Pandanus Utilis Screw-Pine1 Edward F

Total Page:16

File Type:pdf, Size:1020Kb

Pandanus Utilis Screw-Pine1 Edward F Fact Sheet ST-430 October 1994 Pandanus utilis Screw-pine1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Creating a striking landscape effect wherever it is used, Screw-Pine has a pyramidal, sometimes irregular, open, but much-branched silhouette, the smooth, stout trunks topped with full, graceful heads of long, thin leaves, three feet long and three inches wide, emerging spirally from stubby branches (Fig. 1). It is not a true pine tree. The blue-green foliage color adds to the striking nature of this exotic tree. The leaves are edged with small red spines and are used to make mats and baskets in the tropics. Branches have prominent leaf scars which encircle the stems. Large brace-roots emerge from the trunk several feet above the ground, helping to support the plant. Screw-Pine is capable of reaching 60 feet in height but is not usually seen over 25 feet in USDA hardiness zone 10 and 11, with a spread of 15 feet. Growth rate is slow to moderate, depending upon fertilization and watering schedules, and Screw-Pine is very popular for use as a specimen or container planting. Figure 1. Young Screw-pine. GENERAL INFORMATION Scientific name: Pandanus utilis Availability: generally available in many areas within Pronunciation: pan-DAY-nus YOO-tih-liss its hardiness range Common name(s): Screw-pine Family: Pandanaceae DESCRIPTION USDA hardiness zones: 10B through 11 (Fig. 2) Origin: not native to North America Height: 20 to 30 feet Uses: container or above-ground planter; Spread: 12 to 20 feet recommended for buffer strips around parking lots or Crown uniformity: symmetrical canopy with a for median strip plantings in the highway; near a deck regular (or smooth) outline, and individuals have more or patio; reclamation plant; specimen; residential street or less identical crown forms tree; no proven urban tolerance 1. This document is adapted from Fact Sheet ST-430, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1994. 2. Edward F. Gilman, associate professor, Environmental Horticulture Department; Dennis G. Watson, associate professor, Agricultural Engineering Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL 32611. Pandanus utilis -- Screw-pine Page 2 Figure 2. Shaded area represents potential planting range. Crown shape: pyramidal Fruit Crown density: open Growth rate: medium Fruit shape: oval; round Texture: coarse Fruit length: 6 to 12 inches Fruit covering: dry or hard Foliage Fruit color: orange; yellow Fruit characteristics: attracts squirrels and other Leaf arrangement: spiral mammals; suited for human consumption; fruit, twigs, Leaf type: simple or foliage cause significant litter; showy Leaf margin: pectinate; spiny Leaf shape: linear Trunk and Branches Leaf venation: parallel Leaf type and persistence: evergreen Trunk/bark/branches: grow mostly upright and will Leaf blade length: 18 to 36 inches not droop; showy trunk; should be grown with a single Leaf color: blue or blue-green; green leader; no thorns (Fig. 3) Fall color: no fall color change Pruning requirement: needs little pruning to develop Fall characteristic: not showy a strong structure Breakage: resistant Current year twig color: brown Flower Current year twig thickness: stout Flower color: white Flower characteristics: pleasant fragrance; Culture inconspicuous and not showy; winter flowering Light requirement: tree grows in part shade/part sun; tree grows in full sun Pandanus utilis -- Screw-pine Page 3 and is often used as a pot plant. Sander Screw-Pine (Pandanus sanderi) has denser, more tufted foliage with golden yellow bands from center of leaf to margin. Propagation is by seed (soaked 24-hours before planting), basal sucker division, or large cuttings. Pests and Diseases No pests or diseases are of major concern but occasionally scales. Figure 3. Trunk of Screw-pine. Soil tolerances: clay; loam; sand; acidic; alkaline; extended flooding; well-drained Drought tolerance: moderate Aerosol salt tolerance: high Other Roots: surface roots are usually not a problem Winter interest: no special winter interest Outstanding tree: not particularly outstanding Invasive potential: little, if any, potential at this time Pest resistance: no pests are normally seen on the tree USE AND MANAGEMENT Although the male plants possess conspicuous, fragrant flowers, it is the female plant which is preferred for landscape use because of the large, eight to nine-inch, globular fruits which hang from "cords". The fruits are made up of 100 to 200 tightly compressed drupes, similar to those of a pineapple, and change from green to yellow when ripe. There is only a small amount of edible pulp but the fruits are quite showy. Screw-Pine produces fruit when grown in full sun but young plants may be kept in the shade. Soil should be well-drained and plants kept well-watered. Screw-Pine may be considered messy due to the constant leaf-drop throughout the year. Veitch Screw-Pine or Ribbon-Plant (Pandanus veitchii) has white-banded, spiny leaves, does not fruit,.
