Transit of Venus Educational A

Total Page:16

File Type:pdf, Size:1020Kb

Transit of Venus Educational A $2 - 1 - DO NOT LOOK DIRECTLY AT THE SUN WITHOUT EYE PROTECTION. IF YOU DO, YOU WILL DAMAGE YOUR EYES FOREVER! In this book let we will discuss the transit of Venus, which is when the planet Venus drifts across the face of the Sun as we see it. At Sydney Observatory, we will use filters that block more than 99% of the harmful infra red and ultra violet radiation. Please ensure that everyone, especially children, only use the correct filters to look at the Sun. - 2 - It is possible to safely watch the transit yourself if you have a small telescope or a pair of binoculars. Use the telescope or the binoculars to project the image, as shown in the image above. With your back to the Sun, aim the telescope towards it (this is not as difficult to do as it sounds – use the shadow of the telescope) and focus its image onto a white card held about 200mm behind the eyepiece. Venus will appear as a black spot with a width of 1/33rd of the Sun’s width and should be easily seen. DO NOT LOOK THROUGH THE TELESCOPE OR BINOCULARS! Never leave the telescope unattended and ensure that children are supervised at all times. Viewing the projected image is quite safe, but looking through the telescope or binoculars will cause almost instant and irreversible blindness. For a direct safe view of the Sun, a pair of Sydney Observatory eclipse glasses can be purchased for $5.00 each. - 3 - Where will the 2012 transit of Venus be visible, and what about the weather? Image courtesy of Fred Espanak, NASA The transit of Venus occurs when the planet Venus drifts across the face of the Sun as we see it from Earth. You have to be in just the right position to see it and luckily here in Sydney, we will get a great view if the sky is clear. Yes, of course we are always worried about the weather! In the space below, keep a record of the weather for 6 June. The temperature at _________ (time) today is ______ °C (you will find a large thermometer in the Russell Room) Image courtesy of the Bureau of Meteorology Circle the picture above which best describes the weather today. If it is cloudy, try to identify what type of cloud it is and draw a circle around it. - 4 - Transit animation On the following pages, you will see several slightly different images of the transit. Hold the book in the centre at the top with your left hand and flip through the pages quickly from the front to the back. (The booklet needs to have been printed double-sided for this to work.) You will see a simple animation of Venus drifting across the Sun. We have put north at the top. - 5 - We now know there are about 130 billion galaxies in the observable Universe. The Universe is about 13.7 billion years old. - 6 - A single galaxy like the Milky Way may have 200,000 million stars in it. - 7 - There may be as many as 20,000 stars just like the Sun in the Milky Way. SUN FACTS − 5 billion years old − 1.4 million km diameter − 5,500°C surface temperature − 10 million°C core temperature − Converts 4 million tonnes of hydrogen into energy every second To see the latest videos and images of the Sun from space visit http://www.nasa.gov/mission_pages/soho/ - 8 - (not drawn to scale) The family of objects that travel around the star called the Sun (or “Sol”) is known as the Solar System. Our Solar System has one star, eight planets, nearly 200 moons, eight dwarf planets and millions of comets and asteroids; but do they just wander all over the place? - 9 - Lots of things rotate. This ice skater is rotating in an anticlockwise direction. Have you ever seen the hands of a clock If you can go to Sydney Observatory, look for the models move? If you watch very carefully you will of the Solar System called orreries like the one shown above. see them move but quite slowly. Then look for the planet models. Two spin clockwise and Put an arrowhead on the end of the curved one anticlockwise. line to show which way the hands move. This direction is called “clockwise”. 1. The planet ______________spins anticlockwise. 