WHY SOME DEAD OSES STILL MATTER 5 Failed to Gain Widespread Adoption
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Transport Layer: Tutorial and Survey SAMI IREN and PAUL D
The Transport Layer: Tutorial and Survey SAMI IREN and PAUL D. AMER University of Delaware AND PHILLIP T. CONRAD Temple University Transport layer protocols provide for end-to-end communication between two or more hosts. This paper presents a tutorial on transport layer concepts and terminology, and a survey of transport layer services and protocols. The transport layer protocol TCP is used as a reference point, and compared and contrasted with nineteen other protocols designed over the past two decades. The service and protocol features of twelve of the most important protocols are summarized in both text and tables. Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Data communications; Open System Interconnection Reference Model (OSI); C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Network communications; Packet-switching networks; Store and forward networks; C.2.2 [Computer-Communication Networks]: Network Protocols; Protocol architecture (OSI model); C.2.5 [Computer- Communication Networks]: Local and Wide-Area Networks General Terms: Networks Additional Key Words and Phrases: Congestion control, flow control, transport protocol, transport service, TCP/IP 1. INTRODUCTION work of routers, bridges, and communi- cation links that moves information be- In the OSI 7-layer Reference Model, the tween hosts. A good transport layer transport layer is the lowest layer that service (or simply, transport service) al- operates on an end-to-end basis be- lows applications to use a standard set tween two or more communicating of primitives and run on a variety of hosts. This layer lies at the boundary networks without worrying about differ- between these hosts and an internet- ent network interfaces and reliabilities. -
Java Implementation of the Graphical User Interface of the Octopus Distributed Operating System
Java implementation of the graphical user interface of the Octopus distributed operating system Submitted by Aram Sadogidis Advisor Prof. Spyros Lalis University of Thessaly Volos, Greece October 2012 Acknowledgements I am sincerely grateful for all the people that supported me during my Uni- versity studies. Special thanks to professor Spyros Lalis, my mentor, who had decisive influence in shaping my character as an engineer. Also many thanks to my family and friends, whose support all these years, encouraged me to keep moving forward. 1 Contents 1 Introduction 4 2 System software technologies 6 2.1 Inferno OS . 6 2.2 JavaSE and Android framework . 8 2.3 Synthetic file systems . 10 2.3.1 Styx . 10 2.3.2 Op . 12 3 Octopus OS 14 3.1 UpperWare architecture . 14 3.2 Omero, a filesystem based window system . 16 3.3 Olive, the Omero viewer . 19 3.4 Ox, the Octopus shell . 21 4 Java Octopus Terminal 23 4.1 JOlive . 24 4.2 Desktop version . 25 4.2.1 Omero package . 26 4.2.2 ui package . 27 4.3 Android version . 28 4.3.1 com.jolive.Omero . 28 4.3.2 com.jolive.ui . 29 4.3.3 Pull application's UI . 30 5 Future perspective 33 5.1 GPS resources . 33 5.2 JOp . 34 5.3 Authentication device . 34 5.4 Remote Voice commander . 34 5.5 Conclusion . 35 6 Thesis preview in Greek 38 2 List of Figures 2.1 An application operates on a synthetic file as if it is a disk file, effectively communicating with a synthetic file system server. -
Protocols: 0-9, A
Protocols: 0-9, A • 3COM-AMP3, on page 4 • 3COM-TSMUX, on page 5 • 3PC, on page 6 • 4CHAN, on page 7 • 58-CITY, on page 8 • 914C G, on page 9 • 9PFS, on page 10 • ABC-NEWS, on page 11 • ACAP, on page 12 • ACAS, on page 13 • ACCESSBUILDER, on page 14 • ACCESSNETWORK, on page 15 • ACCUWEATHER, on page 16 • ACP, on page 17 • ACR-NEMA, on page 18 • ACTIVE-DIRECTORY, on page 19 • ACTIVESYNC, on page 20 • ADCASH, on page 21 • ADDTHIS, on page 22 • ADOBE-CONNECT, on page 23 • ADWEEK, on page 24 • AED-512, on page 25 • AFPOVERTCP, on page 26 • AGENTX, on page 27 • AIRBNB, on page 28 • AIRPLAY, on page 29 • ALIWANGWANG, on page 30 • ALLRECIPES, on page 31 • ALPES, on page 32 • AMANDA, on page 33 • AMAZON, on page 34 • AMEBA, on page 35 • AMAZON-INSTANT-VIDEO, on page 36 Protocols: 0-9, A 1 Protocols: 0-9, A • AMAZON-WEB-SERVICES, on page 37 • AMERICAN-EXPRESS, on page 38 • AMINET, on page 39 • AN, on page 40 • ANCESTRY-COM, on page 41 • ANDROID-UPDATES, on page 42 • ANET, on page 43 • ANSANOTIFY, on page 44 • ANSATRADER, on page 45 • ANY-HOST-INTERNAL, on page 46 • AODV, on page 47 • AOL-MESSENGER, on page 48 • AOL-MESSENGER-AUDIO, on page 49 • AOL-MESSENGER-FT, on page 50 • AOL-MESSENGER-VIDEO, on page 51 • AOL-PROTOCOL, on page 52 • APC-POWERCHUTE, on page 53 • APERTUS-LDP, on page 54 • APPLEJUICE, on page 55 • APPLE-APP-STORE, on page 56 • APPLE-IOS-UPDATES, on page 57 • APPLE-REMOTE-DESKTOP, on page 58 • APPLE-SERVICES, on page 59 • APPLE-TV-UPDATES, on page 60 • APPLEQTC, on page 61 • APPLEQTCSRVR, on page 62 • APPLIX, on page 63 • ARCISDMS, -
Analysis of Server-Smartphone Application Communication Patterns
