Correction of Metachromatic Leukodystrophy in the Mouse Model by Transplantation of Genetically Modified Hematopoietic Stem Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brain-Resident Immune Cells Responses As an Endogenous Stimulator in Myelin Sheath, Activates Inflammatory Sulfatide, a Major Li
Sulfatide, A Major Lipid Component of Myelin Sheath, Activates Inflammatory Responses As an Endogenous Stimulator in Brain-Resident Immune Cells This information is current as of September 29, 2021. Sae-Bom Jeon, Hee Jung Yoon, Se-Ho Park, In-Hoo Kim and Eun Jung Park J Immunol 2008; 181:8077-8087; ; doi: 10.4049/jimmunol.181.11.8077 http://www.jimmunol.org/content/181/11/8077 Downloaded from References This article cites 44 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/181/11/8077.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sulfatide, A Major Lipid Component of Myelin Sheath, Activates Inflammatory Responses As an Endogenous Stimulator in Brain-Resident Immune Cells1 Sae-Bom Jeon,*† Hee Jung Yoon,* Se-Ho Park,‡ In-Hoo Kim,2§ and Eun Jung Park2* Sulfatide, a major lipid component of myelin sheath, participates in diverse cellular events of the CNS, and its cellular level has recently been implicated in many inflammation-associated neuronal diseases. -
A Myelin Galactolipid, Sulfatide, Is Essential for Maintenance of Ion Channels on Myelinated Axon but Not Essential for Initial Cluster Formation
The Journal of Neuroscience, August 1, 2002, 22(15):6507–6514 A Myelin Galactolipid, Sulfatide, Is Essential for Maintenance of Ion Channels on Myelinated Axon But Not Essential for Initial Cluster Formation Tomoko Ishibashi,1,2,3 Jeffrey L. Dupree,4 Kazuhiro Ikenaka,1,3 Yukie Hirahara,5 Koichi Honke,6 Elior Peles,7 Brian Popko,8 Kinuko Suzuki,9 Hitoo Nishino,10 and Hiroko Baba2 1Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan, 2Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji 192-0392, Japan, 3Laboratory of Neural Information, National Institute for Physiological Sciences, Okazaki National Research Institutes, Okazaki 444-8585, Japan, 4Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507, 5Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi 594-1101, Japan, 6Department of Biochemistry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan, 7Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel, 8Neuroscience Center, Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology and 9Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, and 10Department of Physiology, Nagoya City University Medical School, Nagoya 467-8601, Japan Myelinated axons are divided into four distinct regions: the served. Immunohistochemical analysis demonstrated a de- node of Ranvier, paranode, juxtaparanode, and internode, each crease in Na ϩ and K ϩ channel clusters, altered nodal length, of which is characterized by a specific set of axonal proteins. abnormal localization of K ϩ channel clusters appearing primar- Voltage-gated Na ϩ channels are clustered at high densities at ily in the presumptive paranodal regions, and diffuse distribu- the nodes, whereas shaker-type K ϩ channels are concentrated tion of contactin-associated protein along the internode. -
The Role of Sulfatides in Disease
O H 5 OH OH C17 3 O H H OH OH O O N H O OH O C13 27 O NHAc O O O O OH HO OH HO O OH HO O H CO2 H O CO2 O AcHN H HO O O OH AcHN H HO CO2 O H O C 2 O HO H O O H H AcHN O H HO O H cHN O A HO OH NEWSLETTER FOR GLYCO/SPHINGOLIPID RESEARCH FEBRUARY 2018 The Role of Sulfatides in Disease O OH OH Sulfatides are 3-sulfated galactosyl- NH ceramides that are found primarily in the cen- O O Sulfatides HO3SO tral nervous system and are myelin specific OH Cat.