2. The planet ______________spins clockwise 3. The planet ______________spins clockwise - 10 - Faster than a speeding … It is sometimes difficult to understand how fast our planets move. Some racing cars can travel at 300km per hour which is about 80m per second. That is nearly the length of a football field every second! Passenger jets are even faster! They can travel at about 900km per hour which is about 250m per second. Both racing cars and jets are slow compared to the planets. Mercury orbits the Sun every 88 days at about 48km per second. Venus orbits the Sun every 225 days at 35km per second. Our Earth orbits the Sun every 365 Can you name the planets days at a slightly slower 30km per on the dais in order? second. - 11 - Many spacecraft have now been to Venus. The first landing on Venus was Venera 3 on 1 March 1966. It was from the former USSR but did not survive the incredible temperature of up to 463 °C and atmospheric pressure 92 times greater than on Earth. Perhaps you can design your own spacecraft to survive the hostile environment of Venus. Sputnik 7 was the first mission to fly by Venus in 1961 - 12 - As the planets orbit the Sun, sometimes they line up and eclipse, transit or block one another’s view. What happened to the Sun in the picture below? Where has it gone? It looks like some of the Sun has been removed, but it is really just the Moon moving between us and the Sun, creating a shadow. Image courtesy of Fred Espanak Did you know some people thought eclipses were caused by dragons eating the Sun and Moon! Sometimes everyday objects or people line up too and can make an unusual sight, like this! - 13 - Here we can see a simplified diagram of the Moon moving between the Earth and the Sun. This is called a solar eclipse. DO NOT LOOK DIRECTLY AT A SOLAR ECLIPSE! (not drawn to scale) - 14 - The Moon orbits the Earth every 29 days but it rarely passes through the Earth’s shadow. It does pass through the Earth’s shadow twice every three years to cause a lunar eclipse. These are safe to look at directly. The next total lunar eclipses that can be seen from Australia are: 1. 15 April 2014 2. 8 October 2014 3. 4 April 2015 4. 31 January 2018 This series of images was taken in December 2011. - 15 - Only three large objects can move between us and the Sun. Choose which three objects and draw a line from each one to its correct position. (not drawn to scale) - 16 - (approximate scale as seen from Earth) The three objects that pass between the Earth and the Sun are: 1. The planet Mercury, 2. The planet Venus, and 3. The Moon. - 17 - Venus is a very hot planet . The atmosphere is so “heavy” or dense it would crush us instantly. There is also a lot of volcanic activity. It is not a nice place compared to Earth. Draw a circle around the different features that you might find on Venus. Draw a cross through the features you wouldn’t find on Venus VENUS FACTS − Second planet from the Sun − Hottest planet in the Solar System, with temperatures reaching up to 463 ºC − Atmospheric pressure 92 times that on Earth − A day on Venus is 243 Earth days − Only 650km smaller than Earth - 18 - Mercury moves between us and the Sun about 13 or 14 times per century, Venus four times every 243 years and the Moon three times every two years. So why are we so interested in the rare transit of Venus? - 19 - In 1768 a famous voyage took the HMB Endeavour from England to Tahiti to see the 1769 transit of Venus. Who was the captain? ____________________________ The Astronomer Royal, Edmond Halley, worked out how to measure the size of the Solar System. The idea was simple but proved difficult to do. Astronomers had to carefully observe the transit of Venus from different locations. They had to record the EXACT times of the four contact points. We’ll talk more about them soon. At Sydney Observatory there is a model of the Endeavour. Internet question: What other famous ship had the same name? S _ _ _ _ S _ _ _ _ _ _ Endeavour - 20 - Captain James Cook 1728-1779 Did you know the cottage where James Cook was born was moved to Melbourne’s Fitzroy Gardens from England in 1934? We now know he took very good measurements of the four contact times: 1st contact is when Venus first touches the edge of the Sun. 2nd contact is when Venus is first fully inside the Sun. 3rd contact is when Venus touches the edge before leaving the Sun. 4th contact is the last touch of Venus on the edge of the Sun. Modern examination of Cook’s data showed his error was just 1.5 seconds! Using his data, the distance from the Earth to the Sun was between 149 and 151 million km. The current value is 149,598,000 km. - 21 - What did Tahiti and the planet Uranus have in common with King George III? Fort Venus At one time, both Tahiti and the planet Uranus were named after King George III, but not any more.
