3. Madeira Etal 2013 Azolla in Florida Size

Total Page:16

File Type:pdf, Size:1020Kb

3. Madeira Etal 2013 Azolla in Florida Size See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257053219 Identity and origins of introduced and native Azolla species in Florida Article in Aquatic Botany · July 2013 DOI: 10.1016/j.aquabot.2013.07.009 CITATION READS 1 287 6 authors, including: Paul T. Madeira Julie Angela Coetzee United States Department of Agriculture Rhodes University 26 PUBLICATIONS 289 CITATIONS 59 PUBLICATIONS 485 CITATIONS SEE PROFILE SEE PROFILE Matthew F Purcell Martin P. Hill The Commonwealth Scientific and Industrial … Rhodes University 61 PUBLICATIONS 746 CITATIONS 197 PUBLICATIONS 1,639 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Nutritional ecology of Erebid moths View project Biological Control of Weeds View project All content following this page was uploaded by Paul T. Madeira on 24 March 2017. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Aquatic Botany 111 (2013) 9–15 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot Identity and origins of introduced and native Azolla species in Florida Paul T. Madeira a,∗, Ted D. Center a, Julie A. Coetzee b, Robert W. Pemberton a, Matthew F. Purcell c, Martin P. Hill b a United States Department of Agriculture, Agriculture Research Service, Invasive Plant Research Laboratory, 3225 College Avenue, Ft. Lauderdale, FL 33314, United States b Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa c Matthew Purcell. CSIRO Ecosystem Sciences, US Department of Agriculture, Agriculture Research Service, Australian Biological Control Laboratory, GPO Box 2583, Brisbane, Qld 4001, Australia article info abstract Article history: Azolla pinnata, an introduced aquatic fern, is spreading rapidly causing concern that it may displace native Received 6 August 2012 Azolla. It is now present in the Arthur R. Marshall Loxahatchee National Wildlife Refuge, the northern- Received in revised form 26 July 2013 most portion of the Florida Everglades. Because A. pinnata subspecies are native to Africa, Southeast Accepted 29 July 2013 Asia, and Australia, determining the actual geographic origin of the Florida exotic is important to the Available online 7 August 2013 discovery of efficacious biological control agents. Both the exotic and native Azollas were examined using morphological and molecular criteria. Both criteria distinguished three A. pinnata subspecies with the Keywords: Florida exotic matching the Australian A. pinnata subsp. pinnata. Molecular divergence between the A. Azolla Biocontrol pinnata subspecies indicates the three types should be considered separate species. The Florida native Exotic was characterized by both molecular and morphological methods as Azolla caroliniana. The discovery of Invasive a previously uncharacterized Ecuadorian Azolla, which appears to be a paternal ancestor of A. caroliniana, Listed Federal Noxious Weed indicates that A. caroliniana is a hybrid species. Molecular taxonomy Published by Elsevier B.V. Morphology 1. Introduction Florida’s native Azolla has historically been considered to be Azolla caroliniana Willd. (Godfrey et al., 1961; Wunderlin and The floating aquatic fern Azolla pinnata R. Br. (Azollaceae), a Hansen, 2003). However there is a paucity of information as to how listed Federal Noxious Weed (U.S.A.), was discovered in Palm Beach this identification was determined. Evrard and Van Hove (2004) County, Florida during 2007 (Bodle, 2008). The South Florida Water have noted that the taxonomy of New World Azolla species has Management District immediately but unsuccessfully sought erad- been “the subject of much debate and remains unsatisfactory”. The ication by treatment with diquat dibromide. The District’s