# 1049 sphingolipids. Over the last several decades, OH sulfatides have been linked to many physio- logical functions and recently there has been a renewed interest in jury, subsets of NKT cells have opposing roles. (5) Type I NKT their role in diseases. Sulfatides are highly multifunctional gly- cells promote injury while sulfatide-reactive type II NKT cells colipids involved in the nervous system, diabetes, immune sys- protect against injury. CD1d activation of NKT cells is con- tem, hemostasis/thrombosis, and bacterial and viral infection. By served from mice to humans, so strategies to modify these proc- understanding the correlation between sulfatide’s normal physio- esses might be developed to treat patients with hepatic reperfu- logical functions and specific roles in disease, new diagnostic and sion injury. therapeutic methods can be evaluated. Abnormal sulfatide metabolism, such as in Metachro- Sulfatides derived from the brain and spinal cord can matic leukodystrophy, can induce cell apoptosis due to en- have saturated, unsaturated, and 2-hydroxy fatty acyl chains, the dosome-mediated ceramide generation and the accumulation of composition of which are vital to influencing its function. -
Type II NKT Cell Agonist, Sulfatide, Is an Effective Adjuvant for Oral Heat-Killed Cholera Vaccines
Article Type II NKT Cell Agonist, Sulfatide, Is an Effective Adjuvant for Oral Heat-Killed Cholera Vaccines Aqel Albutti 1,2,† , Stephanie Longet 1,† , Craig P. McEntee 1, Shauna Quinn 1, Alex Liddicoat 1, Cristiana Rîmniceanu 3, Nils Lycke 3, Lydia Lynch 1, Susanna Cardell 3 and Ed C. Lavelle 1,4,* 1 Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; [email protected] (A.A.); [email protected] (S.L.); [email protected] (C.P.M.); [email protected] (S.Q.); [email protected] (A.L.); [email protected] (L.L.) 2 Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia 3 Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden; [email protected] (C.R.); [email protected] (N.L.); [email protected] (S.C.) 4 Centre for Research on Adaptative Nanostructures and Nanodevices & Advanced Materials Bio-Engineering Research Centre, Trinity College Dublin, D02 PN40 Dublin, Ireland * Correspondence: [email protected]; Tel.: +353-1-8962488 † These authors contributed equally. Abstract: Oral vaccination has the potential to offer a safer and more efficacious approach for protection against enteric pathogens than injection-based approaches, especially in developing countries. One key advantage is the potential to induce intestinal immune responses in addition to Citation: Albutti, A.; Longet, S.; systemic immunity. In general, antigen delivery via the oral route triggers weak immune responses or McEntee, C.P.; Quinn, S.; Liddicoat, immunological tolerance. -
Metabolism of Brain Glycolipid Fatty Acids '': Yasuo Kishimoto and Norman S
Metabolism of Brain Glycolipid Fatty Acids '': Yasuo Kishimoto and Norman S. Radin, Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan ABSTRACT and sulfatides contain NFA and tIFA, The metabolism of the fatty acid moieties saturated and unsaturated; the gangliosides, of brain cerebrosides, sulfatides, and however, contain only NFA in which there are gangliosides is reviewed and discussed. only traces of unsaturated acids. In the cere- The methodology involved in the isolation t)rosides and sulfatides there are two clusters of the fatty acids is described briefly. It of FA: those around 18 carbons long and those seems clear now that most of these acids around 24 carbons long. In the gangliosides are made by chain elongation of inter- there is only one cluster, centering around 18:0, mediate length fatty acids by addition of with negligible amounts of 22:0 and 24:0. acetate residues. The unsaturated acids Other points of contrast between gangliosides are made by desaturation of the inter- and the other two can be made: the former mediate length acids (palmitic, heptade- occurs primarily in brain gray matter, the canoic, stearic) followed by chain elonga- latter are primarily in white. The former tion. The hydroxy acids are made directly has glucose attached to the ceramide residue, from the corresponding nonhydroxy acids, the latter have galactose. The former has saturated, unsaturated, and odd-numbered. only traces of odd-numbered FA; the latter All the hydroxy acids undergo oxidative can contain considerable amounts of C~ and decarboxylation to yield fatty acids con- C2.~ FA. Further differences, particularly in taining one less carbon atom. -
