅔ of the steel weight needed for other steel bridges. If there are steel beams in the tie, around 1/3 of the steel weight is likely to be saved. Network arches look nice. Network arches have been designed in many different ways. See chapter H: Network arches built or planned. My main publication: “The Network Arch” can be found on my homepage: http://home.uia.no/pert/ under the button “The Network Arch”. It was started in 2000 and is the result of an organic growth. Thus readers will often have a hard time if they are seeking information on specific items. The present publication should be more readable and should lead interested readers more directly to what they are looking for. This publication can only be found on the internet. It will be updated at least till 2014. There are many references in the text. They are supposed to lead to more information on the same subject. Thus the system of references at the bottom of the page is important. Contents Chapter A is a general chapter. The network arch is an arch bridge where some hangers cross each other at least twice. The hangers give the arches efficient support and high buckling strength.