Asteraceae Or Compositae, Vernonieae)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Lyonia 7(1) 2004 - Conservation of Biological and Cultural Diversity in the Andes and the Amazon Basin - Flora and Vegetation
Lyonia 7(1) 2004 - Conservation of Biological and Cultural Diversity in the Andes and the Amazon Basin - Flora and Vegetation Volume 7(1) December 2004 ISSN: 0888-9619 odd-right: 2 Introduction Scientists widely agree that species extinction has heavily accelerated in the last decades. The majority of the worlds species are found in tropical forests, covering a mere ten percent of the planets surface. A grave problem for the conservation of diversity is the still very fragmentary knowledge of the ecology of most species. The Andes and the Amazon Basin represent one of the most important Biodiversity-Hotspots on Earth. Attempts of sustainable management and conservation must integrate local communities and their traditional knowledge. Management decisions need to include the high importance of natural resources in providing building materials, food and medicines for rural as well as urbanized communities. The traditional use of forest resources, particularly of non-timber products like medicinal plants, has deep roots not only in indigenous communities, but is practiced in a wide section of society. The use of medicinal herbs is often an economically inevitable alternative to expensive western medicine. The base knowledge of this traditional use is passed from one generation to the next. Especially the medical use represents a highly dynamic, always evolving process, where new knowledge is constantly being obtained, and linked to traditional practices. An increased emphasis is being placed en possible economic benefits especially of the medicinal use of tropical forest products instead of pure timber harvesting, an approach particularly appealing to countries with difficult economic conditions. Most research efforts, due to lack of manpower, time end resources, focus only on either biodiversity assessments or ethnobotanical inventories, or try to implement management and use measures without having a sound scientific base to do so. -
In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora Trichocarpha
275 In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora trichocarpha SAÚDE-GUIMARÃES, D.A.1*; RASLAN, D.S.2; OLIVEIRA, A.B.3 1Laboratório de Plantas Medicinais (LAPLAMED), Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto. Rua Costa Sena, 171, Centro, CEP: 354000-000, Ouro Preto, Minas Gerais, Brazil *[email protected] 2Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. 3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil. ABSTRACT: The sesquiterpene lactones lychnopholide and eremantholide C were isolated from Lychnophora trichocarpha Spreng. (Asteraceae), which is a plant species native to the Brazilian Savannah or Cerrado and popularly known as arnica. Sesquiterpene lactones are known to present a variety of biological activities including antitumor activity. The present paper reports on the evaluation of the in vitro antitumor activity of lychnopholide and eremantholide C, in the National Cancer Institute, USA (NCI, USA), against a panel of 52 human tumor cell lines of major human tumors derived from nine cancer types. Lychnopholide disclosed significant activity against 30 cell lines of seven cancer types with IC100 (total growth concentration inhibition) values between 0.41 µM and 2.82 µM. Eremantholide C showed significant activity against 30 cell lines of eight cancer types with IC100 values between 21.40 µM and 53.70 µM. Lychnopholide showed values of lethal concentration 50 % (LC50) for 30 human tumor cell lines between 0.72 and 10.00 µM, whereas eremantholide C presented values of LC50 for 21 human tumor cell lines between 52.50 and 91.20 µM. -
Diversidad Y Distribución De La Familia Asteraceae En México
Taxonomía y florística Diversidad y distribución de la familia Asteraceae en México JOSÉ LUIS VILLASEÑOR Botanical Sciences 96 (2): 332-358, 2018 Resumen Antecedentes: La familia Asteraceae (o Compositae) en México ha llamado la atención de prominentes DOI: 10.17129/botsci.1872 botánicos en las últimas décadas, por lo que cuenta con una larga tradición de investigación de su riqueza Received: florística. Se cuenta, por lo tanto, con un gran acervo bibliográfico que permite hacer una síntesis y actua- October 2nd, 2017 lización de su conocimiento florístico a nivel nacional. Accepted: Pregunta: ¿Cuál es la riqueza actualmente conocida de Asteraceae en México? ¿Cómo se distribuye a lo