Microglial Process Convergence on Axonal Segments in Health and Disease
Benusa et al. Neuroimmunol Neuroinflammation 2020;7:23-39 Neuroimmunology DOI: 10.20517/2347-8659.2019.28 and Neuroinflammation Review Open Access Microglial process convergence on axonal segments in health and disease Savannah D. Benusa, Audrey D. Lafrenaye Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA. Correspondence to: Dr. Audrey D. Lafrenaye, Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, P.O. Box 980709, Richmond, VA 23298, USA. E-mail: [email protected] How to cite this article: Benusa SD, Lafrenaye AD. Microglial process convergence on axonal segments in health and disease. Neuroimmunol Neuroinflammation 2020;7:23-39. http://dx.doi.org/10.20517/2347-8659.2019.28 Received: 31 Dec 2019 First Decision: 6 Feb 2020 Revised: 19 Feb 2020 Accepted: 27 Feb 2020 Published: 21 Mar 2020 Science Editor: Jeffrey Bajramovic Copy Editor: Jing-Wen Zhang Production Editor: Tian Zhang Abstract Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. -
The Role of Sulfatide in Alzheimer's Disease
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2006 The Role of Sulfatide in Alzheimer's Disease Charles Britton Beasley Jr. Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Nervous System Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1053 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. O Charles Britton Beasley, Jr., 2006 All Rights Reserved 'THE ROLE OF SULFATIDE IN ALZHEIMER'S DISEASE A thesis submitted in partial fulfillment of .the requirements for the degree of Master's in Anatomy and Neurobiology at Virginia Commonwealth University. by CHARLES BRITTON BEASLEY, JR. B.S. Biology Director: JEFFREY DUPREE, PHD ASSISTANT PROFESSOR, DEPARTMENT OF ANATOMY AND NEUROBIOLOGY Virginia Commonwealth University Richmond, Virginia August, 2006 Table of Contents Page List of Tables ................................................................................................................ iv List of Figures ............................................................................................................ v List of Abbreviations.................................................................................................. vi Chapter 1 Introduction ..................................................................................... -
A Hypoxia-Inducible HIF1–GAL3ST1-Sulfatide Axis Enhances Ccrcc Immune Evasion Via Increased Tumor Cell–Platelet Binding Claire M
Signal Transduction and Functional Imaging Molecular Cancer Research A Hypoxia-Inducible HIF1–GAL3ST1-Sulfatide Axis Enhances ccRCC Immune Evasion via Increased Tumor Cell–Platelet Binding Claire M. Robinson1,2, Betty P.K. Poon1,2, Yoshihito Kano1,2, Fred G. Pluthero3, Walter H.A. Kahr2,3,4, and Michael Ohh1,2 Abstract Clear cell renal cell carcinoma (ccRCC) is the most common gene whose expression is induced upon VHL loss leading to form of kidney cancer and the major cause of mortality for the accumulation of its enzymatic product sulfatide. Notably, individuals with von Hippel-Lindau (VHL) disease. ccRCC is platelets bind more efficiently to renal cancer cells with high characterized most frequently by inactivation of VHL tumor GAL3ST1-sulfatide expression than to GAL3ST1-sulfatide– suppressor protein that mediates degradation of the alpha negative counterparts, which protects ccRCC cells against subunit of the hypoxia-inducible factor (HIF) transcription natural killer cell–mediated cytotoxicity. These results suggest factor family. HIF has been implicated in disease progression that GAL3ST1 is a HIF-responsive gene that may contribute to and the aim of this study was to identify novel HIF target genes ccRCC development via promoting cancer cell evasion of that may contribute to ccRCC. We show that GAL3ST1, an immune surveillance. enzyme that catalyzes the sulfonation of the plasma mem- brane sulfolipid sulfatide, is among the top 50 upregulated Implications: Cancer development is in part dependent on genes in ccRCC tissue relative to matched normal tissue. evasion of immune response. We identify a HIF target gene Increased expression of GAL3ST1 in primary ccRCC correlates product GAL3ST1 that may play a role in this critical with decreased survival. -