concern status of A. caroliniana is perhaps the most debatable within the stemmed from the invasive potential demonstrated by various genus because Willdenow (1810) described the holotype A. carolin- species of Azolla worldwide. Quick regeneration, rapid growth, iana (“habitat in aquis Carolinae”) from a sterile specimen. This has broad distribution, and dense surface mats of Azolla can obstruct led to various interpretations including that the original specimen weirs, locks, and water intakes impeding irrigation, boating, fishing, was actually Azolla filiculoides Lamarck (Dunham and Fowler, 1987; and recreational activities (McConnachie et al., 2003; Hashemloian Evrard and Van Hove, 2004). Regardless of what the holotype rep- and Azimi, 2009; Baars and Caffrey, 2010). A dense surface cover resents, an “A. caroliniana” species with a unique megaspore perine may also reduce aquatic oxygen levels (Janes et al., 1996) and sub- structure exists (Perkins et al., 1985; Pereira et al., 2001). mersed animal populations (Gratwicke and Marshall, 2001). There The broad geographic range of A. pinnata encompasses Africa, is also concern that if A. pinnata becomes invasive, it will compete Madagascar, India, China, southeast Asia, Japan, Malaysia and for the same niche and suppress native populations of Azolla in Australia. Saunders and Fowler (1992), in a morphological taxo- Florida. This concern seems warranted inasmuch as introduced A. nomic revision of Azolla Lam. section Rhizosperma, identified three pinnata has largely replaced the native Azolla rubra R. Br. in northern geographically distinct subspecies of A. pinnata: (1) A. pinnata New Zealand (Owen, 1996). R.Br. subsp. pinnata R.Br. from Australia and New Caledonia; (2) A. pinnata R.Br. subsp. asiatica Saund. & Fowl. from India, south- ern China, Southeast Asia, and southern Japan; and (3) A. pinnata ∗ Corresponding author. Tel.: +1 9544756553; fax: +1 9544769169. subsp. africana (Desv.) Saund. & Fowl., from tropical Africa and E-mail address: [email protected] (P.T. Madeira). Madagascar. However, Pereira et al. (2011), using morphological 0304-3770/$ – see front matter. Published by Elsevier B.V. http://dx.doi.org/10.1016/j.aquabot.2013.07.009 Author's personal copy 10 P.T. Madeira et al. / Aquatic Botany 111 (2013) 9–15 and molecular (RAPD) criteria, suggested that A. pinnata is actu- Fresh material of the Florida native sample was also examined ally best described as two varieties, A. pinnata R.Br. var. imbricata using the vegetative criteria in Pereira et al. (2011). Additionally (Roxb.) Bonap. from Asia and A. pinnata var. pinnata R.Br. from Africa a VHX-600 3-dimensional digital microscope (Keyence Corpora- and Australia. tion, USA) was used to examine several microsporocarps and a Classical biological control is often used to address the com- single megasporocarp. Massulae were isolated from microspores plex and multi-faceted problems of exotic alien plant invasions and their glochidia (barbed hairs) examined. A single megaspore by introducing specialized natural enemies derived from native was teased from its megasporocarp wall and examined. regions. This process usually begins with determinations of the identity of the plant and its native range followed by surveys for potential agents, an expensive and often difficult process. Because 2.3. Molecular methods exotic invasive species frequently have large native ranges (Lodge, 1993) the actual geographic origin may not be apparent. Biologi- DNA was extracted using the DNeasy Plant Mini kit (Qiagen Inc., cal control agents that have coevolved with the invasive host plant Valencia, CA, USA). Two plastid genes, trnL-trnF (includes the trnL are most likely to be successful in suppressing it (Hufbauer and intron