12Th International Symposium on Biogeochemistry of Wetlands

Total Page:16

File Type:pdf, Size:1020Kb

12Th International Symposium on Biogeochemistry of Wetlands 12th International Symposium on Biogeochemistry of Wetlands April 23-26, 2018 Coral Springs, Florida, USA www.conference.ifas.ufl.edu/biogeo2018 12th International Symposium on Biogeochemistry of Wetlands About the Symposium Wetland biogeochemistry is dynamic and involves cycling or exchange or flux of materials between living and non-living components of an ecosystem. Biogeochemistry is an interdisciplinary science which includes the study of interactive biological, geological and chemical processes regulating the fate and transport of nutrients and contaminants in soil, water and atmospheric components of an ecosystem. Biogeochemistry also provides a framework to integrate physical, chemical and biological processes functioning in an ecosystem at various spatial and temporal scales. This international symposium provides a framework for scientists to share technical information on various topics related to coupled biogeochemical cycling of macro-elements and associated organic and inorganic contaminants. The goal is to improve our understanding of the role wetlands perform in regulating and mitigating impacts of global climate change and sea level rise. 2 April 23-26, 2018 | Coral Springs, Florida, USA Table of Contents About the Symposium ................................................................. 2 Welcome Letter from Conference Chairs ................................. 5 Committee & Organizer Recognition ........................................ 6 Sponsor Recognition ....................................................................7 Sponsor Descriptions .................................................................. 8 Plenary Sessions ......................................................................... 10 Biographies.................................................................................. 12 Post-Conference Field Trip ....................................................... 15 Agenda-at-a-Glance .................................................................. 16 Detailed Agenda ..........................................................................17 Poster Display Information .......................................................26 Poster Directory .......................................................................... 27 PDHs for Engineers and Continuing Education .....................30 Additional Information .............................................................. 31 Abstract Compilation ................................................................. 33 Notes .......................................................................................... 192 3 April 23-26, 2018 | Coral Springs, Florida, USA Welcome Letter Greetings and Welcome to Coral Springs! The Wetland Biogeochemistry Laboratory, a research unit within the UF/IFAS Soil and Water Sciences Department, is very excited to host the 12th International Symposium on Biogeochemistry of Wetlands, April 23-26, 2018. We welcome your participation in this symposium. The objective of this international symposium is to provide a framework for scientists to discuss new topics related to biogeochemistry of nutrients and other contaminants in freshwater and coastal wetlands. The focus of the symposium will be on “Protecting the Future of Water." Wetland systems serve as sinks, sources and transformers of nutrients and other chemical contaminants and therefore can have a significant impact on water quality and productivity of ecosystems. The primary driver of these processes is ecosystem biogeochemistry, and includes the intersection of chemical, physical and biological processes in the soil and water column. These processes operate at various spatial and temporal scales. Our location here in Coral Springs, Florida can’t help but remind us of the fragile nature of our wetland systems. South Florida’s Everglades, recognized internationally, encompasses nearly 18,000 square miles of the southern tip of the Florida peninsula – from the Kissimmee River basin all the way south to the shores of Florida Bay and the Gulf of Mexico. Historically this vast, free-flowing, shallow river of grass provided clean water and pristine habitats, supported numerous wading and migratory birds, as well as Florida Panthers, manatees and deer. However, the system has been widely impacted by levees, canal-associated drainage projects and nutrient