A Comparison of the Irritant and Allergenic Properties of Antiseptics

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of the Irritant and Allergenic Properties of Antiseptics Journal Identification = EJD Article Identification = 2198 Date: March 14, 2014 Time: 12:1 pm Review article Eur J Dermatol 2014; 24(1): 3-9 Jean-Marie LACHAPELLE A comparison of the irritant and allergenic Department of Dermatology properties of antiseptics Catholic University of Louvain Cliniques Universitaires Saint-Luc 10, Avenue Hippocrate Over recent years, interest in the use of antiseptics has been reinforced B-1200 Brussels Belgium as these molecules are not concerned by the problem of bacterial resis- tance. Whereas the in vitro efficacy of antiseptics has been well-studied, Reprints: J.-M. Lachapelle much less is known regarding their irritant and allergenic properties. <[email protected]> This review provides an update on the comparative irritant and aller- genic properties of commonly-used antiseptics in medicine nowadays. All antiseptics have irritant properties, especially when they are mis- used. Povidone-iodine has an excellent profile in terms of allergenicity. Allergic contact dermatitis is uncommon but is often misdiagnosed by practitioners, who confuse allergy and irritation. Chlorhexidine has been incriminated in some cases of allergic contact dermatitis; it is considered a relatively weak allergen, although it may rarely cause immunological contact urticaria and even life-threatening anaphylaxis. Octenidine is considered a safe and efficient antiseptic when used for superficial skin infections, however, aseptic tissue necrosis and chronic inflammation have been reported following irrigation of penetrating hand wounds. Polihexanide is an uncommon contact allergen as regards irritant and/or allergic contact dermatitis but cases of anaphylaxis have been reported. Considering the data available comparing the irritant and allergenic prop- erties of major antiseptics currently in use, it should be acknowledged that all antiseptics may induce cutaneous side-effects. The present article reviews the most recent safety data that can guide consumers’ choice. Key words: adaptive immunity, chlorhexidine, hexamidinediisethion- ate, innate immunity, octenidine, polyhexanide, povidone-iodine, Article accepted on 7/29/2013 quaternary ammonium compounds, silver dressings, triclosan or many years, topical antibiotics have been con- to topical antibiotics and this leads to a reinforced interest sidered the treatment of choice of superficial skin in antiseptics, which are not concerned by the problem of F bacterial infections and/or infected wounds. bacterial resistance. More recently, Staphylococcus aureus has become a major Antiseptics are well studied regarding in vitro efficacy but health problem worldwide. Multi-drug resistant strains are less regarding irritancy and allergenic properties. There- endemic in hospitals (MRSA). Moreover, there is now fore, this article is exclusively focused on the comparative a rapid emergence of community-associated methicillin- irritant and allergenic properties of the most important anti- resistant S. aureus (CA-MRSA). The resistance of these septics used nowadays. strains to antibiotics has been emphasized. Neomycin and bacitracin, known for their allergenic properties, are less used in Europe, in contrast to the United States and/or African countries. Irritant and allergic contact dermatitis: Two topical antibiotics are frequently used in European countries : sodium fusidate (Fucidin®) and mupirocine a new perspective (Bactroban®). Resistance to sodium fusidate has been doc- umented [1] and its allergenic properties identified. In this A new approach to common side effects consecutive study, a clear link between prescription of the antibiotic to applied chemicals onto the skin is now developing. and an increase in bacterial resistance was demonstrated. Classically, in previous years, the two main side effects, The use of mupirocine (exceptionally allergenic) is lim- irritation and contact allergy, were considered entirely ited to well-defined indications, such as nasal carriage of separate entities. Times have changed, due to a better under- S. aureus, but resistance has been indicated [2]. But the most standing of the processes involved in the two types of doi:10.1684/ejd.2013.2198 important message is the increased resistance of S. aureus reaction. EJD, vol. 24, n◦ 1, January-February 2014 3 To cite this article: Lachapelle JM. A comparison of the irritant and allergenic properties of antiseptics. Eur J Dermatol 2014; 24(1): 3-9 doi:10.1684/ejd.2013.2198 Journal Identification = EJD Article Identification = 2198 Date: March 14, 2014 Time: 12:1 pm Irritant contact dermatitis is the prototype of innate immu- than others. Dermatochemistry can, to some extent, explain nity. The pathways of inflammatory cascades include a these discrepancies [8]. Mercury compounds are out of vast repertoire of cells, as well as different cytokines and course. chemokines. Activation of innate immunity is necessary for the devel- opment