and the trnL-F intergenic spacer) and trnG-trnR (includes Roderick, 2005; Ward, 2006; Mills and Kean, 2010). When regional trnG and the trnG-R intergenic spacer), as well as the nuclear ITS1 intra-specific genetic variation is ignored, both within the invasive sequence were amplified and sequenced. Primers used for ampli- plant and co-evolved natural enemies, it has the potential to con- fication and sequencing were TrnLC, TrnLD, TrnLE and TrnLF for found the efficacy of the insects chosen (Goolsby et al., 2006; Le trnL-trnF (Taberlet et al., 1991) and TrnG1F, TrnG43F1, TrnG63R, and Roux and Wieczorek, 2009) resulting in failure to control the target TrnR22R for trnG-trnR (Nagalingum et al., 2007). The nuclear ITS1 weed (Palmer and Witt, 2006). Weed biological control programs primers were the ITS-A, ITS-B, ITS-C and ITS-D primers of Blattner are increasingly using molecular techniques to determine the ori- (1999). PCR annealing temperatures were 56 ◦C for trnL-trnF,52◦C gins of the targeted plants and to geographically match biotypes of for trnG-trnR and 58 ◦C for ITS1. Plastid reaction mixtures con- prospective agents with the target weed (Von Senger et al., 2000; tained 10 mM Tris–HCl (pH 9.0), 50 mM KCl, 1.5 mM MgCl2, 0.1% Bond et al., 2002; Goolsby et al., 2006; Paterson et al., 2009). Triton X-100, 0.5 mM Betaine, 0.001% BSA, 0.2 mM dNTPs, 0.5 ␮M Identification of the subspecies (or variety, implied hereafter)of each primer, and 0.06 U/␮l EconoTaq polymerase (Lucigen Corp., A. pinnata recently found in Florida (Pemberton and Bodle, 2009) Middleton, WI, USA). The ITS1 reaction contained 10 mM Tris–HCl would enable a search for biocontrol agents in the appropriate (pH 9.0), 50 mM KCl, 1.5 mM MgCl2, 0.1% Triton X-100, 10% DMSO, geographic area.
Recommended publications
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • Water Ferns Azolla Spp. (Azollaceae) As New Host Plants for the Small China-Mark Moth, Cataclysta Lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae)
    ©Societas Europaea Lepidopterologica; download unter http://www.soceurlep.eu/ und www.zobodat.at Nota Lepi. 40(1) 2017: 1–13 | DOI 10.3897/nl.40.10062 Water ferns Azolla spp. (Azollaceae) as new host plants for the small China-mark moth, Cataclysta lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae) Atousa Farahpour-Haghani1,2, Mahdi Hassanpour1, Faramarz Alinia2, Gadir Nouri-Ganbalani1, Jabraeil Razmjou1, David Agassiz3 1 University of Mohaghegh Ardabili, Faculty of Agriculture and Natural Resources, Department of Plant Protection, Ardabil, Iran 2 Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran 3 Department of Life Sciences, Natural History Museum, London SW7 5BD, England http://zoobank.org/307196B8-BB55-492B-8ECC-1F518D9EC9E4 Received 1 August 2016; accepted 3 November 2016; published: 20 January 2017 Subject Editor: Bernard Landry. Abstract. Water ferns (Azolla spp., Azollaceae) are reported for the first time as host plants for the larvae of the small China-mark moth Cataclysta lemnata (Linnaeus) (Lepidoptera: Crambidae: Acentropinae) in rice fields and waterways of northern Iran. Cataclysta lemnata is a semi-aquatic species that has been recorded to feed on Lemnaceae and a few other aquatic plants. However, it has not been reported before on Azolla spp. Larvae use water fern as food source and shelter and, at high population density in the laboratory, they completely wiped water fern from the water surface. Feeding was confirmed after rearing more than eight continual generations of C. lemnata on water fern in the laboratory. Adults obtained this way are darker and have darker fuscous markings in both sexes compared with specimens previously reported and the pattern remains unchanged after several generations.