loading, primarily phosphorus. We hope you will take an opportunity to see this amazing wetland in person while you are here. While listening to the exciting research being presented, remember that the International Symposium on Biogeochemistry of Wetlands is an opportunity for all of us to meet new colleagues, reunite with old ones, and learn what research is ongoing around the globe. The Conference Planning and Program Committees worked diligently to develop a wide ranging and inclusive lineup of talks and posters focused on wetland biogeochemistry. We hope you enjoy the program of presentations and have an opportunity to teach others about what you do and where you work. Finally, a few words of appreciation. We would like to first thank our generous Sponsors listed on page 7, whose financial support is critical to making this conference a reality. We are also grateful to those who gave of their time and expertise to organize and moderate sessions, and to share their expertise with us. Further, we would be remiss without thanking all of the many individuals recognized on page 6, who volunteered their personal time and energy to organize and plan this conference. And of course, we would also like to thank those who submitted abstracts, are giving talks and are presenting posters. Were it not for you and the work you do, we would not have had the privilege of organizing such a great symposium. Have a great week, enjoy yourself, and when you leave, we trust you will take away new information, new connections, and new tools and knowledge you can use to advance wetland science in your respective corners of the globe. Best regards, Todd Z. Osborne John R. White Conference Chair Conference Co-Chair Whitney Laboratory for Marine Bioscience Oceanography & Coastal Sciences Department University of Florida Louisiana State University 5 12th International Symposium on Biogeochemistry of Wetlands Committee & Organizer Recognition Planning Committee Dr. Todd Z. Osborne, Conference Chair, Assistant Professor, UF/IFAS Soil and Water Sciences Department, University of Florida, Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA Dr. John R. White, Conference Co-Chair, Professor, Louisiana State University, Department of Oceanography and Coastal Sciences, Baton Rouge, LA, USA Dr. K. Ramesh Reddy, Conference Advisor, Graduate Research Professor and Chair, UF/IFAS Soil and Water Sciences Department, Gainesville, FL, USA Program Committee and Session Organizers Professionals from the wetlands biogeochemistry science community organized sessions on topics relevant to their restoration programs. This process took several months and numerous volunteer hours. We would like to thank the following individuals for their time, effort and expertise on behalf of the symposium. Session # Organizers 1, 4 Dr. Patrick Megonigal, Smithsonian Environmental Research Center, Edgewater, MD, USA 2 Dr. David Krabbenhoft, U.S. Geological Survey, Middleton, WI, USA 3 Dr. Ilka Feller, Smithsonian Environmental Research Center, Edgewater, MD, USA 5, 8 Dr. Patrick Inglett, University of Florida, Soil and Water Sciences Department, Gainesville, FL, USA 6 Dr. Lauren Kinsman-Costello, Kent State University, Kent, OH, USA 7 Dr. Sue Newman, South Florida Water Management District (SFWMD), West Palm Beach, FL, USA 9 Prof. Curtis Richardson, Duke University Wetland Center, Durham, NC, USA – and – Dr. Jeff Chanton, Florida State University, Tallahassee, FL, USA 10, 14, 18 Dr. Gail Chmura, McGill University, Montreal, Quebec, Canada 11 Dr. Todd Osborne, University of Florida, Whitney Laboratory for Marine Bioscience, St. Augustine, FL, USA 12 Ms. Kimberli Ponzio, St. Johns River Water Management District (SJRWMD), Palatka, FL, USA 16 Dr. John White, Louisiana State University, Baton Rouge, LA, USA 20 Dr. Odi Villapando, South Florida Water Management District (SFWMD), West Palm Beach, FL, USA 23 Dr. Anna Knox, Savannah River National Laboratory, Aiken, SC, USA 24 Dr. Jacob Berkowitz, U.S. Army Corps of Engineers, Vicksburg, MS, USA 6 April 23-26, 2018 | Coral Springs, Florida, USA Sponsor Recognition Thank you to all of the organizations that supported this premier event. This symposium would not be possible with you. Silver Sponsors DB Environmental, Inc. Louisiana Sea Grant Louisiana State University | College of the Coast & Environment OTT Hydromet Picarro, Inc. University of Central Florida | National Center for Integrated Coastal Research University of Florida Office of Research UF/IFAS Research UF/IFAS Soil & Water Sciences Department Bronze Sponsors City of Orlando University of Florida, Whitney Laboratory for Marine Bioscience 7 12th International Symposium on Biogeochemistry of Wetlands Sponsor Descriptions Please join us in thanking all of our sponsors for investing their time, resources and finances in support of the symposium. We could not have done it without you. Silver Sponsors DB Environmental, Inc. DB Environmental, Inc., (DBE) is a wetland research firm with substantial expertise in aquatic biogeochemistry, hydrology and modeling. For decades, DBE has been a key scientific consultant on some of the world’s largest and most prominent