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Publication Archive Aalto University School of Science Degree Programme in Computer Science and Engineering Péter Somogyi Analysis of server-smartphone application communication patterns Master’s Thesis Budapest, June 15, 2014 Supervisors: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Aalto University School of Science ABSTRACT OF THE Degree programme in Computer Science and MASTER’S THESIS Engineering Author: Péter Somogyi Title: Analysis of server-smartphone application communication patterns Number of pages: 83 Date: June 15, 2014 Language: English Professorship: Data Communication Code: T-110 Software Supervisor: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Abstract: The spread of smartphone devices, Internet of Things technologies and the popularity of web-services require real-time and always on applications. The aim of this thesis is to identify a suitable communication technology for server and smartphone communication which fulfills the main requirements for transferring real- time data to the handheld devices. For the analysis I selected 3 popular communication technologies that can be used on mobile devices as well as from commonly used browsers. These are client polling, long polling and HTML5 WebSocket. For the assessment I developed an Android application that receives real-time sensor data from a WildFly application server using the aforementioned technologies. Industry specific requirements were selected in order to verify the usability of this communication forms. The first one covers the message size which is relevant because most smartphone users have limited data plan. -
Performance of VBR Packet Video Communications on an Ethernet LAN: a Trace-Driven Simulation Study
9.3.1 Performance of VBR Packet Video Communications on an Ethernet LAN: A Trace-Driven Simulation Study Francis Edwards Mark Schulz edwardsF@sl .elec.uq.oz.au marksas1 .elec. uq.oz.au Department of Electrical and Computer Engineering The University of Queensland St. Lucia Q 4072 Australia Abstract medium term, we can expect that current LAN technolo- Provision of multimedia communication services on today’s gies will be utilized in the near term for packet transport of packet-switched network infrastructure is becoming increas- video applications [4,5, 61. Characterizing the performance ingly feasible. However, there remains a lack of information of current networks carrying video communications traffic is regarding the performance of multimedia sources operating therefore an important issue. This paper investigates packet in bursty data traffic conditions. In this study, a videotele- transport of real time video communications traffic, charac- phony system deployed on the Ethernet LAN is simulated, teristic of videotelephony applications, on the popular 10 employing high time-resolution LAN traces as the data traf- Mbit/s Ethernet LAN. fic load. In comparison with Poisson traffic models, the Previous work has established that Ethernet is capable of trace-driven cases produce highly variable packet delays, and supporting video communication traffic in the presence of higher packet loss, thereby degrading video traffic perfor- Poisson data traffic [6, 71. However, recent studies of high mance. In order to compensate for these effects, a delay time-resolution LAN traffic have observed highly bursty control scheme based on a timed packet dropping algorithm traffic patterns which sustain high variability over timescales is examined. -
Moving to Ipv6(PDF)
1 Chicago, IL 9/1/15 2 Moving to IPv6 Mark Kosters, Chief Technology Officer With some help from Geoff Huston 3 The Amazing Success of the Internet • 2.92 billion users! • 4.5 online hours per day per user! • 5.5% of GDP for G-20 countries Just about anything about the Internet Time 3 4 Success-Disaster 5 The Original IPv6 Plan - 1995 Size of the Internet IPv6 Deployment IPv6 Transition – Dual Stack IPv4 Pool Size Time 6 The Revised IPv6 Plan - 2005 IPv4 Pool Size Size of the Internet IPv6 Transition – Dual Stack IPv6 Deployment 2004 2006 2008 2010 2012 Date 7 Oops! We were meant to have completed the transition to IPv6 BEFORE we completely exhausted the supply channels of IPv4 addresses! 8 Today’s Plan IPv4 Pool Size Today Size of the Internet ? IPv6 Transition IPv6 Deployment 0.8% Time 9 Transition... The downside of an end-to-end architecture: – There is no backwards compatibility across protocol families – A V6-only host cannot communicate with a V4-only host We have been forced to undertake a Dual Stack transition: – Provision the entire network with both IPv4 AND IPv6 – In Dual Stack, hosts configure the hosts’ applications to prefer IPv6 to IPv4 – When the traffic volumes of IPv4 dwindle to insignificant levels, then it’s possible to shut down support for IPv4 10 Dual Stack Transition ... We did not appreciate the operational problems with this dual stack plan while it was just a paper exercise: • The combination of an end host preference for IPv6 and a disconnected set of IPv6 “islands” created operational problems – Protocol -
Persistent 9P Sessions for Plan 9