    [Show full text]
  • Guide to Water Gardening in New York State
    GUIDE TO WATER GARDENING IN NEW YORK STATE Native plants and animals can enhance your aquatic garden, creating a beautiful and serene place for you to enjoy. HOW YOU CAN HELP PROTECT NEW YORK’S NATIVE PLANTS AND ANIMALS BY MAKING INFORMED CHOICES WHEN CREATING YOUR AQUATIC GARDEN: • Place your garden upland and away from waterbodies to prevent storms or fooding from washing away any plants or animals; • Before planting, always rinse of any dirt or debris—including potential eggs, animals, or unwanted plant parts and seeds— preferably in a sunny location away from water; and • Choose native and non-invasive plants to create your aquatic garden. C Wells Horton C Wells 2 RECOMMENDED SPECIES: foating plants white water lily (Nymphaea odorata) Chris Evans, University of Illinois, Bugwood.org Chris Evans, University of Illinois, Bugwood.org Bright green, round foating leaves are reddish to purple underneath and measure up to 10 inches across. Flowers are fragrant and have many rows of white petals. Sepals and stamens are vibrant yellow color in center of fower. Plants are rooted with a long stem with large rhizomes buried in the sediment. Perennial. Peggy Romf Romf Peggy American lotus (Nelumbo lutea) Carolina mosquito fern (Azolla cristata) Steven Katovich, Bugwood.org Bugwood.org Katovich, Steven Karan A. Rawlins, Bugwood.org Bugwood.org A. Rawlins, Karan common watermeal (Wolfa columbiana) needle leaf Ludwigia (Ludwigia alternifolia) Chris Evans, Bugwood.org Chris Evans, Bugwood.org 3 Shaun Winterton, Bugwood.org Shaun Winterton, Bugwood.org spatterdock (Nuphar advena) water purslane (Ludwigia palustris) Joy Viola, Bugwood.org Joy Viola, Bugwood.org Alan Cressler watershield (Brasenia schreberi) lesser duckweed (Lemna minor) Troy Evans, Bugwood.org Evans, Bugwood.org Troy RECOMMENDED SPECIES: submerged plants water stargrass (Heteranthera dubia) Fritz Flohrreynolds Thin, grass-like branching stems.
    [Show full text]
  • Mexican Mosquito Fern (Azolla Mexicana)
    COSEWIC Assessment and Update Status Report on the Mexican Mosquito-fern Azolla mexicana in Canada THREATENED 2008 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2008. COSEWIC assessment and update status report on the Mexican Mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 35 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous reports: COSEWIC. 2000. COSEWIC assessment and update status report on the Mexican mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 11 pp. Martin, M.E. 2000. Update COSEWIC status report on the Mexican mosquito-fern Azolla mexicana in Canada, in COSEWIC assessment and update status report on the Mexican mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-11 pp. Brunton, D.F. 1984. COSEWIC status report on the mosquito fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 36 pp. Production note: COSEWIC would like to acknowledge Brian Klinkenberg for writing the status report on the Mexican Mosquito-fern Azolla mexicana in Canada, prepared under contract with Environment Canada, overseen and edited by Erich Haber, Co-chair, COSEWIC Vascular Plants Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’azolle du Mexique (Azolla mexicana) au Canada – Mise à jour.
    [Show full text]
  • Getting to the Roots: a Developmental Genetic View of Root Anatomy and Function from Arabidopsis to Lycophytes
    fpls-09-01410 September 21, 2018 Time: 17:3 # 1 REVIEW published: 25 September 2018 doi: 10.3389/fpls.2018.01410 Getting to the Roots: A Developmental Genetic View of Root Anatomy and Function From Arabidopsis to Lycophytes Frauke Augstein and Annelie Carlsbecker* Department of Organismal Biology, Physiological Botany and Linnean Centre for Plant Biology in Uppsala, Uppsala University, Uppsala, Sweden Roots attach plants to the ground and ensure efficient and selective uptake of water and nutrients. These functions are facilitated by the morphological and anatomical structures of the root, formed by the activity of the root apical meristem (RAM) and consecutive patterning and differentiation of specific tissues with distinct functions. Despite the importance of this plant organ, its evolutionary history is not clear, but fossils suggest that roots evolved at least twice, in the lycophyte (clubmosses and their allies) and in the euphyllophyte (ferns and seed plants) lineages. Both lycophyte and euphyllophyte roots grow indeterminately by the action of an apical meristem, which is protected by a root cap. They produce root hairs, and in most species the vascular stele is Edited by: guarded by a specialized endodermal cell layer. Hence, most of these traits must have Annette Becker, evolved independently in these lineages. This raises the question if the development Justus Liebig Universität Gießen, Germany of these apparently analogous tissues is regulated by distinct or homologous genes, Reviewed by: independently recruited from a common ancestor of lycophytes and euphyllophytes. Hongchang Cui, Currently, there are few studies of the genetic and molecular regulation of lycophyte Florida State University, United States and fern roots.