Recommended publications
  • Modelling and the Transit of Venus
    Modelling and the transit of Venus Dave Quinn University of Queensland <[email protected]> Ron Berry University of Queensland <[email protected]> Introduction enior secondary mathematics students could justifiably question the rele- Svance of subject matter they are being required to understand. One response to this is to place the learning experience within a context that clearly demonstrates a non-trivial application of the material, and which thereby provides a definite purpose for the mathematical tools under consid- eration. This neatly complements a requirement of mathematics syllabi (for example, Queensland Board of Senior Secondary School Studies, 2001), which are placing increasing emphasis on the ability of students to apply mathematical thinking to the task of modelling real situations. Success in this endeavour requires that a process for developing a mathematical model be taught explicitly (Galbraith & Clatworthy, 1991), and that sufficient opportu- nities are provided to students to engage them in that process so that when they are confronted by an apparently complex situation they have the think- ing and operational skills, as well as the disposition, to enable them to proceed. The modelling process can be seen as an iterative sequence of stages (not ) necessarily distinctly delineated) that convert a physical situation into a math- 1 ( ematical formulation that allows relationships to be defined, variables to be 0 2 l manipulated, and results to be obtained, which can then be interpreted and a n r verified as to their accuracy (Galbraith & Clatworthy, 1991; Mason & Davis, u o J 1991). The process is iterative because often, at this point, limitations, inac- s c i t curacies and/or invalid assumptions are identified which necessitate a m refinement of the model, or perhaps even a reassessment of the question for e h t which we are seeking an answer.
    [Show full text]
  • Lomonosov, the Discovery of Venus's Atmosphere, and Eighteenth Century Transits of Venus
    Journal of Astronomical History and Heritage, 15(1), 3-14 (2012). LOMONOSOV, THE DISCOVERY OF VENUS'S ATMOSPHERE, AND EIGHTEENTH CENTURY TRANSITS OF VENUS Jay M. Pasachoff Hopkins Observatory, Williams College, Williamstown, Mass. 01267, USA. E-mail: [email protected] and William Sheehan 2105 SE 6th Avenue, Willmar, Minnesota 56201, USA. E-mail: [email protected] Abstract: The discovery of Venus's atmosphere has been widely attributed to the Russian academician M.V. Lomonosov from his observations of the 1761 transit of Venus from St. Petersburg. Other observers at the time also made observations that have been ascribed to the effects of the atmosphere of Venus. Though Venus does have an atmosphere one hundred times denser than the Earth’s and refracts sunlight so as to produce an ‘aureole’ around the planet’s disk when it is ingressing and egressing the solar limb, many eighteenth century observers also upheld the doctrine of cosmic pluralism: believing that the planets were inhabited, they had a preconceived bias for believing that the other planets must have atmospheres. A careful re-examination of several of the most important accounts of eighteenth century observers and comparisons with the observations of the nineteenth century and 2004 transits shows that Lomonosov inferred the existence of Venus’s atmosphere from observations related to the ‘black drop’, which has nothing to do with the atmosphere of Venus. Several observers of the eighteenth-century transits, includ- ing Chappe d’Auteroche, Bergman, and Wargentin in 1761 and Wales, Dymond, and Rittenhouse in 1769, may have made bona fide observations of the aureole produced by the atmosphere of Venus.