of allergic contact dermatitis (ACD). The latter is therefore linked with the activation of T effector lym- The comparative irritant properties of phocytes, specifically sensitized to allergens (adaptive antiseptics immunity). This view has been clearly demonstrated [3-5]. In other words, most chemicals in direct contact with the skin are potentially irritant; their irritancy is related, not only There are several reports on the cytotoxicity of antisep- to their chemical nature, but also to several environmen- tics but it is important to compare them under identical tal factors : concentration, vehicle, occlusion, temperature test conditions. The cytotoxicity of PVP-I, chlorhexidine or altered skin (mechanical trauma, ulcerations, eczema- digluconate (Chex), octenidine dihydrochloride (Oct) and tous lesions, etc.). These considerations apply directly to polyhexamethyl enebiguanide (polihexanide, PHMD) was antiseptics, which share irritant and, rarely, allergenic prop- compared on CHO-K1 cells. PVP-I was more than 20 times erties. better tolerated by L929 cells than Chex, Oct and PHMD The practical implication of the new concept for the clin- [9]. ician is : if the patch test remains the “gold standard” for Another investigation analyzing the stratum corneum toler- diagnosing allergic contact dermatitis, it has to be inter- ance of PVP-I 10%, PVP-I 7.5% and chlorhexidine showed preted more cautiously, in particular in cases of weak that PVP-I 10% is less aggressive to the stratum corneum (questionable : ± ?) reactions, to avoid a misinterpretation than PVP-I 7.5% and chlorhexidine [10]. In a comparison of the conclusion (irritation versus allergy). Its pertinence between PVP-I, benzalkonium chloride, chlorhexidine glu- has to be reinforced by additional tests, such as the open test, conate and alkyldiaminoethylglycine hydrochloride, PVP-I semi-open test [6] and ROAT test [7]. More sophisticated had a weaker skin irritancy versus the other antiseptics [11]. laboratory investigations have been developed [3, 5]. They Recently, seventeen burn wound dressings, ointments and represent the only scientific way to differentiate irritant creams showed that the most cytotoxic products included from allergic contact reactions, by unquestionably trap- those containing silver or chlorhexidine [12]. ping the antigen-specific T lymphocytes in relation to a All these studies are in vitro studies and need to be defined allergen. But at the present time, these techniques confirmed clinically. An in vivo comparison of leg are inaccessible to the clinician. ulcers treated by PVP-I, silver sulfadiazine and chlorhex- idine indicated that the densities in microvessels and dendrocytes (no dendrocytoclasis) were higher in PVP-I- assigned lesions than those receiving silver sulfadiazine Antiseptics and disinfectants or chlorhexidine digluconate, resulting in better wound healing with PVP-I compared to the other antimicro- The terms “antiseptics” and “disinfectants” are often bials [13, 14]. 70% ethanol, Softasept®, Octenisept® used as synonyms in the current literature, even in (octenidine) and Lavasept® (polihexanide) were com- well-documented textbooks of dermatology. In fact, the pared, octenidine had the least impact on microcirculatory definitions are quite important : parameters [15]. A study assessing the tissue compati- Antiseptics are substances that inhibit the growth and bilities of Dibromol® (bromchlorophene, isopropyl alco- development of microorganisms (without necessarily hol, sodium 3.5-dibromo-4-hydroxybenzenesulphonate), killing them) in living tissues. Their indications are varied, Kodan® (propanol), Jodobac® (PVP-I), Octenisept® such as the cleansing of preoperative skin, the cleansing ® of acute and chronic wounds and also in the treatment of (octenidine), 0.2% Lavasept (polihexanide) hydrogen per- superficial skin infections. oxide, 0.5% chlorhexidine digluconate and 60% 2-propanol Disinfectants refer, by definition, to substances designed found that the most severe tissue toxicity was induced by 0.5% chlorhexidine digluconate and by propanol. Irritation to destroy pathogens in the environment (e.g. on work sur- ® ® faces or operating materials). They are very diversified, values were determined for Dibromol , Octenisept and with different chemical structures. Classical examples are: 60% 2-propanol but moderate vascular injuries were caused bleach (chlorinated water, “eau de Javel”), formaldehyde, by PVP-I. Lavasept® and hydrogen peroxide showed no glutaraldehyde, glyoxal and quaternary ammonium com- tissue toxicity [16]. pounds. It is noteworthy that the latter are used both
Recommended publications
  • Antiseptics and Disinfectants for the Treatment Of