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • The Fossil Pollen Record of the Pandanaceae
    The Fossil Pollen Record of the Pandanaceae DAVID M. JARZEN Paleobiology Division National Museum of Natural Sciences National Museums of Canada Ottawa, Canada Abstract The fossil record of pollen comparable to the family Pandanaceae and sometimes directly comparable with the extant genus Pandanus extends back to the latest Upper Cretaceous. The family which once had a wide geographic distribution on all continents except Australia, has, since the mid-Tertiary, become restricted to the Old World tropics and subtropics. Introduction The monocotyledon genus Pandanus Rumph. ex L. comprises about 600 species of trees, shrubs and less frequently subshrubs. Several, such as P. epiphyticus Martelli and P. altico/a Holt. and St. John from Malaya and Borneo are truly epiphytic though facultatively so, also occurring on boulders of limestone or sand­ stone (Stone, 1978). The tree habit is the most common, and such pandans form a conspicuous part of the vegetation of many tropical shorelines. The pandans (or screw-pines) are distributed throughout the palaeotropics, with species occurring on nearly all tropical and marginally subtropical islands of the Pacific, the northern tropical regions of Australia, tropical Southeast Asia, Indonesia, the Philippines, southern India and islands of the Indian Ocean, the Malagasy Republic and East and West Africa (Stone, 1976). The genus does not occur naturally in the neotropics. Map 1 illustrates the overall distribution of the genus, as well as the known fossil pollen reports of Pandanaceae. The pandans are dioecious, with the staminate plants, particularly of the forest species, being less frequently collected than the pistillate plants, due to the brief, ephemeral staminate anthesis.
    [Show full text]
  • Front Cover: Pandanus Odoratissimus L.F Published Quarterly PRINTED IN
    Front cover: Pandanus odoratissimus L.f (PHOTO: Y.I. ULUMUDDIN) Published quarterly PRINTED IN INDONESIA ISSN: 1412-033X E-ISSN: 2085-4722 BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 77-84 DOI: 10.13057/biodiv/d190113 Forest gardens management under traditional ecological knowledge in West Kalimantan, Indonesia BUDI WINARNI1,♥, ABUBAKAR M. LAHJIE2,♥♥, B.D.A.S. SIMARANGKIR2, SYAHRIR YUSUF2, YOSEP RUSLIM2,♥♥♥ 1Department of Agricultural Management, Politeknik Pertanian Negeri Samarinda. Jl. Samratulangi, Kampus Sei Keledang, Samarinda 75131, East Kalimantan, Indonesia. Tel.: +62-541-260421, Fax.: +62-541-260680, ♥email: [email protected] 2Faculty of Forestry, Universitas Mulawarman. Jl. Ki Hajar Dewantara, PO Box 1013, Gunung Kelua, SamarindaUlu, Samarinda 75116, East Kalimantan, Indonesia. Tel.: +62-541-735089, Fax.: +62-541-735379. ♥♥email: [email protected]; ♥♥♥[email protected] Manuscript received: 5 July 2017. Revision accepted: 2 December 2017. Abstract. Winarni B, Lahjie AM, Simarangkir B.D.A.S., Yusuf S, Ruslim Y. 2018. Forest gardens management under traditional ecological knowledge in West Kalimantan, Indonesia. Biodiversitas 19: 77-84. Local wisdom of Dayak Kodatn people in West Kalimantan in forest management shows that human and nature are in one beneficial ecological unity known as Traditional Ecological Knowledge (TEK). Former cultivation forest areas are managed in various ways, including planting forest trees, fruit-producing plants, and rubber trees until they transform
    [Show full text]
  • Nutrient Content of Three Clones of Red Fruit (Pandanus Conoideus) During the Maturity Development