    [Show full text]
  • Transit of Venus Presentation
    http://sunearthday.nasa.gov/2012/transit/webcast.php Venus visible Venus with the unaided eye: "morning star" or the Earth "evening star. • Similar to Earth: – diameter: 12,103 km – 0.95 Earth’s – mass 0.89 of Earth's – few craters -- young surface – densities, chemical compositions are similar • rotation unusually slow (Venus day = 243 Earth days -- longer than Venus' year) • rotation retrograde • periods of Venus' rotation and of its orbit are synchronized -- always same face toward Earth when the two planets are at their closest approach • greenhouse effect -- surface temperature hot enough to melt lead M ikhail Lomonosov, june 5, 1761 discovered, during a transit, that V enus has an atmosphere The atmosphere is is composed mostly of carbon dioxide. There are several layers of clouds, many kilometers thick, composed of sulfuric acid. Mariner 10 Image of Venus V enera 13 Venus’ orbit is inclined (by 3.39 degrees) relative to the ecliptic If in the same plane we would have 5 transits in 8 years Venus: 13 years , Earth: 8 years Each time Earth completes 1.6 orbits, Venus catches up to it after 2.6 of its orbits Progress of the 2004 Transit of Venus pictured from NASA's Soho solar observatory. Credit: NASA Ascending (A) or Duration since last transit Date of transit Descending (D) node (years and months) 6 December 1631 A 4 December 1639 A 8 yrs 6 June 1761 D 121 yrs 6 months 3 June 1769 D 8 yrs 9 December 1874 A 105 yrs 6 months 6 December 1882 A 8 yrs 8 June 2004 D 121 yrs 6 months 5 June 2012 D 8 yrs 11 December 2117 A 105 yrs 6 months 8 December 2125 A 8 yrs In 6000 years 81 transits only Venus’ Role in History Copernican System vs Ptolemaic System http://astro.unl.edu/classaction/animations/renaissance/venusphases.html Venus’ Role in History Size of the Solar System - Revealed! • Kepler predicted the transit of December 1631 (though not observed!) and 120 year cycle.
    [Show full text]
  • History of Science Society Annual Meeting San Diego, California 15-18 November 2012
    History of Science Society Annual Meeting San Diego, California 15-18 November 2012 Session Abstracts Alphabetized by Session Title. Abstracts only available for organized sessions. Agricultural Sciences in Modern East Asia Abstract: Agriculture has more significance than the production of capital along. The cultivation of rice by men and the weaving of silk by women have been long regarded as the two foundational pillars of the civilization. However, agricultural activities in East Asia, having been built around such iconic relationships, came under great questioning and processes of negation during the nineteenth and twentieth centuries as people began to embrace Western science and technology in order to survive. And yet, amongst many sub-disciplines of science and technology, a particular vein of agricultural science emerged out of technological and scientific practices of agriculture in ways that were integral to East Asian governance and political economy. What did it mean for indigenous people to learn and practice new agricultural sciences in their respective contexts? With this border-crossing theme, this panel seeks to identify and question the commonalities and differences in the political complication of agricultural sciences in modern East Asia. Lavelle’s paper explores that agricultural experimentation practiced by Qing agrarian scholars circulated new ideas to wider audience, regardless of literacy. Onaga’s paper traces Japanese sericultural scientists who adapted hybridization science to the Japanese context at the turn of the twentieth century. Lee’s paper investigates Chinese agricultural scientists’ efforts to deal with the question of rice quality in the 1930s. American Motherhood at the Intersection of Nature and Science, 1945-1975 Abstract: This panel explores how scientific and popular ideas about “the natural” and motherhood have impacted the construction and experience of maternal identities and practices in 20th century America.
    [Show full text]
  • The Earth Observer. July
    National Aeronautics and Space Administration The Earth Observer. July - August 2012. Volume 24, Issue 4. Editor’s Corner Steve Platnick obser ervth EOS Senior Project Scientist The joint NASA–U.S. Geological Survey (USGS) Landsat program celebrated a major milestone on July 23 with the 40th anniversary of the launch of the Landsat-1 mission—then known as the Earth Resources and Technology Satellite (ERTS). Landsat-1 was the first in a series of seven Landsat satellites launched to date. At least one Landsat satellite has been in operation at all times over the past four decades providing an uninter- rupted record of images of Earth’s land surface. This has allowed researchers to observe patterns of land use from space and also document how the land surface is changing with time. Numerous operational applications of Landsat data have also been developed, leading to improved management of resources and informed land use policy decisions. (The image montage at the bottom of this page shows six examples of how Landsat data has been used over the last four decades.) To commemorate the anniversary, NASA and the USGS helped organize and participated in several events on July 23. A press briefing was held over the lunch hour at the Newseum in Washington, DC, where presenta- tions included the results of a My American Landscape contest. Earlier this year NASA and the USGS sent out a press release asking Americans to describe landscape change that had impacted their lives and local areas. Of the many responses received, six were chosen for discussion at the press briefing with the changes depicted in time series or pairs of Landsat images.
