Non-Cylindrical Parasitic Folding and Strain Partitioning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patricia Persaud
A bottom-driven mechanism for distributed faulting in the Gulf of California Rift Patricia Persaud1, Eh Tan2, Juan Contreras3 and Luc Lavier4 2017 GeoPRISMS Theoretical and Experimental Institute on Rift Initiation and Evolution [email protected], Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803; 2 Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan; 3 Centro de Investigación Científca y de Educación Superior de Ensenada, Ensenada, BC, Mexico; 4 University of Texas Austin, Institute for Geophysics, Austin, TX 78712 Introduction Modeling strain partitioning and distribution of deformation in Application to the Northern Gulf Observations in the continent-ocean transition of the Gulf • Our model with an obliquity of 0.7, and linear basal velocity of California (GOC) show multiple oblique-slip faults oblique rifts boundary conditions reveals a delocalized fault pattern of distributed in a 200x70 km2 area (Fig. 4). In contrast, north contemporaneously active faults, multiple rift basins and and south of this broad pull-apart structure, major transform variable fault dips representative of faulting in the N. Gulf. faults accommodate plate motion. We propose that the FIG. 9 • The r=0.7 model is able to predict the broad geometrical mechanism for distributed faulting results from the boundary arrangement of the two Upper Delfn, Lower Delfn and conditions present in the GOC, where basal shear is Wagner basins as segmented basins with tilted fault blocks, distributed between the southernmost fault of the San and multiple oblique-slip bounding faults characteristic of Andreas system and the Ballenas Transform fault. FIG. 8 incomplete strain-partitioning. We also confrm with our We hypothesize that in oblique-extensional settings numerical results that numerous oblique-slip faults whether deformation is partitioned in a few dip-slip and accommodate slip in the study area instead of throughgoing strike-slip faults, or in numerous oblique-slip faults may large-offset transform faults. -
Back Matter (PDF)
Index Page numbers in italic refer to tables, and those in bold to figures. accretionary orogens, defined 23 Namaqua-Natal Orogen 435-8 Africa, East SW Angola and NW Botswana 442 Congo-Sat Francisco Craton 4, 5, 35, 45-6, 49, 64 Umkondo Igneous Province 438-9 palaeomagnetic poles at 1100-700 Ma 37 Pan-African orogenic belts (650-450 Ma) 442-50 East African(-Antarctic) Orogen Damara-Lufilian Arc-Zambezi Belt 3, 435, accretion and deformation, Arabian-Nubian Shield 442-50 (ANS) 327-61 Katangan basaltic rocks 443,446 continuation of East Antarctic Orogen 263 Mwembeshi Shear Zone 442 E/W Gondwana suture 263-5 Neoproterozoic basin evolution and seafloor evolution 357-8 spreading 445-6 extensional collapse in DML 271-87 orogenesis 446-51 deformations 283-5 Ubendian and Kibaran Belts 445 Heimefront Shear Zone, DML 208,251, 252-3, within-plate magmatism and basin initiation 443-5 284, 415,417 Zambezi Belt 27,415 structural section, Neoproterozoic deformation, Zambezi Orogen 3, 5 Madagascar 365-72 Zambezi-Damara Belt 65, 67, 442-50 see also Arabian-Nubian Shield (ANS); Zimbabwe Belt, ophiolites 27 Mozambique Belt Zimbabwe Craton 427,433 Mozambique Belt evolution 60-1,291, 401-25 Zimbabwe-Kapvaal-Grunehogna Craton 42, 208, 250, carbonates 405.6 272-3 Dronning Mand Land 62-3 see also Pan-African eclogites and ophiolites 406-7 Africa, West 40-1 isotopic data Amazonia-Rio de la Plata megacraton 2-3, 40-1 crystallization and metamorphic ages 407-11 Birimian Orogen 24 Sm-Nd (T DM) 411-14 A1-Jifn Basin see Najd Fault System lithologies 402-7 Albany-Fraser-Wilkes -
World Map Showing Surface and Subsurface Distribution, and Lithologic Character of Middle and Late Neoproterozoic Rocks
World Map Showing Surface and Subsurface Distribution, and Lithologic Character of Middle and Late Neoproterozoic Rocks By John H. Stewart1 Open-File Report 2007-1087 2007 U.S. Department of the Interior U.S. Geological Survey 1 Menlo Park, Calif. U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 Revised and reprinted: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Stewart, John H., 2007, World map showing surface and subsurface distribution, and lithologic character of Middle and Late Neoproterozoic rocks: U.S. Geological Survey Open-File Report 2007-1087. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction......................................................................................................................... 3 Sources of information ........................................................................................................ 2 Africa [AF] -