Recommended publications
  • Ph.D. Positions in Biogeochemistry / Environmental Chemistry / Boreal Forest
    Ph.D. positions in Biogeochemistry / Environmental chemistry / Boreal forest The Laboratory of Terrestrial Biogeochemistry of the Université de Sherbrooke (Qc, Canada) is seeking for applicants to fill one or two Ph.D positions in Biogeochemistry / Environmental chemistry. Presentation of the University: Located in Canada, in the Province of Quebec, the Université de Sherbrooke is a French- speaking institution that offers you the opportunity to benefit from an academic education that is recognized and valued around the world. The Université de Sherbrooke has been welcoming international students ever since it was founded and each year the numbers increase. Currently, more than 1600 foreign students from 120 countries worldwide attend the Université de Sherbrooke. In Quebec, universities are the only source of higher education. The North-American system is not comprised of grandes écoles or private higher education institutions. North-American universities are considered prestigious establishments and students receive high quality training and recognized diplomas. They can be compared to the European institutes of higher education (grandes écoles) for the quality of education. The Université de Sherbrooke is situated in the southern part of Quebec, 150 km from Montréal, 220 km from Québec City and some 40 km from the American border. http://www.usherbrooke.ca/ Presentation of the Laboratory: The research developed in the Laboratory aims to characterize metal dynamics in soil and its impact on microbial activity with a specific interest for N2 fixing organisms. We are particularly focusing on metal acquisition and use by N2 fixing organisms. Our research relies on a strong expertise in analytical chemistry, associated to solid knowledge in biology and soil sciences.
    [Show full text]
  • Index to Volume 60
    PALM S Index to Vol. 60 Vol. 60(4) 2016 Index to Volume 60 A new species of Attalea from the Bolivian Attalea crassispatha 97, 113 lowlands 161 Attalea eichleri 111 A university palmetum 93 Attalea exigua 112 Acoelorrhaphe 97 Attalea huebneri 61, 69, 73, 74, 76, 114, Acoelorrhaphe wrightii 25–28, 97 117–119, 123 Acrocomia crispa 97, 113 Attalea insignis 76, 123 Adonidia dransfieldii 15 Attalea macrocarpa 122, 123 Adonidia merrillii 15, 97 Attalea maripa 59, 72, 74, 76 Aiphanes horrida 67, 70, 74, 113 Attalea moorei 58, 59, 62–64, 66–70, 72–74, Aiphanes minima 113 76, 117–121, 123 Aiphanes weberbaueri 72 Attalea osmantha 123 Andriamanantena, A.Z., as co-author 169 Attalea pacensis 162–165, 167 Ali, O.M.M.: The argun palm, Medemia Attalea peruviana 62, 64, 65, 77, 112, 122, argun , in the eastern Nubian Desert of 123 Sudan 145 Attalea phalerata 63, 68, 69, 73–76, 114, Allagoptera 111 117–120, 123, 162, 163, 165, 167 Areca 18 Attalea plowmanii 58, 62–64, 76, 110, 117, Areca catechu 3, 19 123 Arenga 17 Attalea polysticha 64, 65, 76, 112, 116 Arenga caudata 43 Attalea princeps 59, 71, 73, 76, 77, 118, 123, Arenga hookeriana 43 161, 162, 165, 167 Arenga pinnata 97 Attalea racemosa 62, 76 Arenga undulatifolia 97 Attalea rostrata 123 Aspects and causes of earlier and current Attalea salazarii 58, 61, 62 spread of Trachycarpus fortunei in the Attalea septuagenata 76 forests of southern Ticino and northern Attalea speciosa 76 Lago Maggiore (Switzerland, Italy) 125 Attalea tessmannii 59, 62, 64, 76, 113, 121, Astrocaryum 39, 113, 114 122 Astrocaryum carnosum 70 Attalea weberbaueri 59, 66, 67, 72, 73, 77, Astrocaryum faranae 70, 72 111, 112, 114, 119, 121, 123 Astrocaryum gratum 76 Attalea : Insights into the diversity and Astrocaryum huicungo 69 phylogeny of an intriguing genus 109 Astrocaryum perangustatum 72 Bactris 39 Astrocaryum ulei 74 Bactris gasipaes 39 Attalea 9, 11, 12, 18, 21, 39, 57–59, 63, 64, Bactris hirta 74 66, 69, 72, 74, 76, 77, 109–116, 121, Baker, W.J., W.L.