    [Show full text]
  • Telescopes and Binoculars
    Continuing Education Course Approved by the American Board of Opticianry Telescopes and Binoculars National Academy of Opticianry 8401 Corporate Drive #605 Landover, MD 20785 800-229-4828 phone 301-577-3880 fax www.nao.org Copyright© 2015 by the National Academy of Opticianry. All rights reserved. No part of this text may be reproduced without permission in writing from the publisher. 2 National Academy of Opticianry PREFACE: This continuing education course was prepared under the auspices of the National Academy of Opticianry and is designed to be convenient, cost effective and practical for the Optician. The skills and knowledge required to practice the profession of Opticianry will continue to change in the future as advances in technology are applied to the eye care specialty. Higher rates of obsolescence will result in an increased tempo of change as well as knowledge to meet these changes. The National Academy of Opticianry recognizes the need to provide a Continuing Education Program for all Opticians. This course has been developed as a part of the overall program to enable Opticians to develop and improve their technical knowledge and skills in their chosen profession. The National Academy of Opticianry INSTRUCTIONS: Read and study the material. After you feel that you understand the material thoroughly take the test following the instructions given at the beginning of the test. Upon completion of the test, mail the answer sheet to the National Academy of Opticianry, 8401 Corporate Drive, Suite 605, Landover, Maryland 20785 or fax it to 301-577-3880. Be sure you complete the evaluation form on the answer sheet.
    [Show full text]
  • Astronomical Binoculars
    30˚E 15˚E OWNER’S MANUAL ASTRONOMICAL BINOCULARS ZHUMELL 20X80 SUPERGIANT ASTRONOMICAL BINOCULARS 0˚ 15˚W 75˚W 60˚W 30˚W 45˚W Zhumell customers know that there are plenty of ways to experience the world. They also understand that, however you choose to explore it, the best experience is one that fully immerses you in the world’s most striking details. That’s where our optics products come in. We strive to put high-performance products in the hands of our customers so that they can experience the world up close, with their own eyes. With Zhumell, you get field-tested, precision-crafted optics at the best possible value. So even if you’re just starting out as an amateur birder or astronomer, you don’t have to settle for entry-level products. Zhumell customers enjoy life’s pursuits, hobbies, and adventures in rich, colorful detail- the kind of detail that only high-performance optics can produce. At Zhumell, we design our binoculars, telescopes, and spotting scopes for discerning, price-conscious users who are uncompromising on quality. If you’re looking for accessibly priced optics that will bring your world within reach, you’re looking for Zhumell. Enjoy the view. 2 ENJOYING YOUR ZHUMELL ASTRONOMICAL BINOCULARS 1. Caring For Your Binoculars 2. Using Your Binoculars i. Tripod Mounting ii. Interpupillary Distance iii. Center and Diopter Focus 3. Terrestrial and Astronomical Viewing 4. Astronomical Observation Tips i. Selecting a Viewing Site ii. Seeing and Transparency iii. Dark-Adapting iv. Tracking Celestial Objects 5. Cool Views i. The Moon ii.