    International Food Research Journal 23(3): 1217-1225 (2016) Journal homepage: http://www.ifrj.upm.edu.my Nutrient content of three clones of red fruit (Pandanus conoideus) during the maturity development 1*Sarungallo, Z. L., 1Murtiningrum, 1Santoso, B., 1Roreng, M. K. and 1Latumahina, R. M. M. 1Department of Agricultural Technology, Papua University. Jl. Gunung Salju, Amban, Manokwari-98314, West Papua, Indonesia Article history Abstract Received: 23 November 2014 The purpose of this study was to determine the best harvest time of three clones red fruit Received in revised form: (Pandanus conoideus) based on their nutrient contents. Fruit flesh of three red fruit clones 28 August 2015 (namely Monsor, Edewewits and Memeri) were analyzed the nutritional content, during the Accepted: 9 September 2015 development of the maturity i.e. unripe, half ripe, ripe and overripe. The results show that the maturity stages had a significant effect on the nutrient contents of three clones of red fruit. Nutritional components in the red fruit on are fat (50.8-55.58%), carbohydrate (36.78-46.3%), Keywords vitamin C (24-45 mg per 100 g), phosphorus (654-792 ppm), calcium (4919-5176 ppm), total carotenoids (976-1592 ppm) and total tocopherols (1256-2016 ppm). The changed of nutrient Red fruit (Pandanus conoideus) composition of fruits vary in each clone during ripening. Using the principal component Ripening stages analysis (PCA), commonly three clones of red fruit in unripe and half ripe stages could be Carotenoids characterized by high content of ash, calcium, phosphor, and carbohydrate, while red fruit in Tocopherol maturity level of ripe and overripe were characterized by high content of fat, total carotenoids Nutrient composition and total tocopherol content.
    [Show full text]
  • Notes on Grasses (Poaceae) in Hawai‘I: 2
    Records of the Hawaii Biological Survey for 2009 –2010. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 110: 17 –22 (2011) Notes on grasses (Poaceae ) in Hawai‘i : 31. neil snoW (Hawaii Biological survey, Bishop museum, 1525 Bernice street, Honolulu, Hawai‘i, 96817-2704, Usa; email: [email protected] ) & G errit DaViDse (missouri Botanical Garden, P.o. Box 299, st. louis, missouri 63166-0299, Usa; email: [email protected] ) additional new records for the grass family (Poaceae) are reported for Hawai‘i, including five state records, three island records, one corrected island report, and one cultivated species showing signs of naturalization. We also point out minor oversights in need of cor - rection in the Flora of North America Vol. 25 regarding an illustration of the spikelet for Paspalum unispicatum . Herbarium acronyms follow thiers (2010). all cited specimens are housed at the Herbarium Pacificum (BisH) apart from one cited from the missouri Botanical Garden (mo) for Paspalum mandiocanum, and another from the University of Hawai‘i at mānoa (HaW) for Leptochloa dubia . Anthoxanthum odoratum l. New island record this perennial species, which is known by the common name vernalgrass, occurs natu - rally in southern europe but has become widespread elsewhere (allred & Barkworth 2007). of potential concern in Hawai‘i is the aggressive weedy tendency the species has shown along the coast of British columbia, canada, where it is said to be rapidly invad - ing moss-covered bedrock of coastal bluffs, evidently to the exclusion of native species (allred & Barkworth 2007). the species has been recorded previously on kaua‘i, moloka‘i, maui, and Hawai‘i (imada 2008).