Inhibition by Sulfatide of 21-Kda Protein Phosphorylation by Protein Kinase C in Cow Mammary Gland and Its Reversal by Phosphatidylserine
FULL PAPER Biochemistry Inhibition by Sulfatide of 21-kDa Protein Phosphorylation by Protein Kinase C in Cow Mammary Gland and its Reversal by Phosphatidylserine Norio KATOH1) 1)National Institute of Animal Health, 3–1–5 Kannondai, Tsukuba, Ibaraki 305–0856, Japan (Received 3 December 2003/Accepted 24 February 2004) ABSTRACT. The effect of sulfatide, a sulfated sphingolipid, on phosphorylation of endogenous proteins by protein kinase C (PKC) was examined in cow mammary gland. Several proteins, including 21-kDa, 43-kDa and 56-kDa proteins in the cytosolic fraction, were f ound to be substrates for PKC by phosphorylation in the absence or presence of the cofactors 1-oleoyl-2-acetyl-sn-glycerol (OAG), phosphati- dylserine (PS) and Ca2+. Sulfatide inhibited the 21-kDa phosphorylation, whereas it enhanced the 56-kDa and 43-kDa phosphorylation. Experiments were then conducted to examine whether other sphingolipids, including sphingosine, dihydrosphingosine, ceramides, galac- tocerebrosides, psychosine and sphingomyelin, modulated phosphorylation of the PKC substrates. Sphingosine, dihydrosphingosine and psychosine did not inhibit the 21-kDa phosphorylation; however, they enhanced the 56-kDa and 43-kDa phosphorylation. Ceramides, galactocerebrosides and sphingomyelin did not inhibit the 21-kDa or enhance the 56-kDa and 43-kDa phosphorylation. The inhibition by sulfatide of the 21-kDa phosphorylation was reversed by excess addition of PS, but not by OAG or Ca2+; whereas the enhancement by sulfatide, as well as sphingosine, dihydrosphingosine and psychosine, of 56-kDa and 43-kDa phosphorylation was not affected by PS, OAG or Ca2+. It is suggested that sulfatide is involved in the regulation of PKC-dependent phosphorylation by modulating the associ- ation of PKC substrates, in particular the 21-kDa protein, with membrane phospholipids in cow mammary gland. -
Brain Glycolipids Suppress T Helper Cells and Inhibit Autoimmune Demyelination
8646 • The Journal of Neuroscience, June 18, 2014 • 34(25):8646–8658 Neurobiology of Disease Brain Glycolipids Suppress T Helper Cells and Inhibit Autoimmune Demyelination Marcin P. Mycko,1* Beata Sliwinska,1* Maria Cichalewska,1 Hanna Cwiklinska,1 Cedric S. Raine,2 and Krzysztof W. Selmaj1 1Department of Neurology, Laboratory of Neuroimmunology, Medical University of Lodz, 90-153 Lodz, Poland, and 2Departments of Pathology (Neuropathology), Neuroscience and Neurology, Albert Einstein College of Medicine, Bronx, New York 10461 The CNS is considered an immune privileged site because its repertoire of highly immunogenic molecules remains unseen by the immune system under normal conditions. However, the mechanism underlying the inhibition of immune reactions within the CNS environment is not known, particularly in regions containing myelin, which contains several potent proteins and lipids that are invariably recognized as foreign by immune system cells. Sulfatides constitute a major component of myelin glycolipids and are known to be capable of raising an immune response. In this study, the effect of sulfatides on mouse T cell function and differentiation was analyzed in vitro and in vivo. We found profound inhibition of sulfatide-dependent T cell proliferation which was particularly pronounced in naive T helper (Th) cells. The inhibitory effect of sulfatides on T cell function was CD1d-independent and was not related to apoptosis or necrosis but did involve the induction of anergy as confirmed by the upregulation of early growth response 2 transcription factor. A glycolipid 3-sulfate group was essential for the T cell suppression, and the T cell inhibition was galectin-4-dependent. Sulfatide stimulation in vitro led to prominent suppression of Th17 differentiation, and this was related to a decrease in susceptibility to disease in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis. -