    [Show full text]
  • Viewing an Eclipse Safely
    ECLIPSES SOLAR an eclipse safely How to observe SOLAR ECLIPSE, OCTOBER 2014, BY LEMAN NORTHWAY Solar eclipses are quite rare and are often a major event. The SOLAR ECLIPSES Moon passes right in front of the Sun, blotting out its disc. Every time a solar eclipse occurs there are various things to look for. However, it is extremely dangerous to just go out and look up. The Sun is so bright that just looking at it can blind you, so you’ll need to prepare beforehand. There are various ways to observe eclipses safely, using both everyday materials and telescopes or binoculars. So read this leaflet Introduction to find out what happens during an eclipse and how you can see all the stages of the event safely. This booklet was written by the Royal Astronomical Society with The Society for Popular Astronomy and is endorsed by the British Astronomical Association The Royal Astronomical The Society for Popular Formed in 1890, the Society, founded in Astronomy is for British Astronomical 1820, encourages and beginners of all ages. Our Association has an promotes the study of aim is to make astronomy international reputation astronomy, solar-system fun, and our magazine, for the quality of science, geophysics and Popular Astronomy, is full its observational closely related branches of information to help and scientific work. of science. you get to know the Membership is open to www.ras.org.uk sky and get involved. We even have a special Young all persons interested in HIGGS-BOSON.COM JOHNSON: PAUL BY D Stargazers section, run by TV’s Lucie Green.
    [Show full text]
  • Venus Transit 5−6 June 2012 (From 22:00 to 4:56 UT) Australia, Japan, Norway
    Venus Transit 5−6 June 2012 (from 22:00 to 4:56 UT) Australia, Japan, Norway Objective The main objective of the venus-2012.org project is the observation of the Venus Transit that will take place on 5th/6th June 2012 (see Fig. 1) from three locations: Australia, Japan and Norway. In particular the project will: 1) Perform live broadcasting of the event (sky-live.tv). 2) Promote educational activities usingFIGURE images 1 obtained during the transit (astroaula.net). Global Visibility of the Transit of Venus of 2012 June 05/06 Region X* Greatest Transit Transit at Zenith Transit Sunset Sunset Begins Ends at at IV I IV I Transit at at Entire Ends No Transit III II III II Sunrise in Progress Begins Transit Sunrise in Progress Transit at Sunset Visible Transit Visible at Sunrise Transit (June 05) (June 06) Region Y* F. Espenak, NASAs GSFC eclipse.gsfc.nasa.gov/OH/transit12.html * Region X - Beginning and end of Transit are visible, but the Sun sets for a short period around maximum transit. * Region Y - Beginning and end of Transit are NOT visible, but the Sun rises for a short period around maximum transit. Figure 1. Earth map showing visibility of the Venus transit in 2012 (credit F. Espenak, NASA/GSFC). The Phenomenon A transit of an astronomical object occurs when it appears to move across the disc of another object which has a larger apparent size. There are different types of transits, like the Galilean moons on Jupiter’s disc, and exoplanets moving across their mother star.
    [Show full text]
  • Bibliography from ADS File: Gingerich.Bib June 27, 2021 1
    Bibliography from ADS file: gingerich.bib Gingerich, O., “Year of astronomy: Mankind’s place in the Universe”, August 16, 2021 2009Natur.457...28G ADS Gingerich, O., “Book Review: Mikołaj Kopernik Dzieła Wszystkie, iii”, 2008JHA....39..416G ADS Gingerich, O., “The Role of Ephemerides from Ptolemy to Kepler”, Gingerich, O., “Not so amateur”, 2008Natur.453..156G ADS 2017ASSP...50...17G ADS Gingerich, O.: 2007a, Revisiting The Fitness of the Environment, 20 Gingerich, O., “Book Review: The Abridged Almagest”, 2007fcl..book...20G ADS 2016JHA....47..448G ADS Gingerich, O., “Publish or Perish: The Case of Thomas Harriot”, Gingerich, O.: 2016b, Copernicus: A Very Short Introduction 2007AAS...211.3401G ADS 2016cvsi.book.....G ADS Gingerich, O., “Quests of a theoretical astronomer”, 