February 18th, 2018 largo del territorio nacional? ¿Qué géneros o regiones requieren de estudios más detallados para mejorar Associated Editor: el conocimiento de la familia en el país? Guillermo Ibarra-Manríquez Área de estudio: México. Métodos: Se llevó a cabo una exhaustiva revisión de literatura florística y taxonómica, así como la revi- sión de unos 200,000 ejemplares de herbario, depositados en más de 20 herbarios, tanto nacionales como del extranjero. Resultados: México registra 26 tribus, 417 géneros y 3,113 especies de Asteraceae, de las cuales 3,050 son especies nativas y 1,988 (63.9 %) son endémicas del territorio nacional. Los géneros más relevantes, tanto por el número de especies como por su componente endémico, son Ageratina (164 y 135, respecti- vamente), Verbesina (164, 138) y Stevia (116, 95). Los estados con mayor número de especies son Oaxa- ca (1,040), Jalisco (956), Durango (909), Guerrero (855) y Michoacán (837). Los biomas con la mayor riqueza de géneros y especies son el bosque templado (1,906) y el matorral xerófilo (1,254). -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Texas Prairie Dawn-Flower (Hymenoxys Texana) 5-Year Review
Texas prairie dawn-flower (Hymenoxys texana) 5-Year Review: Summary and Evaluation Photo credit: USFWS U.S. Fish and Wildlife Service Texas Coastal Ecological Services Field Office Houston, Texas Table of Contents ABBREVIATIONS ........................................................................................................................ 3 1.0 GENERAL INFORMATION .......................................................................................... 4 2.0 REVIEW ANALYSIS ...................................................................................................... 7 2.4 SYNTHESIS .................................................................................................................. 24 3.0 RESULTS....................................................................................................................... 25 4.0 RECOMMENDATIONS FOR FUTURE ACTIONS.................................................... 26 5.0 REFERENCES ............................................................................................................... 28 Appendix A ................................................................................................................................... 31 Recommendation resulting from the 5-Year Review: .................................................................. 34 Figures Figure 1 Current H. texana county occurrences ............................................................................. 9 Tables Table 1 Renaming of species historically associated with H. texana .......................................... -
Bioactivities of Compounds from Elephantopus Scaber, an Ethnomedicinal Plant from Southwest China
City University of New York (CUNY) CUNY Academic Works Publications and Research Lehman College 2014 Bioactivities of Compounds from Elephantopus scaber, an Ethnomedicinal Plant from Southwest China Jianjun Wang Minzu University of China Ping Li Minzu University of China Basosai Li Beijing University of Chinese Medicine Zhiyong Guo Minzu University of China Edward J. Kennelly CUNY Lehman College See next page for additional authors How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/le_pubs/164 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Authors Jianjun Wang, Ping Li, Basosai Li, Zhiyong Guo, Edward J. Kennelly, and Chunlin Long This article is available at CUNY Academic Works: https://academicworks.cuny.edu/le_pubs/164 Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2014, Article ID 569594, 7 pages http://dx.doi.org/10.1155/2014/569594 Research Article Bioactivities of Compounds from Elephantopus scaber, an Ethnomedicinal Plant from Southwest China Jianjun Wang,1 Ping Li,1 Baosai Li,2 Zhiyong Guo,1 Edward J. Kennelly,1,3 and Chunlin Long1,4 1 CollegeofLifeandEnvironmentalSciences,MinzuUniversityofChina,27Zhong-Guan-CunSouthAvenue, Haidian District, Beijing 100081, China 2 School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Third Ring Road, Chaoyang District, Beijing 100029, China 3 Department of Biological Science, Lehman College, and Graduate Center, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA 4 Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China Correspondence should be addressed to Chunlin Long; [email protected] Received 2 April 2014; Accepted 30 April 2014; Published 19 May 2014 Academic Editor: Shi-Biao Wu Copyright © 2014 Jianjun Wang et al. -