    Verstraelen et al. BMC Infectious Diseases 2012, 12:148 http://www.biomedcentral.com/1471-2334/12/148 RESEARCH ARTICLE Open Access Antiseptics and disinfectants for the treatment of bacterial vaginosis: A systematic review Hans Verstraelen1*, Rita Verhelst2, Kristien Roelens1 and Marleen Temmerman1,2 Abstract Background: The study objective was to assess the available data on efficacy and tolerability of antiseptics and disinfectants in treating bacterial vaginosis (BV). Methods: A systematic search was conducted by consulting PubMed (1966-2010), CINAHL (1982-2010), IPA (1970- 2010), and the Cochrane CENTRAL databases. Clinical trials were searched for by the generic names of all antiseptics and disinfectants listed in the Anatomical Therapeutic Chemical (ATC) Classification System under the code D08A. Clinical trials were considered eligible if the efficacy of antiseptics and disinfectants in the treatment of BV was assessed in comparison to placebo or standard antibiotic treatment with metronidazole or clindamycin and if diagnosis of BV relied on standard criteria such as Amsel’s and Nugent’s criteria. Results: A total of 262 articles were found, of which 15 reports on clinical trials were assessed. Of these, four randomised controlled trials (RCTs) were withheld from analysis. Reasons for exclusion were primarily the lack of standard criteria to diagnose BV or to assess cure, and control treatment not involving placebo or standard antibiotic treatment. Risk of bias for the included studies was assessed with the Cochrane Collaboration’s tool for assessing risk of bias. Three studies showed non-inferiority of chlorhexidine and polyhexamethylene biguanide compared to metronidazole or clindamycin. One RCT found that a single vaginal douche with hydrogen peroxide was slightly, though significantly less effective than a single oral dose of metronidazole.
    [Show full text]
  • Effect of Polyhexamethylene Biguanide in Combination with Undecylenamidopropyl Betaine Or Pslg on Biofilm Clearance
    International Journal of Molecular Sciences Article Effect of Polyhexamethylene Biguanide in Combination with Undecylenamidopropyl Betaine or PslG on Biofilm Clearance Yaqian Zheng 1,2,†, Di Wang 1,† and Luyan Z. Ma 1,3,* 1 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (Y.Z.); [email protected] (D.W.) 2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-10-64807437 † These authors have contributed equally to this work. Abstract: Hospital-acquired infection is a great challenge for clinical treatment due to pathogens’ biofilm formation and their antibiotic resistance. Here, we investigate the effect of antiseptic agent polyhexamethylene biguanide (PHMB) and undecylenamidopropyl betaine (UB) against biofilms of four pathogens that are often found in hospitals, including Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and pathogenic fungus, Candida albicans. We show that 0.02% PHMB, which is 10-fold lower than the concentration of commercial products, has a strong inhibitory effect on the growth, initial attachment, and biofilm formation of all tested pathogens. PHMB can also disrupt the preformed biofilms of these pathogens. In contrast, 0.1% UB exhibits a mild inhibitory effect on biofilm formation of the four pathogens. This concentration inhibits the growth of S. aureus and C. albicans yet has no growth effect on P. aeruginosa or E. coli. UB only slightly enhances the anti-biofilm efficacy of PHMB on P.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Genetic Basis of Resistance to Quaternary Ammonium Compounds – the Qac Genes and Their Role: a Review
    Veterinarni Medicina, 57, 2012 (6): 275–281 Review Article Genetic basis of resistance to quaternary ammonium compounds – the qac genes and their role: a review Z. Jaglic, D. Cervinkova Veterinary Research Institute, Brno, Czech Republic ABSTRACT: Although the qac genes are named after one of their main substrates (i.e., quaternary ammonium compounds), these genes also code for resistance to a broad spectrum of other cationic compounds such as inter- calating dyes, diamidines and biguanides. The various Qac proteins are involved in relatively low specific efflux- based multidrug pumps and belong to a family of small multidrug resistance proteins. Even though the practical significance of qac-mediated resistance lies mainly in resistance to antiseptics, contradictory findings on this issue are still reported. Therefore, the aim of this review is to summarise the current knowledge on qac-mediated resistance with special emphasis on resistance to antiseptics and its relevance for practice. Keywords: antimicrobial; disinfectant; biocide; benzalkonium; chlorhexidine; cation; susceptibility Contents 3.2. Substrates of qac-mediated resistance 1. Introduction 3.3. Adaptive response to antiseptics 2. The qac genes and their distribution 4. The qac genes and resistance to antibiotics 3. Qac-mediated resistance 5. Conclusions 3.1. Mechanisms of qac-mediated resistance 6. References 1. Introduction first described genetic determinant of resistance to antiseptics was the qacA gene found on pSK1 Resistance to intercalating dyes (i.e. acriflavine and β-lactamase/heavy metal resistance plasmids and ethidium) was associated with particular ge- (Gillespie et al. 1986; Lyon and Skurray 1987). A netic elements, namely staphylococcal β-lactamase range of other qac genes linked with particular plas- plasmids, already more than 40 years ago (Ericson mids (Littlejohn et al.