Pan-African Orogeny 1
Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1). -
The Structural and Metamorphic Evolution of the Neoproterozoic Basement in Jebel Ja’Alan, East Oman
The Structural and Metamorphic Evolution of the Neoproterozoic Basement in Jebel Ja’alan, East Oman Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology Brandon Luke Alessio November 2015 Brandon Alessio Neoproterozoic Evolution of Jebel Ja’alan THE STRUCTURAL AND METAMORPHIC EVOLUTION OF THE NEOPROTEROZOIC BASEMENT IN JEBEL JA’ALAN, EAST OMAN RUNNING TITLE: NEOPROTEROZOIC EVOLUTION OF JEBEL JA’ALAN ABSTRACT Jebel Ja’alan (east Oman) displays some of the best exposed and easternmost basement rock in the country. It comprises metasedimentary and intrusive igneous rocks, interpreted to have been generated within the Mozambique Ocean at the margin of Neoproterozoic India. The metamorphic conditions experienced by the basement and implications these conditions have for tectonic models of the region were, until now, poorly understood. The aim of this paper is to constrain these conditions in order to test the hypothesis that the basement of Jebel Ja’alan formed in a Neoproterozoic volcanic arc and unravel the relationship between the structural and metamorphic evolution of the region. Phase equilibria modelling constrains peak metamorphic conditions to c. 670–700 °C and 4.5–6 kbar, following a clockwise P–T path. These conditions are not exclusive to an arc environment but are suggested to represent one due to current and previous interpretations of basement formation based on its geochemistry. U–Pb monazite age data of Hassan Schist samples yields a weighted average age of 833 ± 15 Ma, interpreted to be the age of near peak metamorphism, and is supported by 40Ar–39Ar muscovite age data, which yields a plateau age of 830 ± 6 Ma. -
7.5 X 11.5.Doubleline.P65
Cambridge University Press 978-0-521-84404-8 - Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth Shun-ichiro Karato Index More information Materials index Ag, 55 hydrogen, 104, 127, 129, 144, 149, 181, 183, 193, 195, akimotoite, 409 209, 287 Al2O3, 127, 134, 142, 375, 378 hydrogen-related defect, 82 albite, 27, 53 hydrous mineral, 318 alkali halide, 54, 171 anorthite, 27, 172, 241 ice, 53, 55, 274, 275 Au, 55 iron, 23, 28, 209, 275, 316 a–iron, 55, 209 basalt, 254, 315, 317, 345 "-iron, 53, 362, 410 ferric iron, 28, 128 CaIrO3, 410 ferrous iron, 28, 128 calcite, 62, 190, 209, 226, 245, 266, 378 carbon, 193 KBr, 172 carbon dioxide, 20, 102 KCl, 55, 172 carbonaceous chondrite, 316 CaTiO3, 209 lherzolite, 241 CaTiO3 perovskite, 410 garnet lherzolite, 319 clinopyroxene, 84, 186, 190, 345, 351 spinel lherzolite, 319 cobalt, 275 coesite, 272 magnesiowu¨stite, 27, 215, 274, 282, 386, corundum, 65 405, 409 CsCl, 171, 172, 274 magnetite, 28 Cu, 55 majorite, 319, 359, 375, 409 majorite-pyrope, 69 diabase, 254, 345, 346, 348 metal diopside, 53, 241, 347 bcc metal, 84 dunite, 189 fcc metal, 84 hcp metal, 71, 84 eclogite, 314, 318, 348, 405 meteorite, 305 enstatite, 55, 65, 347 Mg, 245 Mg2SiO4, 26, 70, 71, 81, 127, 134, 203 Fe2SiO4,26 MgO, 53, 54, 81, 82, 126, 132, 133, 134, 142, 171, 172, 209, 337, feldspar, 190, 215, 245, 347 375, 378, 406 forsterite, 55, 65 MgSiO3, 26, 81, 82 mica, 215 gabbro, 254, 317, 345 mid-ocean ridge basalt, 315 garnet, 26, 53, 69, 84, 172, 186, 190, 215, 318, 319, 347 MORB, 315 garnetite, 405 -
A Review of the Neoproterozoic to Cambrian Tectonic Evolution
Accepted Manuscript Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution H. Fritz, M. Abdelsalam, K.A. Ali, B. Bingen, A.S. Collins, A.R. Fowler, W. Ghebreab, C.A. Hauzenberger, P.R. Johnson, T.M. Kusky, P. Macey, S. Muhongo, R.J. Stern, G. Viola PII: S1464-343X(13)00104-0 DOI: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 Reference: AES 1867 To appear in: African Earth Sciences Received Date: 8 May 2012 Revised Date: 16 June 2013 Accepted Date: 21 June 2013 Please cite this article as: Fritz, H., Abdelsalam, M., Ali, K.A., Bingen, B., Collins, A.S., Fowler, A.R., Ghebreab, W., Hauzenberger, C.A., Johnson, P.R., Kusky, T.M., Macey, P., Muhongo, S., Stern, R.J., Viola, G., Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution, African Earth Sciences (2013), doi: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian 2 tectonic evolution 3 H. -