    [Show full text]
  • Pandanus Ific Food Leaflet N° Pac 6 ISSN 1018-0966
    A publication of the Healthy Pacific Lifestyle Section of the Secretariat of the Pacific Community Pandanus ificifoodileafieiin° Pac i6 ISSN 1018-0966 n parts of the central and northern Pacific, pandanus is a popular food item used in a variety of interesting ways. However, on many other IPacific Islands, pandanus is not well-known as a food. There are many varieties of pandanus, but only In Kiribati, pandanus is called the ‘tree of life’ as it some have edible fruits and nuts. The plants have provides food, shelter and medicine. In the Marshall a distinctive shape and the near-coastal species, Islands, it is called the ‘divine tree’, like coconut, Pandanus tectorius, is found on most Pacific Islands. because of its important role in everyday life. Pandanus The bunches of fruit have many sections called ‘keys’, is also an important staple food in the Federated States which weigh from around 60 to 200 grams each. of Micronesia (FSM), Tuvalu, Tokelau and Papua New (The botanical term for these keys is phalanges, which Guinea. Dried pandanus was once an important food means ‘finger bones’.) People often eat the keys raw, for voyagers on outrigger canoes, enabling seafarers of but the juicy pulp can also be extracted and cooked long ago to survive long journeys. or preserved. The nuts of some varieties are also eaten. In some countries, a number of pandanus varieties are conserved in genebank collections. This leaflet focuses on the Pandanus tectorius species of pandanus. However, other species, such as The pandanus plant plays an important role in Pandanus conoideus and Pandanus jiulianettii, which everyday life in the Pacific.
    [Show full text]
  • Low-Maintenance Landscape Plants for South Florida1
    ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †.
    [Show full text]
  • NBG-Cultivate-Winter-2021.Pdf
    WINTER 2021 Cultivate / Winter 2021 1 IN SEASON | Shaving Brush (Pseudobombax ellipticum) 2 Naples Botanical Garden Cultivate / Winter 2021 1 FROM THE PRESIDENT'S DESK OUR MISSION Conserve & Discover. Engage & Inspire. To develop and conserve collections and habitats representative of the flora and cultures between the 26th latitudes. Welcome to 2021! To discover, research, and share knowledge about these plants and their gifts to us of beauty, tranquility, sustenance, and well-being. And to engage and inspire everyone to care for the plants around them and become stewards of the environment. As we start this new year, I find myself reflecting ON THE COVER on the idea of “adaptability.” Nature is the perfect teacher, The prop roots of the screw pine (Pandanus utilis), which, despite its name, is not really a pine at all, bend and twist to form a distinctive support adjusting to new conditions, rebounding system. This charismatic monocot, native to Madagascar, sets the tone for our season, dedicated to an exploration of roots and other unseen forces of nature. Find it in Irma's Garden and near the meeting points of the Water Garden, Kapnick Brazilian Garden, and Kapnick Caribbean Garden. from natural disasters, evolving to ensure survival. TABLE OF CONTENTS More than a Perhaps the most critical thing channel, you can learn about 4 trip to the nursery 24 What's ➳ From the Café we learned in 2020 was the art the fascinating world beneath Happening How we source plants of adaptation. We introduced our feet. We’re sharing the for our collections. 12 Making a 25 new safety protocols, found unseen work that is at the 8 priority list Berger Shop Finds Gardening different ways to interact with “root” of the Garden’s mission, How-Tos How we determine what visitors, and launched new too.
    [Show full text]
  • Herbal Medicine: Pandan (Pandanus Tectorius)
    For the Month of October Herbal Medicine: Pandan (Pandanus tectorius ) Fragrant Screw Pine The pandan tree grows as tall as 5 meters, with erect, small branches. Pandan is also known as Fragrant Screw Pine. Its trunk bears plenty of prop roots. Its leaves spirals the branches, and crowds at the end. Its male inflorescence emits a fragrant smell, and grows in length for up to 0.5 meters. The fruit of the pandan tree, which is usually about 20 centimeters long, are angular in shape, narrow in the end and the apex is truncate. It grows in the thickets lining the seashores of most places in the Philippines. In various parts of the world, the uses of this plant are very diverse. Some countries concentrate on the culinary uses of pandan, while others deeply rely on its medicinal values. For instance, many Asians regard this food as famine food. Others however mainly associate pandan with the flavoring and nice smell that it secretes. In the Philippines, pandan leaves are being cooked along with rice to in- corporate the flavor and smell to it. As can be observed, the uses of the pandan tree are not limited to cooking uses. Its leaves and roots are found to have medici- nal benefits. Such parts of the plant have been found to have essential oils, tannin, alkaloids and glycosides, which are the reasons for the effective treatment of vari- ous health concerns. It functions as a pain reliever, mostly for headaches and pain caused by arthritis, and even hangover. It can also be used as antiseptic and anti- bacterial, which makes it ideal for healing wounds.