    [Show full text]
  • Notes on Japanese Ferns II. by T. Nakai
    Notes on Japanese Ferns II. By T. Nakai (I.) PolypodiaceaeR. BROWN, Prodr. F1. Nov. Holland. p. I45 (i8io), pro parte. Plzysematiurn KAULFVSS in Flora (1829) p. 34I. The species of this genus have not articulation at the stipes of fronds. The indusium is complete sac, bursting irregularly in its maturity. DIEi.S took this for Woodsia on account of the lack of articulation at the stipes of Woodsia polystichoides. The ordinary Woodsiahas horizontal articulation in the middle of the stipes of the frond. But in Woodsiapolystichoides articulation comes at the upper end of the stipes. It is oblique and along the segmental line many lanceolate paleae arrange in a peculiar mode. DIETShas overlooked this fact, and perhaps CHRISTENSENhad the same view. By this peculiar mode of articulation Woodsiapolystichoides evidently repre- sents a distinct section Acrolysis NAKAI,sect. nov. However, the indusium of Woodsiapolystichoides is Woodsia-type; incomplete mem- brane covering the lower part of sorus and ending with hairs. This mode of indusium is fundamentally different from I'hysennatium,and I take Woodsia distinct from Plzysematzum. Among the numbers of species of Japanese Woodsia only one belongs to Pliysenzatium. P/zysernatiulnmanclzuricnse NAKAI, comb. nov. Woodsiamanclzuriensis W. J. HOOKER,2nd Cent. t. 98 (i86i). Diacalpe manclzuriensisTREVISAN Nuo. Giorn. Bot. Ital. VII. p. I6o (I875). Hab. Japonia, Corea, Manchuria et China bor. Vittaria formosana NAKAI,sp. nov. (Eu-Vittaria). Vittaria elongata (non SWARTZ)HARRINGTON in Journ. Linn. Soc. XVI. p. 3 3 (1878); pro parte, quoad plantam ex Formosa. BAKER July,1925 NAKAI-NOTESON JAPANESE FERNS II 177 in BRITTEN,Journ. Bot.
    [Show full text]
  • Waimea Inlet Restoration Information for Communities on Best Practice Approaches CONTENTS
    Waimea Inlet restoration Information for communities on best practice approaches CONTENTS 1. Purpose 1 2. Context 1 2.1 Why restore Waimea Inlet’s native ecosystems? 1 2.2 Long-term benefits of restoration 3 2.3 Threats to Waimea Inlet 3 2.4 ‘Future proofing’ for climate change 4 3. Legal considerations 4 4. Ways to get involved 5 4.1 Join an existing project 5 4.2 Set up your own project 5 4.3 Other ways to contribute 6 5. Basic principles for restoration projects 6 5.1 Habitat restoration and amenity planting values 6 5.2 Ecosourcing 7 5.3 Ecositing 7 6. Project planning and design 8 6.1 Restoration plan and objectives 8 6.2 Health and safety 9 6.3 Baseline surveys of the area’s history, flora, fauna and threats 9 7. Implementation – doing the restoration work 12 7.1 The 5 stages of restoration planting 12 7.2 How to prepare your site 14 7.3 How to plant native species 17 7.4 Cost estimates for planting 19 7.5 Managing sedimentation 19 7.6 Restoring whitebait habitat 19 7.7 Timelines 20 7.8 Monitoring and follow-up 20 Appendix 1: Native ecosystems and vegetation sequences in Waimea Inlet’s estuaries and estuarine margin 21 Appendix 2: Valuable riparian sites in Waimea Inlet for native fish, macroinvertebrates and plants 29 Appendix 3: Tasman District Council list of Significant Natural Areas for native species in Waimea Inlet estuaries, margins and islets 32 Appendix 4: Evolutionary and cyclical nature of community restoration projects 35 Appendix 5: Methods of weed control 36 Appendix 6: Further resources 38 1.