    [Show full text]
  • ANNEX VI List of Preservatives Allowed for Use in Cosmetic Products
    ANNEX VI List of preservatives allowed for use in cosmetic products ANNEX VI LIST OF PRESERVATIVES WHICH COSMETIC PRODUCTS MAY CONTAIN Preamble 1. Preservatives are substances which may be added to cosmetic products for the primary purpose of inhibiting the development of micro-organisms in such products. 2. The substances marked with the symbol (+) may also be added to cosmetic products in concentration other than those laid down in this ANNEX for other purposes apparent from the presentation of the products, e.g. as deodorants in soaps or as anti-dandruff agents in shampoos. 3. Other substances used in the formulation of cosmetic products may also have anti-microbial properties and thus help in the preservation of the products, as, for instance, many essential oils and some alcohols. These substances are not included in the ANNEX. 4. For the purposes of this list - “Salts” is taken to mean: salts of the cations sodium, potassium, calcium, magnesium, ammonium, and ethanolamines; salts of the anions chloride, bromide, sulphate, acetate. - “Esters” is taken to mean: esters of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, phenyl. 5. All finished products containing formaldehyde or substances in this ANNEX and which release formaldehyde must be labelled with the warning “contains formaldehyde” where the concentration of formaldehyde in the finished product exceeds 0.05%. Revised as per August 2015 ASEAN Cosmetic Documents 1 Annex VI – Part 1 – List of preservatives allowed for use in cosmetic products ANNEX VI – PART 1 LIST OF PRESERVATIVES ALLOWED Reference Substance Maximum authorized Limitations and Conditions of use and Number concentration requirements warnings which must be printed on the label a b c d e 1 Benzoic acid (CAS No.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Clincal Review(S)
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 208288Orig1s000 CLINICAL REVIEW(S) Division Director Review NDA 208288 Chlorhexidine gluconate/isopropyl alcohol Summary Review for Regulatory Action Date September 1, 2017 Theresa M. Michele, MD From Director, Division of Nonprescription Drug Products Subject Division Director Summary Review NDA/BLA # 208288 Applicant Name 3M Health Care Business Date of Submission March 3, 2017 PDUFA Goal Date September 3, 2017 SoluPrep™ Film-Forming Sterile Solution / 2%w/v Proprietary Name / chlorhexidine gluconate and 70% v/v isopropyl Established (USAN) Name alcohol Dosage Forms / Route of Surgical solution Administration / Strength Patient Preoperative Skin Preparation (adults and pediatric patients ≥ 2 months of age) Proposed Indication(s) • For preparation of the skin prior to surgery • Helps reduce bacteria that potentially can cause skin infection Recommended Regulatory Complete response Action Material Reviewed/Consulted OND Action Package, including: Names of discipline reviewers Medical Officer Review--DNDP Teresa Podruchny/Francis Becker Statistical Review Joo-Yeon Lee/Rima Izem Pharmacology Toxicology Review Charlie Thompson/Jane Sohn CMC Review/OBP Review Elise Luong/Maria Cruz-Fisher/Erika Pfeiler/ Swapan De Clinical Microbiology Review Michelle Jackson Clinical Pharmacology Review Sojeong Yi/Dennis Bashaw CDTL Review Francis Becker OSE/DMEPA Grace Jones/Chi-Ming Tu RPM DNDP Lara Akinsanya CDTL=Cross-Discipline Team Leader DMEPA=Division of Medication Error Prevention and Analysis
    [Show full text]
  • LIST of REGISTRED DRUGS in ARMENIA (Up to 31.12.2017)