Redalyc.Lychnophoric Acid from Lychnophora Pinaster: a Complete and Unequivocal Assignment by NMR Spectroscopy
Eclética Química ISSN: 0100-4670 [email protected] Universidade Estadual Paulista Júlio de Mesquita Filho Brasil Silveira, D.; de Souza Filho, J. D.; de Oliveira, A. B.; Raslan, D. S. Lychnophoric acid from Lychnophora pinaster: a complete and unequivocal assignment by NMR spectroscopy Eclética Química, vol. 30, núm. 1, janeiro-março, 2005, pp. 37-41 Universidade Estadual Paulista Júlio de Mesquita Filho Araraquara, Brasil Available in: http://www.redalyc.org/articulo.oa?id=42930105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative www.scielo.br/eq Volume 30, número 1, 2005 Lychnophoric acid from Lychnophora pinaster: a complete and unequivocal assignment by NMR spectroscopy. D. Silveira 1*, J. D. de Souza Filho 2, A. B. de Oliveira 3, D. S. Raslan 2 1Faculdade de Ciências da Saúde, UnB Asa Norte, Brasília, DF, Brazil 2Departamento de Química, ICEx, UFMG. Av. Antônio Carlos 6627, CEP 31270-010. Belo Horizonte, MG, Brazil. 3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG . Av. Olegário Maciel, 2360, CEP 30180-112. Belo Horizonte, MG, Brazil. *To whom correspondence should be addressed; e-mail: [email protected] Abstract: The investigation of the hexane extract from aerial parts of Lychnophora pinaster provided, besides others substances, the E-isomer of lychnophoric acid, a sesquiterpene derivative previously isolated from L. affinis. Keywords: Lychnophora pinaster; Asteraceae; lychnophoic acid. Introduction Experimental Plant species of the genus Lychnophora General (Asteraceae) are known as “candeia”, “arnica” and “arnica da serra” and are used in folk medicine Melting point was determined on a Mettler o as anti-flogistic, anti-rheumatic, and analgesic [1]. -
Vascular Plant Community Composition from the Campos Rupestres of the Itacolomi State Park, Brazil
Biodiversity Data Journal 3: e4507 doi: 10.3897/BDJ.3.e4507 Data Paper Vascular plant community composition from the campos rupestres of the Itacolomi State Park, Brazil Markus Gastauer‡‡, Werner Leyh , Angela S. Miazaki§, João A.A. Meira-Neto| ‡ Federal University of Viçosa, Frutal, Brazil § Centro de Ciências Ambientais Floresta-Escola, Frutal, Brazil | Federal University of Viçosa, Viçosa, Brazil Corresponding author: Markus Gastauer ([email protected]) Academic editor: Luis Cayuela Received: 14 Jan 2015 | Accepted: 19 Feb 2015 | Published: 27 Feb 2015 Citation: Gastauer M, Leyh W, Miazaki A, Meira-Neto J (2015) Vascular plant community composition from the campos rupestres of the Itacolomi State Park, Brazil. Biodiversity Data Journal 3: e4507. doi: 10.3897/ BDJ.3.e4507 Abstract Campos rupestres are rare and endangered ecosystems that accommodate a species-rich flora with a high degree of endemism. Here, we make available a dataset from phytosociological surveys carried out in the Itacolomi State Park, Minas Gerais, southeastern Brazil. All species in a total of 30 plots of 10 x 10 m from two study sites were sampled. Their cardinality, a combination of cover and abundance, was estimated. Altogether, we registered occurrences from 161 different taxa from 114 genera and 47 families. The families with the most species were Poaceae and Asteraceae, followed by Cyperaceae. Abiotic descriptions, including soil properties such as type, acidity, nutrient or aluminum availability, cation exchange capacity, and saturation of bases, as well as the percentage of rocky outcrops and the mean inclination for each plot, are given. This dataset provides unique insights into the campo rupestre vegetation, its specific environment and the distribution of its diversity. -
Download This Article As
Int. J. Curr. Res. Biosci. Plant Biol. (2019) 6(10), 33-46 International Journal of Current Research in Biosciences and Plant Biology Volume 6 ● Number 10 (October-2019) ● ISSN: 2349-8080 (Online) Journal homepage: www.ijcrbp.com Original Research Article doi: https://doi.org/10.20546/ijcrbp.2019.610.004 Some new combinations and new names for Flora of India R. Kottaimuthu1*, M. Jothi Basu2 and N. Karmegam3 1Department of Botany, Alagappa University, Karaikudi-630 003, Tamil Nadu, India 2Department of Botany (DDE), Alagappa University, Karaikudi-630 003, Tamil Nadu, India 3Department of Botany, Government Arts College (Autonomous), Salem-636 007, Tamil Nadu, India *Corresponding author; e-mail: [email protected] Article Info ABSTRACT Date of Acceptance: During the verification of nomenclature in connection with the preparation of 17 August 2019 ‗Supplement to Florae Indicae Enumeratio‘ and ‗Flora of Tamil Nadu‘, the authors came across a number of names that need to be updated in accordance with the Date of Publication: changing generic concepts. Accordingly the required new names and new combinations 06 October 2019 are proposed here for the 50 taxa belonging to 17 families. Keywords Combination novum Indian flora Nomen novum Tamil Nadu Introduction Taxonomic treatment India is the seventh largest country in the world, ACANTHACEAE and is home to 18,948 species of flowering plants (Karthikeyan, 2018), of which 4,303 taxa are Andrographis longipedunculata (Sreem.) endemic (Singh et al., 2015). During the L.H.Cramer ex Gnanasek. & Kottaim., comb. nov. preparation of ‗Supplement to Florae Indicae Enumeratio‘ and ‗Flora of Tamil Nadu‘, we came Basionym: Neesiella longipedunculata Sreem. -
Species Accounts
Species accounts The list of species that follows is a synthesis of all the botanical knowledge currently available on the Nyika Plateau flora. It does not claim to be the final word in taxonomic opinion for every plant group, but will provide a sound basis for future work by botanists, phytogeographers, and reserve managers. It should also serve as a comprehensive plant guide for interested visitors to the two Nyika National Parks. By far the largest body of information was obtained from the following nine publications: • Flora zambesiaca (current ed. G. Pope, 1960 to present) • Flora of Tropical East Africa (current ed. H. Beentje, 1952 to present) • Plants collected by the Vernay Nyasaland Expedition of 1946 (Brenan & collaborators 1953, 1954) • Wye College 1972 Malawi Project Final Report (Brummitt 1973) • Resource inventory and management plan for the Nyika National Park (Mill 1979) • The forest vegetation of the Nyika Plateau: ecological and phenological studies (Dowsett-Lemaire 1985) • Biosearch Nyika Expedition 1997 report (Patel 1999) • Biosearch Nyika Expedition 2001 report (Patel & Overton 2002) • Evergreen forest flora of Malawi (White, Dowsett-Lemaire & Chapman 2001) We also consulted numerous papers dealing with specific families or genera and, finally, included the collections made during the SABONET Nyika Expedition. In addition, botanists from K and PRE provided valuable input in particular plant groups. Much of the descriptive material is taken directly from one or more of the works listed above, including information regarding habitat and distribution. A single illustration accompanies each genus; two illustrations are sometimes included in large genera with a wide morphological variance (for example, Lobelia). -
Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm. -
Vernonieae, Asteraceae)
Turkish Journal of Botany Turk J Bot (2018) 42: http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1712-38 Systematics value of micromorphological and palynological characters in Stenocephalum Sch.Bip. (Vernonieae, Asteraceae) 1,2, 1 1,2 María Betiana ANGULO *, Laura CHALUP , Massimiliano DEMATTEIS 1 Institute of Botany of the Northeast (UNNE-CONICET), Faculty of Agricultural Sciences, Corrientes, Argentina 2 Faculty of Exact and Natural Sciences and Surveying (UNNE), Corrientes, Argentina Received: 18.12.2017 Accepted/Published Online: 09.04.2018 Final Version: 00.00.2018 Abstract: Micromorphological and palynological characters of all Stenocephalum Sch.Bip. species (Vernonieae, Asteraceae) were analyzed to evaluate their reliability as taxonomic markers at generic level and discussed in relation to other genera of the subtribe Lepidaploinae. Characters such as pubescence of corollas and cypselae showed glandular and nonglandular trichomes allowing differentiation among related species. Apical appendages without glandular trichomes, caudate anthers, and carpopodium structure are common characteristics among Stenocephalum species. With the exceptions of S. megapotamicum and S. tragiaefolium, almost all species of the genus showed style bases without basal nodes for the first time. Crystals on the fruits wall were also observed for the first time in almost all the Stenocephalum species, with the exception of S. hystrix. However, the crystals would not constitute diagnostic features, since they vary widely among species. All the species showed type C pollen and the genus is considered stenopalynous. However, highly significant differences in palynological features among the species of the genus were observed. The different combinations of the micromorphological and palynological features of Stenocephalum here analyzed are valuable within genera to differentiate related species from one another.