    [Show full text]
  • Identification Guide Freshwater Pests of NZ
    Freshwater pests of New Zealand Invasion of our freshwaters by alien species is a major issue. Today, few if any New Zealand water bodies support a biota that is wholly native. Over 200 freshwater plant and animal species have been introduced to New Zealand, many of which have naturalised and become pests, or have the potential to become pests. Impacts from these species are significant, including reduction in indigenous biodiversity, destabilisation of aquatic habitats, economic losses through lost power generation, impeded drainage or irrigation, and reduced opportunity for recreational activities like boating and fishing. The Ministry for the Environment publication Alien Invaders (Champion et al. 2002) outlines the entry pathways, methods of spread, and impacts and management of freshwater pests, and is recommended for anyone interested in this field. This freshwater pest identification guide is divided into three sections: fish, invertebrates, and plants. It provides keys to the identity of pest fish (7 species) and aquatic weeds (38 species) and provides photographs and information on the known distribution, identification features, similar species and how to distinguish them, dispersal mechanisms, and biosecurity risks for these and an additional 12 introduced invertebrates. The technical terms used in the keys are explained in a glossary at the back of the guide. If you find a pest species in a different locality to those listed in the guide, please forward this information to P. Champion, NIWA, P O Box 11115, Hamilton. Page 5 Page 23 Page 37 Page 84 Field key for identifying the main exotic fish in New Zealand freshwater (Italics indicate fish that key out as native species.
    [Show full text]
  • Molecular Identification of Azolla Invasions in Africa: the Azolla Specialist, Stenopelmus Rufinasus Proves to Be an Excellent Taxonomist
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303097315 Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist Article in South African Journal of Botany · July 2016 DOI: 10.1016/j.sajb.2016.03.007 READS 51 6 authors, including: Paul T. Madeira Martin P. Hill United States Department of Agriculture Rhodes University 24 PUBLICATIONS 270 CITATIONS 142 PUBLICATIONS 1,445 CITATIONS SEE PROFILE SEE PROFILE Julie Angela Coetzee I.D. Paterson Rhodes University Rhodes University 54 PUBLICATIONS 423 CITATIONS 15 PUBLICATIONS 141 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: I.D. Paterson letting you access and read them immediately. Retrieved on: 16 August 2016 South African Journal of Botany 105 (2016) 299–305 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist P.T. Madeira a,M.P.Hillb,⁎,F.A.DrayJr. a,J.A.Coetzeeb,I.D.Patersonb,P.W.Tippinga a United States Department of Agriculture, Agriculture Research Service, Invasive Plant Research Laboratory, 3225 College Avenue, Ft. Lauderdale, FL 33314, United States b Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa article info abstract Article history: Biological control of Azolla filiculoides in South Africa with the Azolla specialist Stenopelmus rufinasus has been Received 18 September 2015 highly successful. However, field surveys showed that the agent utilized another Azolla species, thought to be Received in revised form 18 February 2016 the native Azolla pinnata subsp.
    [Show full text]
  • Information Sheet 22: Azolla Filiculoides Water Fern
    Centre for Aquatic Plant Management Information Sheet 22: Azolla filiculoides Water fern Azolla filiculoides is probably the only species of floating fern found in Britain, although there are some known observations of A. caroliniana but no herbarium specimens to check. The plant is a native of North America, where A. filiculoides occurs in the west and A. caroliniana occurs in the east. The two species differ in the number of leaf hairs and the number of edge cells to the leaf fronds. The most characteristic feature of this plant is the red colouration taken on over the winter or when the plant is stressed, it is usually green during the summer months. It reproduces both vegetatively as the fronds grow and sexually by producing spores. Germinating spores can give rise to dense infestations of this plant and are the main method of overwintering. Spore production occurs as a result of stress when the plants start to form dense mats. The spores are released into the water so that controlling or harvesting the floating mats after this stage will not prevent re-infestation. The plant is free-floating often building up into thick layers where wind and currents collect it. Azolla can grow in any depth of water but is not tolerant of waves or turbulence and can be flushed away in fast flowing waters. Free-floating weeds tend to be most troublesome in static or very slow moving water and are usually flushed out of faster flowing rivers, except where they are held back by dams or weirs. It is unusual for Azolla to cause serious land drainage problems because it causes relatively low impedance to flow and tends to be washed out in periods of high flow.