    LIST OF REGISTRED DRUGS IN ARMENIA (Up to 31.12.2017) International nonproprietary Registration Term of Legal status for N Trade name name (generic) or Drug form Dose and packaging Manufacturer Country ATC1 code License holder number registration supply active ingredients name Lek Pharmaceuticals pefloxacin Lek Pharmaceuticals 400mg, 10.03.2015 d.d., Verovskova Str. 1 Abaktal (pefloxacin tablets film-coated d.d., Verovskova Str. Slovenia J01MA03 14308 PoM2 in blister (10/1x10/) 10.03.2020 57, 1526 Ljubljana, mesylate dihydrate) 57, 1526 Ljubljana Slovenia Lilly France S.A.S., Eli Lilly Regional 100IU/ml, Zone Industrielle, 2 17.03.2017 Operations GmbH., 2 Abasaglar insulin glargine solution for injection France A10AE04 16535 PoM 3ml cartridges (5) rue du Colonel Lilly, 17.03.2022 Koelblgasse 8-10, 67640 Fegersheim 1030, Vienna, Austria Help S.A ,10 ambroxol Help S.A. Pedini, Valaoritou str., GR 6mg/ml, 09.03.2016 3 Abrobion (ambroxol syrup Ioanninon, Ioannina, Greece R05CB06 15404 OTC3 144 52, 125ml glass bottle 09.03.2021 hydrochloride) 45500 Metamorphosis, Attika, Greece Salutas Pharma GmbH, Otto-von- Guericke-Alle-1, 100mg/5ml, 39179 Barleben-batch Sandoz 30g powder in 75ml glass powder for oral releaser, Allphamed Pharmaceuticals d.d., bottle and measuring 20.10.2015 4 ACC acetylcysteine solution with orange Pharbil Arzneimittel Germany R05CB01 14947 OTC Verovskova Str. 57, spoon 5ml, 60g powder in 20.10.2020 flavour GmbH Hildebrandstr. 1000 Ljubljana, 150ml glass bottle and 12, 37081 Gottingen, Slovenia measuring spoon 5ml Germany-bulk manufacturer, packager 1 Salutas Pharma GmbH, Otto-von- Guericke-Alle-1, 39179 Barleben - Sandoz batch releaser Pharmaceuticals d.d., 100mg, 21.11.2014 5 ACC 100 acetylcysteine tablets effervescent (Hermes Pharma Germany R05CB01 13967 OTC Verovskova Str.
    [Show full text]
  • CVS Store Brand Restricted Substances List
    CVS Store Brand Restricted Substances List The following ingredients are restricted from select CVS Store Brand Baby & Child, Beauty, Personal Care, Foods, Suncare, Household, and Bottled Spring Water Products. This list is updated annually, in May. Baby & Child Products (non-medicated products, e.g., shampoos, lotions, wipes) California Proposition 65 Banned Chemicals (e.g., Toluene, Multiple Styrene, BPA) ii Formaldehyde 50-00-0 Dimethyl-dimethyl (DMDM) Hydantoin 6440-58-0 Imidazolidinyl Urea 39236-46-9 Diazolidinyl Urea 78491-02-8 Sodium Hydroxymethylglycinate 70161-44-3 Formaldehyde 2-bromo-2-nitropropane-1,3-diol (Bronopol) 52-51-7 and donors Quaternium-15 4080-31-3 Glyoxal 107-22-2 Polyoxymethylene Urea 68611-64-3 5-Bromo-5-Nitro-1,3 Dioxane (Bronidox) 30007-47-7 Methylene glycol (methanediol) 463-57-0 Methenamine 100-97-0 Ethylparaben 120-47-8 Butylparaben 94-26-8 Methylparaben 99-76-3 Propylparaben 94-13-3 Heptylparaben 1085-12-7 Isobutylparaben 4247-02-3 Isopropylparaben 4191-73-5 Parabens Benzylparaben 94-18-8 Octylparaben 1219-38-1 Pentylparaben 6521-29-5 Phenylparaben 17696-62-7 Isodecylparaben 2664-60-0 Calcium Paraben 69959-44-0 Potassium Paraben 16782-08-4 5026-62-0 35285-69-9 Sodium Parabens 35285-68-8 36457-20-2 Hexamidine Paraben Not Found Hexamidine Diparaben 93841-83-9 Undecylenoyl PEG 5 Paraben Not Found Phenoxyethylparaben 55468-88-7 4-Hydroxybenzoic acid 99-96-7 Di-2-ethylhexyl phthalate (DEHP) 117-81-7 Benzyl butyl phthalate (BBP) 85-68-7 Di-n-butyl phthalate (DBP) 84-74-2 Diisodecyl phthalate (DIDP) 26761-40-0
    [Show full text]
  • In Vitro Evaluation of Polihexanide, Octenidine and Naclo/Hclo-Based Antiseptics Against Biofilm Formed by Wound Pathogens