Accommodation of Penetrative Strain During Deformation Above a Ductile Décollement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2016 Accommodation of penetrative strain during deformation above a ductile décollement Bailey A. Lathrop Caroline M. Burberry Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Accommodation of penetrative strain during deformation above a ductile décollement Bailey A. Lathrop* and Caroline M. Burberry* DEPARTMENT OF EARTH AND ATMOSPHERIC SCIENCES, UNIVERSITY OF NEBRASKA-LINCOLN, 214 BESSEY HALL, LINCOLN, NEBRASKA 68588, USA ABSTRACT The accommodation of shortening by penetrative strain is widely considered as an important process during contraction, but the distribu- tion and magnitude of penetrative strain in a contractional system with a ductile décollement are not well understood. Penetrative strain constitutes the proportion of the total shortening across an orogen that is not accommodated by the development of macroscale structures, such as folds and thrusts. In order to create a framework for understanding penetrative strain in a brittle system above a ductile décollement, eight analog models, each with the same initial configuration, were shortened to different amounts in a deformation apparatus. Models consisted of a silicon polymer base layer overlain by three fine-grained sand layers. A grid was imprinted on the surface to track penetra- tive strain during shortening. -
Subduction and Continental Collision in the Lufilian Arc
Subduction and continental collision in the Lufilian Arc-Zambesi Belt orogen: A petrological, geochemical, and geochronological study of eclogites and whiteschists (Zambia) Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Timm John Kiel 2001 Vorwort 1 Introduction and Summary 3 CHAPTER ONE 6 Evidence for a Neoproterozoic ocean in south central Africa from MORB-type geochemical signatures and P-T estimates of Zambian eclogites 1.1 Abstract 6 1.2 Introduction 7 1.3 Geological overview 7 1.4 Petrography and mineral chemistry 9 1.5 Thermobarometry and P-T evolution 9 1.6 Geochemistry 12 1.7 Geochronology 14 1.8 Conclusions 15 CHAPTER TWO 16 Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): prograde metamorphism triggered by fluid infiltration 2.1 Abstract 16 2.2 Introduction 17 2.3 Geological setting 18 2.4 Petrology 20 2.4.1 Petrography 20 2.4.2 Mineral chemistry and growth history 24 2.4.3 P-T conditions and phase relations 29 2.5 Processes occurring during eclogitisation 31 2.5.1 Dissolution and precipitation mechanism 32 2.5.2 Formation of pseudomorphs 33 2.5.3 Vein formation 34 2.6 Fluid source 35 2.7 Discussion and conclusions 36 CHAPTER THREE 37 Timing and P-T evolution of whiteschist metamorphism in the Lufilian Arc-Zambesi Belt orogen (Zambia): implications to the Gondwana assembly 3.1 Abstract 37 3.2 Introduction 38 3.3 Regional geology 39 3.4 Sample localities 41 3.5 Petrography and mineral -
Early Cenozoic Eurekan Strain Partitioning and Decoupling in Central Spitsbergen, Svalbard
Solid Earth, 12, 1025–1049, 2021 https://doi.org/10.5194/se-12-1025-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard Jean-Baptiste P. Koehl1,2,3,4 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, P.O. Box 1028 Blindern, 0315 Oslo, Norway 2Department of Geosciences, UiT The Arctic University of Norway in Tromsø, 9037 Tromsø, Norway 3Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø, 9037 Tromsø, Norway 4CAGE – Centre for Arctic Gas Hydrate, Environment and Climate, 9037 Tromsø, Norway Correspondence: Jean-Baptiste P. Koehl ([email protected]) Received: 30 September 2020 – Discussion started: 19 October 2020 Revised: 22 March 2021 – Accepted: 6 April 2021 – Published: 10 May 2021 Abstract. The present study of field, petrological, explo- Group and Mimerdalen Subgroup might be preserved east ration well, and seismic data describes backward-dipping of the Billefjorden Fault Zone, suggesting that the Billefjor- duplexes comprised of phyllitic coal and bedding-parallel