    [Show full text]
  • The Role of Dust in Climate Change: a Biogeochemistry Perspective Gisela Winckler1, F
    92 WORKSHOP REPORT doi.org/10.22498/pages.26.2.92 The role of dust in climate change: A biogeochemistry perspective Gisela Winckler1, F. Lambert2 and E. Shoenfelt1 Las Cruces, Chile, 8-10 January 2018 Mineral-dust aerosols are critically important components of climate and Earth system dynamics as they affect radiative forcing, precipitation, atmospheric chemistry, sur- face albedo of ice sheets, and marine and terrestrial biogeochemistry, over significant portions of the planet. Dust-borne iron is recognized to be an important micronutrient in regulating the magnitude and dynamics of ocean primary productivity and affecting the carbon cycle under past and modern climate conditions. Paleodata suggest large fluctua- tions in atmospheric dust over the geologi- cal past. However, dust-transport models struggle to reproduce observed spatial and temporal dust-flux variability. In addition, ob- servational and modeling studies based in the current climate suggest that not all iron Figure 1: representation of the major processes in the ocean iron cycle from Tagliabue et al. 2017. reprinted by in dust is equally available to continental and permission from Springer Nature. ocean biota. Iron solubility varies dramati- cally, depending on mineralogy and state of emissions, from geochemically identifying that may have been more highly impacted by soils, as well as atmospheric processing by and tracing source regions to deposition in glacier physical weathering, and have been acids. Modeling studies, however, still mostly the surface ocean. Participants discussed the shown to have a different mineral composi- assume constant solubility. effects on the solubility and bioavailability tion as a result. The goal of this effort is to of iron at each of these stations in the dust combine the highly varied range of expertise The PAGES Dust Impact on Climate and cycle, including the influence of dust source to better quantify the bioavailable iron in dif- Environment (DICE) working group held its and mineralogy on dust solubility and bio- ferent dust sources across space and time.
    [Show full text]
  • Ecological Biogeochemistry Schedule (September 6, 2005)
    2005 Ecological Biogeochemistry Schedule (September 6, 2005) EFB 415 & 610 Time: Monday and Wednesday 12:45 p.m. to 2:15 p.m. Place: Illick 16 Instructor: M.J. Mitchell Texts: Likens, G.E. and F.H. Bormann. 1995. Biogeochemistry of a Forested Ecosystem. Second Edition. Springer- Verlag, New York. 159 p. Schlesinger, W.H. 1997. Biogeochemistry: an Analysis of Global Change. Second Edition. Academic Press, San Diego, CA. 588 p. SCHEDULE Date Topic Lecturer Readings or Discussion Likens & Schlesinger Other (Subject to Change)1 Bormann Mon., Introduction to Course Mitchell Chapter 1 Chapter 1 Aug. 29 Wed., Major Pools and Processes Mitchell Chapters 2, 3 Chapters 2 & 10 Aug. in Biogeochemistry & 4. 31 Mon., Labor Day, No Class Sept. 5 Wed., Small watershed approach Mitchell Review Church (1997)2, Sept., with special attention to Chapters 1-3. The Hubbard Brook Ecosystem Study 7 HBEF. Introduction to (1995)3 student projects and Groffman et al. (2004)4 presentations. Mon., Instrumentation Mitchell Mitchell et al. (2001)5 Sept. 12 Wed., History of Mitchell Gorham (1991)6 Sept. Biogeochemistry 14 Date Topic Lecturer Readings or Discussion Likens & Schlesinger Other (Subject to Change)1 Bormann Mon., Introduction to Carbon Mitchell Chapter 5, Falkowski et al. (2000)7 Sept. Preliminary project topics Chapter 7 (p. Goodale et al. (2002)8 19 due for student proposals. 246-251), Chapter 9 (p. 301-307) Wed., Carbon continued Mitchell Chapter 11 Fahey et al. (2005)9 Sept. Raymond and Cole (2003)10 21 Mon., Discussion on carbon and Mitchell Field and Fung (1999)11 Sept. global change.