    membranes Article In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens Grzegorz Krasowski 1, Adam Junka 2,3,* , Justyna Paleczny 2, Joanna Czajkowska 3, Elzbieta˙ Makomaska-Szaroszyk 4, Grzegorz Chodaczek 5, Michał Majkowski 5, Paweł Migdał 6, Karol Fijałkowski 7 , Beata Kowalska-Krochmal 2 and Marzenna Bartoszewicz 2 1 Nutrikon, KCZ Surgical Ward, 47-300 Krapkowice, Poland; [email protected] 2 Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland; [email protected] (J.P.); [email protected] (B.K.-K.); [email protected] (M.B.) 3 Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland; [email protected] 4 Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland; [email protected] 5 Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland; [email protected] (G.C.); [email protected] (M.M.) 6 Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland; [email protected] 7 Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland; karol.fi[email protected] * Correspondence: [email protected]; Tel.: +48-71-784-06-75 Citation: Krasowski, G.; Junka, A.; Paleczny, J.; Czajkowska, J.; Makomaska-Szaroszyk, E.; Abstract: Chronic wounds complicated with biofilm formed by pathogens remain one of the most Chodaczek, G.; Majkowski, M.; significant challenges of contemporary medicine.
    [Show full text]
  • Polyhexamethylene Biguanide (Mn = 1600; PDI =1.8) (PHMB)
    Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report Polyhexamethylene biguanide (Mn = 1600; PDI =1.8) (PHMB) Product-type 2: Disinfectants and algaecides not intended for direct application to humans or animals June 2015 France Polyhexamethylene biguanide Product-type 2 June 2015 (Mn = 1600; PDI =1.8) (PHMB) TABLE OF CONTENTS 1 STATEMENT OF SUBJECT MATTER AND PURPOSE .................................... 4 1.1 Procedure followed ------------------------------------------------------- 4 1.2 Purpose of the assessment ---------------------------------------------- 4 2 OVERALL SUMMARY AND CONCLUSIONS ................................................. 6 2.1 General substance information / General product information ----- 6 2.1.1 Identity, Physico-chemical properties & Methods of analysis of the active substance ---------------------------------------------------------------------------------------------------------------------- 6 2.1.1.1 Identity .................................................................................... 6 2.1.1.2 Physico-chemical properties ........................................................ 9 2.1.1.3 Methods of analysis .................................................................... 9 2.1.2 Identity, Physico-chemical properties & Methods of analysis of the biocidal product 10 2.1.2.1 Identity ................................................................................... 10 2.1.2.2 Physico-chemical properties
    [Show full text]
  • Chronic Venous Ulcers: a Comparative Effectiveness Review of Treatment Modalities Comparative Effectiveness Review Number 127
    Comparative Effectiveness Review Number 127 Chronic Venous Ulcers: A Comparative Effectiveness Review of Treatment Modalities Comparative Effectiveness Review Number 127 Chronic Venous Ulcers: A Comparative Effectiveness Review of Treatment Modalities Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-2007-10061-I Prepared by: Johns Hopkins University Evidence-based Practice Center Baltimore, MD Investigators Jonathan Zenilman, M.D. M. Frances Valle, D.N.P., M.S. Mahmoud B. Malas, M.D., M.H.S. Nisa Maruthur, M.D., M.H.S. Umair Qazi, M.P.H. Yong Suh, M.B.A., M.Sc. Lisa M. Wilson, Sc.M. Elisabeth B. Haberl, B.A. Eric B. Bass, M.D., M.P.H. Gerald Lazarus, M.D. AHRQ Publication No. 13(14)-EHC121-EF December 2013 Erratum January 2014 This report is based on research conducted by the Johns Hopkins University Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2007-10061-I). The findings and conclusions in this document are those of the author(s), who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services.
    [Show full text]