2007Natur.450..480G Gingerich, O., “Book Review: Longitude for the Coffee Table”, ADS 2016JHA....47..224G ADS Gingerich, O., “Book review: Heinrich Rantzau und die Astrologie / Disqui- Gingerich, O., “Letter: On Galileo and the Moon”, 2016JRASC.110...95G sitiones Historiae Scientiarum, Braunschweiger Beiträge zur Wissenschafts- ADS geschichte, Band 2; Braunschweig, 318 pp., 2004, ISBN 3-927939-65-X.”, Gingerich, O., “Book Review: Studien zur ”Sphaera’ des Johannes de Sacro- 2007JHA....38..510G ADS bosco”, 2015JHA....46..101G ADS Gingerich, O., “Gutenberg’s Gift”, 2007ASPC..377..319G ADS Pasachoff, J. M., Needham, P. S., Wright, E. T., & Gingerich, O., “Recreating Gingerich, O., “Book Review: le Conflit Entre L’astronomie Nouvelle et Galileo’s 1609 Discovery of Lunar Mountains”,
    [Show full text]
  • The Icha Newsletter Newsletter of the Inter-Union Commission For
    International Astronomical Union International Union of the History and Philosophy of Science DHS/IUHPS ______________________________________________________________________________________________________________________ THE ICHA NEWSLETTER NEWSLETTER OF THE INTER-UNION COMMISSION FOR HISTORY OF ASTRONOMY* ____________________________________________________________ __________________________________________________________ No. 12 – November 2011 SUMMARY A. C41/ICHA Programme at the 2012 Beijing IAU General Assembly by C. Ruggles ............................................................................................................ 2 B. 2012-2015 C41 Organizing Committee Elections by C. Ruggles ……...…… 3 C. Journals and Publications: - Acta Historica Astronomiae by H.W. Duerbeck ........................................ 4 Books 2011 …………………………………………………………………. 5 Some research papers by C41/ICHA members – 2011…… ........................... 5 D. News - Formation of Johannes Kepler Working Group by A. E. L. Davis ………. 5 - The Transit of Venus Working Group Activities by H. W. Duerbeck ….. 6 o Solar parallax Conference (Announcement) o Venus Transit Conference (Announcement) o Special Venus Transit issue of JAHH (Announcement) - Sullivan Papers Available by E. N. Bouton ..…………………………… 7 - History of astronomy in India by B. S. Shylaja …………….………….… 8 - 3 rd Conference on Cultural Astronomy by E. Badolati…………..………. 9 - Nexus International Conference on Architecture and Mathematics by G. Magli ……………………………………………………………………. 10 E. ICHA Member
    [Show full text]
  • Transit of Venus M
    National Aeronautics and Space Administration The Transit of Venus June 5/6, 2012 HD209458b (HST) The Transit of Venus June 5/6, 2012 Transit of Venus Mathof Venus Transit Top Row – Left image - Photo taken at the US Naval Math Puzzler 3 - The duration of the transit depends Observatory of the 1882 transit of Venus. Middle on the relative speeds between the fast-moving image - The cover of Harpers Weekly for 1882 Venus in its orbit and the slower-moving Earth in its showing children watching the transit of Venus. orbit. This speed difference is known to be 5.24 km/sec. If the June 5, 2012, transit lasts 24,000 Right image – Image from NASA's TRACE satellite seconds, during which time the planet moves an of the transit of Venus, June 8, 2004. angular distance of 0.17 degrees across the sun as Middle - Geometric sketches of the transit of Venus viewed from Earth, what distance between Earth and by James Ferguson on June 6, 1761 showing the Venus allows the distance traveled by Venus along its shift in the transit chords depending on the orbit to subtend the observed angle? observer's location on Earth. The parallax angle is related to the distance between Earth and Venus. Determining the Astronomical Unit Bottom – Left image - NOAA GOES-12 satellite x-ray image showing the Transit of Venus 2004. Middle Based on the calculations of Nicolas Copernicus and image – An observer of the 2004 transit of Venus Johannes Kepler, the distances of the known planets wearing NASA’s Sun-Earth Day solar glasses for from the sun could be given rather precisely in terms safe viewing.
    [Show full text]