    [Show full text]
  • Azolla-Anabaena Symbiosis : Its Physiology and Use in Tropical
    6. Azolla-Anabaena symbiosis - its physiology and use in tropical agriculture 1. WATANABE 1. Introduction Azolla is a water fem widely distributed in aquatic habitats like ponds, canals, and paddies in temperate and tropical regions. This plant has been of interest to botanists and Asian agronoTIÙsts because of its symbiotic association with a N2 ­ fIxing blue-green alga and rapid growth in nitrogen-defIcient habitats. Recently, the interest in this plant-alga association has been renewed by the demand for less fossil energy·dependent agricultural technology. Reviews on updatinginformation were made by Moore [20], Watanabe [42] ,and Lumpkin and Plucknett [19]. A bibliographic list was published by the Inter­ national Rice Research Institute [15] . 2. Biology and physiology of Azolla-alga relation Azolla belongs to the Azollaceae, a heterosporous free-floating fem, and is close to the family Salviniaceae. There are six extant species of Azolla (Table 1) and 25 fossil species are recorded [14]. These are divided into two subgenera: El{azolla, a New World azolla, and Rhizosperma. Species differentiation is based on the morphology of the sexual organ. The number of septa in the glochidia was used as a taxonomic tool to differentiate Euazolla. This criterion was questioned by taxonomists because of variations within a given species [10] . In the subgenus Rhizosperma, the glochidia are replaced by a root-like structure emerging from the massulae in the micro­ sporangium. In A. nilotica, neither the glochidia nor the root-lïke structure is present on the massulae (Fig. 1). Because the sporocarps are usually absent in naturally grown azolla, it is difft­ cult to identify species.
    [Show full text]
  • Water Spangles (Salvinia Minima) ERSS
    Water Spangles (Salvinia minima) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, December 2014 Revised, April 2018 Web Version, 8/19/2019 Photo: Kurt Stüber. Licensed under Creative Commons Attribution-Share Alike 3.0 Unported. Available: https://commons.wikimedia.org/wiki/File:Salvinia_minima_1.jpg. (April 2018). 1 Native Range and Status in the United States Native Range GISD (2018) lists Salvinia minima as native to Argentina, Belize, Bolivia, Brazil, Colombia, Cuba, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, Uruguay, and Venezuela. From Howard Morgan (2018): “Native Range: Central and South America; common and wide-ranging from southern Mexico to northern Argentina and Brazil (Mickel a[n]d Beitel 1988, [Stoltze] 1983). De la Sota (1976) 1 remarked that, in Argentina, the natural range of Salvinia minima could not be precisely determined due to its frequency in the watergarden and aquarium trade.” Status in the United States GISD (2018) lists Salvinia minima as alien, invasive and established in Alabama, Florida, Louisiana, Minnesota, New York, and Texas. Howard Morgan (2018) list Salvinia minima as present in the wild in Alabama (first report in 1982), Arkansas (first report in 1998), California (first report in 2008), Florida (first report in 1930), Georgia (first report in 1936), Idaho (first report in 2004), Louisiana (first report in 1980), Maryland (first report in 1984), Massachusetts (first report in 1992), Mississippi (first report in 1999), New Mexico (first report in 1999), New York (first report in 1990), Ohio (first report in 2017), Oklahoma (first report in 1989), Puerto Rico (first report in 1998), South Carolina (first report in 1997), and Texas (first report in 1992).
    [Show full text]