    [Show full text]
  • The Atom, the Environment and Sustainable Development
    The Atom, the Environment and Sustainable Development International Atomic Energy Agency Vienna International Centre, PO Box 100 1400 Vienna, Austria 14-32961 (c) IAEA, 2014 Printed by the IAEA in Austria Printed on FSC certified paper. September 2014 www.iaea.org/Publications/Booklets The Atom, the Environment and Sustainable Development Table of Contents Foreword 3 The IAEA and the Environment 5 Understanding the Environment 6 Water and Climate Change 6 Groundwater and Surface Water Interactions 6 Water Quality and Pollutants 7 Ocean Acidification 7 Oceanic Carbon Cycle 8 Marine Organisms: Bioaccumulation of Contaminants 9 Soil-Water-Plant Systems 9 Soil Erosion 10 Agriculture and Climate Change 10 Nitrogen Sources in Agriculture 11 Animal Digestion 11 Livestock Genomes 12 Behaviour of Radionuclides in the Environment 13 Protecting People and the Environment 15 Setting the Standard 15 Clean Technology 15 Biogas Technology 16 Sustainable Base-Load Power Generation 16 Managing Discharges from Radiological Sources 16 Harmful Algal Blooms and Seafood Safety 17 Pesticides and Biological Control Agents 18 Invasive Pests and Food Waste 19 Mutation Breeding 19 Monitoring the Environment and Contaminants 21 Improving Capacity to Monitor Environmental Contaminants 21 Environmental Monitoring Networks 23 Food Safety 23 Monitoring Radionuclides from Nuclear Facilities and Applications 24 Radioactive Waste and Spent Fuel Management 24 Waste Management from Nuclear Accidents 25 Environmental Remediation 27 Setting the Baseline 27 Building Capacity for Remediation 28 Remediation Technology 28 Conclusion 29 Foreword The IAEA has a broad mandate to facilitate areas mentioned above, nuclear science and nuclear applications in a number of areas and technology can make a particularly valuable scientific disciplines.
    [Show full text]
  • Nanostructure of Biogenic Versus Abiogenic Calcium Carbonate Crystals
    Nanostructure of biogenic versus abiogenic calcium carbonate crystals JAROSŁAW STOLARSKI and MACIEJ MAZUR Stolarski, J. and Mazur, M. 2005. Nanostructure of biogenic versus abiogenic calcium carbonate crystals. Acta Palae− ontologica Polonica 50 (4): 847–865. The mineral phase of the aragonite skeletal fibers of extant scleractinians (Favia, Goniastrea) examined with Atomic Force Microscope (AFM) consists entirely of grains ca. 50–100 nm in diameter separated from each other by spaces of a few nanometers. A similar pattern of nanograin arrangement was observed in basal calcite skeleton of extant calcareous sponges (Petrobiona) and aragonitic extant stylasterid coralla (Adelopora). Aragonite fibers of the fossil scleractinians: Neogene Paracyathus (Korytnica, Poland), Cretaceous Rennensismilia (Gosau, Austria), Trochocyathus (Black Hills, South Dakota, USA), Jurassic Isastraea (Ostromice, Poland), and unidentified Triassic tropiastraeid (Alpe di Specie, It− aly) are also nanogranular, though boundaries between individual grains occasionally are not well resolved. On the other hand, in diagenetically altered coralla (fibrous skeleton beside aragonite bears distinct calcite signals) of the Triassic cor− als from Alakir Cay, Turkey (Pachysolenia), a typical nanogranular pattern is not recognizable. Also aragonite crystals produced synthetically in sterile environment did not exhibit a nanogranular pattern. Unexpectedly, nanograins were rec− ognized in some crystals of sparry calcite regarded as abiotically precipitated. Our findings support the idea that nanogranular organization of calcium carbonate fibers is not, per se, evidence of their biogenic versus abiogenic origin or their aragonitic versus calcitic composition but rather, a feature of CaCO3 formed in an aqueous solution in the presence of organic molecules that control nanograin formation. Consistent orientation of crystalographic axes of polycrystalline skeletal fibers in extant or fossil coralla, suggests that nanograins are monocrystalline and crystallographically ordered (at least after deposition).