Persistent 9P Sessions for Plan 9 Gorka Guardiola, [email protected] Russ Cox, [email protected] Eric Van Hensbergen, [email protected] ABSTRACT Traditionally, Plan 9 [5] runs mainly on local networks, where lost connections are rare. As a result, most programs, including the kernel, do not bother to plan for their file server connections to fail. These programs must be restarted when a connection does fail. If the kernel’s connection to the root file server fails, the machine must be rebooted. This approach suffices only because lost connections are rare. Across long distance networks, where connection failures are more common, it becomes woefully inadequate. To address this problem, we wrote a program called recover, which proxies a 9P session on behalf of a client and takes care of redialing the remote server and reestablishing con- nection state as necessary, hiding network failures from the client. This paper presents the design and implementation of recover, along with performance benchmarks on Plan 9 and on Linux. 1. Introduction Plan 9 is a distributed system developed at Bell Labs [5]. Resources in Plan 9 are presented as synthetic file systems served to clients via 9P, a simple file protocol. Unlike file protocols such as NFS, 9P is stateful: per-connection state such as which files are opened by which clients is maintained by servers. Maintaining per-connection state allows 9P to be used for resources with sophisticated access control poli- cies, such as exclusive-use lock files and chat session multiplexers. It also makes servers easier to imple- ment, since they can forget about file ids once a connection is lost. -
Communication Protocol for Schools
Communication Protocol for Schools Communication plays a key role in creating and fostering strong, positive relationships between the school and the home. Communication is a two-way street; our schools share information with our families and community, and our families share information with our schools. The purpose of this document is to guide, manage and improve school-home communication by offering a standard format, structure and sequence for regular, ongoing communication. Communication Channels Communication can take place in a variety of formats. The message and the purpose of the communication can help determine which format is most appropriate. Generally, the more issues-driven and/or detailed the information is, the more direct the communication channel chosen should be. Communication channels include: Face-to-face communication – one-on-one meetings, School Council meetings, Parent-Student- Teacher interviews Telephone conversations Hard copy, written communication – letters sent home from the school, paper school newsletters Electronic communication – email, electronic newsletters, websites, social media When the communication requires a dialogue, such as bringing forward a question or concern or when a discussion is required on a particular topic, the preferred channels of communication are ones that allow for an immediate and ongoing interaction between the people involved. The best formats for this kind of communication are face-to-face conversations or telephone conversations. Schools and families are encouraged to use these direct channels of communication when a topic is complex or requires a dialogue. These more direct forms of communication also help us establish a personal connection, which helps build relationships that we don’t get in other forms of communication. -
Bell Labs, the Innovation Engine of Lucent
INTERNSHIPS FOR RESEARCH ENGINEERS/COMPUTER SCIENTISTS BELL LABS DUBLIN (IRELAND) – BELL LABS STUTTGART (GERMANY) Background Candidates are expected to have some experience related to the following topics: Bell Laboratories is a leading end-to-end systems and • Operating systems, virtualisation and computer solutions research lab working in the areas of cloud architectures. and distributed computing, platforms for real-time • big-data streaming and analytics, wireless networks, Software development skills (C/C++, Python). • semantic data access, services-centric operations and Computer networks and distributed systems. thermal management. The lab is embedded in the • Optimisation techniques and algorithms. great traditions of the Bell Labs systems research, in- • Probabilistic modelling of systems performance. ternationally renowned as the birthplace of modern The following skills or interests are also desirable: information theory, UNIX, the C/C++ programming • languages, Awk, Plan 9 from Bell Labs, Inferno, the Experience with OpenStack or OpenNebula or Spin formal verification tool, and many other sys- other cloud infrastructure management software. • tems, languages, and tools. Kernel-level programming (drivers, scheduler,...). • Xen, KVM and Linux scripting/administration. We offer summer internships in our Cloud • Parallel and distributed systems programming Computing team, spread across the facilities in Dublin (Ireland) and Stuttgart (Germany), focusing (MPI, OpenMP, CUDA, MapReduce, StarSs, …). • on research enabling future cloud -
Voice Over Internet Protocol (Voip): a Brief Review
© APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880 Voice over Internet Protocol (VoIP): A Brief Review ANURAG K MADHESHIYA1, KIRAN S KALE2, SHIV K YADAV3, JIGNESHKUMAR R. VALVI4 1,2,3,4 Department of Electronics and Communication, SVNIT Surat, India Abstract -- VoIP stands for Voice over Inter Protocol. It is setting up calls, registering the calls, authenticating a communication protocol mainly used for voice and terminating the call. Protocol belonging to H.323 communication, data transfer and video calling. It is based family of protocol uses TCP and UDP connection for on packet transmission over internet network. Paul Baran transportation. For call registering and call signaling and other researchers developed the packet network in the H.225 protocol is used. For media session mid twentieth century. In 1973 Dany Cohen first demonstrated packet voice in flight simulator application. establishment and controlling H.245 is used. For Due to its digital nature it is easy to operate on this protocol. conferencing T.120 protocol is used [3]-[4]. Index Terms: MGCP, Packet, QoS, SIP I. INTRODUCTION Voice over Internet Protocol also known as Voice over IP and VoIP is a communication standard for transmission of voice signal, data transmission and video conferencing. Actually this technology follow packet switching. In packet switching first the input signal (voice, data, video) converted into digital form so other operation becomes simple after this we do encoding, compressing of digital data to make more secure transmission through channel. Then after this we transmit the signal over the channel. At receiver side we do reverse of it but it also require an addition block before receiver to store packets and reorder these packets because in packet switching different Figure 1: Call flow of H.323 packets follow different path so reaches in random manner. -
Routing Loop Attacks Using Ipv6 Tunnels
Routing Loop Attacks using IPv6 Tunnels Gabi Nakibly Michael Arov National EW Research & Simulation Center Rafael – Advanced Defense Systems Haifa, Israel {gabin,marov}@rafael.co.il Abstract—IPv6 is the future network layer protocol for A tunnel in which the end points’ routing tables need the Internet. Since it is not compatible with its prede- to be explicitly configured is called a configured tunnel. cessor, some interoperability mechanisms were designed. Tunnels of this type do not scale well, since every end An important category of these mechanisms is automatic tunnels, which enable IPv6 communication over an IPv4 point must be reconfigured as peers join or leave the tun- network without prior configuration. This category includes nel. To alleviate this scalability problem, another type of ISATAP, 6to4 and Teredo. We present a novel class of tunnels was introduced – automatic tunnels. In automatic attacks that exploit vulnerabilities in these tunnels. These tunnels the egress entity’s IPv4 address is computationally attacks take advantage of inconsistencies between a tunnel’s derived from the destination IPv6 address. This feature overlay IPv6 routing state and the native IPv6 routing state. The attacks form routing loops which can be abused as a eliminates the need to keep an explicit routing table at vehicle for traffic amplification to facilitate DoS attacks. the tunnel’s end points. In particular, the end points do We exhibit five attacks of this class. One of the presented not have to be updated as peers join and leave the tunnel. attacks can DoS a Teredo server using a single packet. The In fact, the end points of an automatic tunnel do not exploited vulnerabilities are embedded in the design of the know which other end points are currently part of the tunnels; hence any implementation of these tunnels may be vulnerable. -
Lecture 11: PKI, SSL and VPN Information Security – Theory Vs
Lecture 11: PKI, SSL and VPN Information Security – Theory vs. Reality 0368-4474-01, Winter 2011 Yoav Nir ©2011 Check Point Software Technologies Ltd. | [Restricted] ONLY for designated groups and individuals What is VPN ° VPN stands for Virtual Private Network ° A private network is pretty obvious – An Ethernet LAN running in my building – Wifi with access control – A locked door and thick walls can be access control – An optical fiber running between two buildings ©2011 Check Point Software Technologies Ltd. 2 What is a VPN ° What is a non-private network? – Obviously, someone else’s network. ° Obvious example: the Internet. ° The Internet is pretty fast, and really cheap. ° What do I do if I have offices in several cities – And people working from home – And sales people working from who knows where ° We could use the Internet, but… – People could see my data – People could modify my messsages – People could pretend to be other people ©2011 Check Point Software Technologies Ltd. 3 What is a VPN ° I could run my own cables around the world. ° I could buy an MPLS connection from a local telco – Bezeq would love to sell me one. They call it IPVPN, and it’s pretty much a switched link just for my company – But I can’t get that to the home or mobile users – And it’s mediocre (but consistent) speed – And Bezeq can still do whatever it wants – And it’s really expensive – The incremental cost of using the Internet is zero ° A virtual private network combines the relative low-cost of using the Internet with the privacy of a leased line.