    [Show full text]
  • Romania Total No. of Botanic Gardens Recorded in Romania: 10. Approx
    Romania Total no. of Botanic Gardens recorded in Romania: 10. Approx. no. of living plant accessions recorded in these botanic gardens: c.50,000 Approx. no. of taxa in these collections: c.12,000 (probably 5,000 to 8,000 spp). Estimated % of pre-CBD collections: 80%. Location: BUCAREST Founded: 1860 Garden Name: Grâdina Botanicâ a Universitatii din Bucuresti Address: Soseaua Cotrocenti nr 32, Sectorul 6, Of. Postal 15, 76258 BUCARESTI (15). Status: University Herbarium: Yes Approx. no. of herbarium specimens: 500,000 Ex situ Collections: Bromeliaceae, Orchidaceae, Piperaceae, Cactaceae, Crassulaceae, Ficus, insectivorous plants. No. of taxa: 11,000 Rare & Endangered plants: Unknown Location: BUCAREST Founded: Unknown Garden Name: Grâdina Botanicâ a Instutui Agronomic "N. Balcesu" Address: Bulvardul Marasti nr 59, BUCURESTI. Status: State Herbarium: No Ex situ Collections: No information available. No. of taxa: Unknown Rare & Endangered plants: Unknown Location: CLUJ-NAPOCA Founded: 1903 Garden Name: Grâdina Agrobotanicâ Address: Universitatea de Stiinte Agricole si Medicinâ Veterinarâ, Grâdina Agrobotanicâ, Str. Mânâstur nr. 3, 3400 CLUJ-NAPOCA Status: State Herbarium: Yes Approx. no. of herbarium specimens: 30,000 Ex situ Collections: Cereals, forage, horticultural plants, medicinal plants, trees and shrubs, bulbs and herbaceous perennials. No. of taxa: 1,600 Rare & Endangered plants: Adonis transsilvanica, Hepatica transsilvanica. Special Conservation Collections: Forage, cultivated, cereal, technical, horticultural plants. Location: CLUJ-NAPOCA Founded: 1920 Garden Name: Grâdina Botanicâ a Universitatii din Cluj-Napoca Address: "Babes - Bolyai", Calea Republicii 42, 3400 CLUJ-NAPOCA. Status: University Herbarium: Yes Approx. no. of herbarium specimens: 700,000 Ex situ Collections: Temperate trees such as Sequoidendron giganteum, Ginkgo biloba, Magnolia obovata and Syringa josikaea.
    [Show full text]
  • Pacific Colonisation and Canoe Performance: Experiments in the Science of Sailing
    PACIFIC COLONISATION AND CANOE PERFORMANCE: EXPERIMENTS IN THE SCIENCE OF SAILING GEOFFREY IRWIN University of Auckland RICHARD G.J. FLAY University of Auckland The voyaging canoe was the primary artefact of Oceanic colonisation, but scarcity of direct evidence has led to uncertainty and debate about canoe sailing performance. In this paper we employ methods of aerodynamic and hydrodynamic analysis of sailing routinely used in naval architecture and yacht design, but rarely applied to questions of prehistory—so far. We discuss the history of Pacific sails and compare the performance of three different kinds of canoe hull representing simple and more developed forms, and we consider the implications for colonisation and later inter-island contact in Remote Oceania. Recent reviews of Lapita chronology suggest the initial settlement of Remote Oceania was not much before 1000 BC (Sheppard et al. 2015), and Tonga was reached not much more than a century later (Burley et al. 2012). After the long pause in West Polynesia the vast area of East Polynesia was settled between AD 900 and AD 1300 (Allen 2014, Dye 2015, Jacomb et al. 2014, Wilmshurst et al. 2011). Clearly canoes were able to transport founder populations to widely-scattered islands. In the case of New Zealand, modern Mäori trace their origins to several named canoes, genetic evidence indicates the founding population was substantial (Penney et al. 2002), and ancient DNA shows diversity of ancestral Mäori origins (Knapp et al. 2012). Debates about Pacific voyaging are perennial. Fifty years ago Andrew Sharp (1957, 1963) was sceptical about the ability of traditional navigators to find their way at sea and, more especially, to find their way back over long distances with sailing directions for others to follow.
    [Show full text]
  • A Preliminary List of the Vascular Plants and Wildlife at the Village Of
    A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.
    [Show full text]