den Fault Zone did not accommodate reverse movement in décollements and thrusts localized along lithological tran- the Late Devonian. Hence, the thrusting of Proterozoic base- sitions in tectonically thickened Lower Devonian to lower- ment rocks over Lower Devonian sedimentary rocks along most Upper Devonian; uppermost Devonian–Mississippian; the Balliolbreen Fault and fold structures within strata of the and uppermost Pennsylvanian–lowermost Permian sedimen- Andrée Land Group and Mimerdalen Subgroup in central tary strata of the Wood Bay and/or Wijde Bay and/or Spitsbergen may be explained by a combination of down-east Grey Hoek formations; of the Billefjorden Group; and Carboniferous normal faulting with associated footwall rota- of the Wordiekammen Formation, respectively. -
Evolution of Stress and Fault Patterns in Oblique Rift Systems: 3-D Numerical Lithospheric-Scale Experiments from Rift to Breakup
Originally published as: Brune, S. (2014): Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup. - Geochemistry Geophysics Geosystems (G3), 15, 8, p. 3392-3415. DOI: http://doi.org/10.1002/2014GC005446 PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Evolution of stress and fault patterns in oblique rift systems: 10.1002/2014GC005446 3-D numerical lithospheric-scale experiments from rift to Key Points: breakup 3-D numerical rift models are conducted covering the entire Sascha Brune1,2 obliquity spectrum 1 A constant extension direction can Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Geodynamic Modelling Section, Potsdam, generate multiphase fault Germany, 2School of Geosciences, University of Sydney, EarthByte Group, Sydney, Australia orientations A characteristic evolution of fault patterns from rift to breakup is identified Abstract Rifting involves complex normal faulting that is controlled by extension direction, reactivation of prerift structures, sedimentation, and dyke dynamics. The relative impact of these factors on the Supporting Information: observed fault pattern, however, is difficult to deduce from field-based studies alone. This study provides Readme insight in crustal stress patterns and fault orientations by employing a laterally homogeneous, 3-D rift setup Supplementary Figures S1–S5 with constant extension velocity. The presented numerical forward experiments cover the whole spectrum Alpha A1–A7 of oblique extension. They are conducted using an elastoviscoplastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Despite recent advances, Correspondence to: S. Brune, 3-D numerical experiments still require relatively coarse resolution so that individual faults are poorly [email protected] resolved. -
Formation and Collapse of the Kalahari Duricrust ['African Surface
Formation and Collapse of the Kalahari Duricrust [‘African Surface’] Across the Congo Basin, 10 with Implications for Changes in Rates of Cenozoic Off-Shore Sedimentation Bastien Linol, Maarten J. de Wit, Francois Guillocheau, Michiel C.J. de Wit, Zahie Anka, and Jean-Paul Colin{ 10.1 Introduction margins, and to the east by the East African Rift System (EARS). Their relatively flat interior is covered by an exten- The Congo Basin (CB) of central Africa lies at about 400 m sive Upper Cretaceous-Cenozoic succession of sand dunes, above mean sea level (amsl), and is linked to the south, pan-lacustrine sediments and alluviums with hard-caps across a central African drainage divide, to the high interior (duricrusts) of calcrete, silcrete and ferricrete, collectively Kalahari Plateau (KP) at ca. 1,100 m amsl (Fig. 10.1). The named the Kalahari Group (SACS, 1980). This succession CB and KP are flanked by distinct marginal escarpments reaches a maximum thickness of about 500 m, but across along the South Atlantic and southwest Indian Ocean southern and central Africa is generally less than 100 m thick, representing one of the world’s most extensive, long- lived condensed stratigraphic sequences. The Kalahari Group directly overlies Precambrian base- ment of the Kalahari and Central African Shields (Fig. 10.1b), late Paleozoic to mid-Mesozoic sequences of {Author was deceased at the time of publication. the Karoo Supergroup including Lower Jurassic flood basalts in southern Africa, dated at 178–183 Ma (the B. Linol (*) AEON-ESSRI (African Earth Observatory Network – Earth Stormberg Group; Jourdan et al.