    [Show full text]
  • Strategies for the Simulation of Sea Ice Organic Chemistry: Arctic Tests and Development
    geosciences Article Strategies for the Simulation of Sea Ice Organic Chemistry: Arctic Tests and Development Scott Elliott 1,*, Nicole Jeffery 1, Elizabeth Hunke 1, Clara Deal 2, Meibing Jin 2 ID , Shanlin Wang 1, Emma Elliott Smith 3 and Samantha Oestreicher 4 1 Climate Ocean Sea Ice Modeling (COSIM), Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected] (N.J.); [email protected] (E.H.); [email protected] (S.W.) 2 International Arctic Research Center and University of Alaska, Fairbanks, AK 99775, USA; [email protected] (C.D.), [email protected] (M.J.) 3 Biology Department, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] 4 Applied Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-505-606-0118 Received: 11 April 2017; Accepted: 21 June 2017; Published: 14 July 2017 Abstract: A numerical mechanism connecting ice algal ecodynamics with the buildup of organic macromolecules is tested within modeled pan-Arctic brine channels. The simulations take place offline in a reduced representation of sea ice geochemistry. Physical driver quantities derive from the global sea ice code CICE, including snow cover, thickness and internal temperature. The framework is averaged over ten boreal biogeographic zones. Computed nutrient-light-salt limited algal growth supports grazing, mortality and carbon flow. Vertical transport is diffusive but responds to pore structure. Simulated bottom layer chlorophyll maxima are reasonable, though delayed by about a month relative to observations due to uncertainties in snow variability. Upper level biota arise intermittently during flooding events.
    [Show full text]
  • Las Palmeras En El Marco De La Investigacion Para El
    REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico
    [Show full text]
  • The Palms of the Guianas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Horizon / Pleins textes ORSTOM Centre de Cayenne September 198-6 THE PALMS_OF THE GUIANAS J.-J. ~e Granville _Syagrus inajai THE PATJMS OF THE GUIA11AS (J.-J. de GRANVILLE, 1986) : Inventaire des espèces de palmiers des trois Guyanes (Guyane française, Surinam, Guyana) et principales caractéristiques de chaque groupe pour une reconnaissance pratique sur le terrain. Instructions pour la collecte des herbiers de palmiers. Clef de détermination des genres basée sur les caractères végétatifs. Inventory of the species occurring in the three Guianas (French Guiana, Suriname, Guyana) and main features of each group for a practical id.m1tification in the field. Guide lines for collecting palms. Key for iden­ tifi~ation of the genera. based on vegetative characters. -..-J • .. - - --._-_._ 1 1 . .. i" - Guyana}Suriname} eo' G) ~ TH /..1----1 C-; '<:1: gmE 3 G ". .. 0 ..• '"V1 w :;G) U'IANAS se' :: ;" C • 0- 3» 51' roZ ~ ~ 1 Guyane » GU") c '< o ~,,?~~l;O~ p /l ::3. 0 ----r--:;--: --; : .. :. ft) 21'~ Franr;aise "Tl s .., ~ ss' ... 0 ': :J -0 I~ ._._ o 8 5" .. ~~:LL-----t-----, ~ ~ ~-.-. i 150 , -t'--'-'~----' 1 nouli~ol ) 1 53' , . .,. ~ ",U t !. 1 ::•• ! 52' ,..-.- , 1 .. -.' \..------+---i'· SI' \ --~w· , J' -:,. , THE PALMS OF THE GUIANAS J.-J. de Gruu~VILLE This paper is not a systematic treatment : it aims at helping the botanists to identify and to collect the palms in the field. l SURVEY OF THE PALM GROUPS OCCURRING IN THE GUIANAS ================================================== According to the litterature (especially DAHLGREN, 1936; GLASSMAN, 1972; WESSELS BOER, 1965 and 1972) and to the study of the herbarium specimens, the number of species of indige­ nous palms occurring in the 3 Guianas together amounts to 8J, that is to say 7 %of the american species.