Laminin Binds, Specifically to Sulfated Glycolipids (Sulfatides/Fibronectin/Agglutination/Gangliosides) DAVID D
Proc. Natl. Acad. Sci. USA Vol. 82, pp. 1306-1310, March 1985 Biochemistry Laminin binds, specifically to sulfated glycolipids (sulfatides/fibronectin/agglutination/gangliosides) DAVID D. ROBERTS*, C. NAGESWARA RAOt, JOHN L. MAGNANI*, STEVEN L. SPITALNIK*, LANCE A. LIOTTAt, AND VICTOR GINSBURG* *Laboratory of Biochemical Pharmacology, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, and tLaboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20205 Communicated by Phillips W. Robbins, October 15, 1984 ABSTRACT Previous studies of the agglutination of and with high affinity. In contrast, fibronectin, another cell erythrocytes by the basement membrane glycoprotein laminin attachment protein that agglutinates erythrocytes (20), binds have suggested that laminin binds to gangliosides [Kennedy, with low affinity to all anionic lipids tested. D. W., Rohrbach, D. H., Martin, G. R., Momoi, T. & Ya- mada, K. M. (1983) J. CeU. Physiol. 114, 257-262]. Based on the following evidence, however, we find that laminin binds MATERIALS AND METHODS specifically to sulfatides, not gangliosides. Monogalactosyl sul- Materials. Laminin was purified from 0.5 M NaCl extracts fatides, purified from sheep erythrocytes with a yield of 4.3 of mouse Engelbreth Holm Swarm tumor by DEAE-cellu- mg/kg of packed cells, bound laminin with high affinity as did lose chromatography (2) and 4.0 M NaCl precipitation. Pro- authentic bovine brain sulfatide (galactosylceramide-I3-sul_ tease-derived fragments of laminin were purified and exam- fate). The binding activity of these lipids and of total erythro- ined by rotary shadowing electron microscopy as described cyte lipids was stable to alkali and neuraminidase treatment (6, 21). -
Alterations in Lipid Metabolism of Spinal Cord Linked to Amyotrophic
www.nature.com/scientificreports OPEN Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis Received: 3 May 2019 Adriano Britto Chaves-Filho1, Isabella Fernanda Dantas Pinto1, Lucas Souza Dantas1, Accepted: 26 July 2019 Andre Machado Xavier2, Alex Inague1, Rodrigo Lucas Faria1, Marisa H. G. Medeiros1, Published: xx xx xxxx Isaias Glezer 2, Marcos Yukio Yoshinaga1 & Sayuri Miyamoto 1 Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons leading to muscle paralysis and death. While a link between dysregulated lipid metabolism and ALS has been proposed, lipidome alterations involved in disease progression are still understudied. Using a rodent model of ALS overexpressing mutant human Cu/Zn-superoxide dismutase gene (SOD1- G93A), we performed a comparative lipidomic analysis in motor cortex and spinal cord tissues of SOD1- G93A and WT rats at asymptomatic (~70 days) and symptomatic stages (~120 days). Interestingly, lipidome alterations in motor cortex were mostly related to age than ALS. In contrast, drastic changes were observed in spinal cord of SOD1-G93A 120d group, including decreased levels of cardiolipin and a 6-fold increase in several cholesteryl esters linked to polyunsaturated fatty acids. Consistent with previous studies, our fndings suggest abnormal mitochondria in motor neurons and lipid droplets accumulation in aberrant astrocytes. Although the mechanism leading to cholesteryl esters accumulation remains to be established, we postulate a hypothetical model based on neuroprotection of polyunsaturated fatty acids into lipid droplets in response to increased oxidative stress. Implicated in the pathology of other neurodegenerative diseases, cholesteryl esters appear as attractive targets for further investigations.