    [Show full text]
  • Biogeochemistry: Historical and Future Perspectives Schulze ED* Was a Surprise to See How Volatile Carbon Is
    Open Access Austin Journal of Earth Science Editorial Biogeochemistry: Historical and Future Perspectives Schulze ED* was a surprise to see how volatile carbon is. The global mean carbon MPI Biogeochemistry, Germany turnover time is only 23 years. This contrasts nature conservation *Corresponding author: Schulze ED, MPI which embraces old trees, or soil science which highlights old carbon Biogeochemistry, POBox 100164, 07749 Jena, Germany in soils. Old trees and old carbon make up only a minute fraction Received: May 22, 2015; Accepted: June 01, 2015; of all trees and all soil carbon. Thus, biogeochemistry has helped Published: June 03, 2015 to quantify simple terms of reference in the element cycles of the earth, even though we lack understanding of the regulation of major processes in organisms. Editorial The carbon cycle has been the primary focus of Biogeochemistry in the past because of the climate forcing by CO2. However, Biogeochemistry is a very recent branch on the “tree” of natural biogeochemistry will remain descriptive without recognition of the th sciences, where chemistry emerged from Alchemy in the 18 century, nitrogen and phosphorous cycle [5-7]. The problem is that these th leading to Geochemistry in the 19 and to Biogeochemistry in the cycles do not directly affect the radiation balance of the globe, but th 20 century [1]. While chemistry deals with the understanding of they are part of global Climate Change controlling the physiological substances, the focus of geochemistry is the earth crust and the cycling activity of the earth surface [8]. of elements. It was the insight of modern times, that most reactions that drive geochemical cycles are regulated by organisms.
    [Show full text]
  • 2. Sediments and Biogeochemistry
    2. Sediments and Biogeochemistry Benthic size classes Properties of marine sediments Sediment biogeochemistry Chemical gradients in sediments Biological mediation Physical flow effects Dr Laura J. Grange ([email protected]) 11th April 2010 Reading: Levinton, Chapter 13, “Life in the Mud and Sand” Benthic Organisms Sizes Nanobenthos (microflora/microfauna) <62µm (shallow-water) <42µm (deep-sea) Meiofauna 62µm – 500µm (shallow-water) 42µm – 300µm (deep-sea) Macrofauna 500µm – 3cm (shallow-water) 300µm – 3cm (deep-water) Megafauna >3cm Large enough to be identified by bottom photos Marine Sediments Actual sizes not as important as recognizing scale Marine Sediments Rarely consist of just one size fraction What factors are important to biology? Surface area How much space available for colonization grain size = available surface area per gram Mayer & Rossi, 1982 Marine Sediments Water Marine sediments are overlain by seawater of varying depth Water penetrates into sediment, bringing with it chemicals, nutrients & O2 Ability of water to penetrate and move is characterized by :- Porosity Measure of space within sediment that can be occupied by water Permeability Measure of ability of water to flow through sediment Marine Sediments Porosity Lowest in sands Highest in silts and clays Permeability Highest is sands Lowest in silts and clays Both factors affect pore water chemistry Diffusion usually slow through sediments Path water takes among sediment grains is long High tortuosity Friedman et al.,
    [Show full text]
  • Atmospheric Deposition and Ocean Biogeochemistry
    SOLAS Core Theme 3: Atmospheric Deposition and Ocean Biogeochemistry Raymond Najjar The Pennsylvania State University OCB Ocean-Atmosphere Interaction: Scoping Directions for U.S Research Workshop September 30 – October 3, 2019 Sterling, VA Increasing trend in N* (nitrate – 16*phosphate) in East Asian coastal waters Kim et al. (2011) Evidence for shift from N limitation to P limitation Kim et al. (2011) Ocean model simulation of iron limitation Mahowald et al. (2018) Ocean model simulation of iron limitation in absence of atmospheric deposition Mahowald et al. (2018) Core Theme 3 questions SOLAS 2015–2025 Science Plan and Organisation How do biogeochemical and ecological processes interact in response to natural and anthropogenic material input from the atmosphere across different regions? How do global warming and other anthropogenic stressors synergistically alter the uptake of atmospheric nutrients and metals by marine biota in different oceanic regions? What are the large-scale impacts of atmospheric deposition to the ocean on global elemental cycles (e.g., C and N) and climate change feedbacks in major marine biomes? 1. Emissions 2. Transport and transformation 3. Deposition 4. Marine biogeochemical response Deposition = Velocity × Concentration Wet deposition Velocity = precipitation rate Concentration = solute concentration Dry deposition Velocity = gas transfer velocity = f(turbulence) (gases) Concentration = gas concentration Dry deposition Velocity = deposition velocity = f(size, turbulence) (particles) Concentration = particle
    [Show full text]