Inverse Expression States of the BRN2 and MITF Transcription Factors in Melanoma Spheres and Tumour Xenografts Regulate the NOTCH Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Inverse Expression States of the BRN2 and MITF Transcription Factors in Melanoma Spheres and Tumour Xenografts Regulate the NOTCH Pathway Oncogene (2011) 30, 3036–3048 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway AE Thurber1, G Douglas1, EC Sturm1, SE Zabierowski2, DJ Smit1, SN Ramakrishnan1, E Hacker3, JH Leonard3, M Herlyn2 and RA Sturm1,2 1Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Queensland, Australia; 2The Wistar Institute, Philadelphia, PA, USA and 3Queensland Institute of Medical Research, Brisbane, Queensland, Australia The use of adherent monolayer cultures have produced Introduction many insights into melanoma cell growth and differentia- tion, but often novel therapeutics demonstrated to act on Despite several decades of research on the causes and these cells are not active in vivo. It is imperative that new potential treatments for melanoma, little improvement methods of growing melanoma cells that reflect growth has been made in the prognosis of this cancer, which in vivo are investigated. To this end, a range of human remains at less than 15% survival after 5 yrs for patients melanoma cell lines passaged as adherent cultures or diagnosed with metastatic disease (Miller and Mihm, induced to form melanoma spheres (melanospheres) in 2006). One issue slowing progress is the large disparity stem cell media have been studied to compare cellular that often exists between experimental results and characteristics and protein expression. Melanoma spheres clinical outcomes. In order to screen new therapeutic and tumours grown from cell lines as mouse xenografts drugs more quickly and cost effectively, new culture had increased heterogeneity when compared with adherent models representative of the clinical setting are needed. cells and 3D-spheroids in agar (aggregates). Furthermore, This has lead to a gain in popularity of the three- cells within the melanoma spheres and mouse xenografts dimensional (3D) culture systems as an alternative to each displayed a high level of reciprocal BRN2 or MITF adherent monolayer culture. Fang et al. (2005) demon- expression, which matched more closely the pattern seen strated that growth of melanoma cell lines in stem cell in human melanoma tumours in situ, rather than the media to form non-adherent spheres increased their propensity for co-expression of these important melano- tumorigenic grafting ability, making this an interesting cytic transcription factors seen in adherent cells and 3D- new model to study. Growth of melanoma spheres was spheroids. Notably, when the levels of the BRN2 and initially developed because it was thought that the stem MITF proteins were each independently repressed using cell conditions would enrich an otherwise small ‘cancer siRNA treatment of adherent melanoma cells, members of stem cell’ population (Schatton et al., 2008). However, the NOTCH pathway responded by decreasing or recent evidence has dispelled the notion of only a increasing expression, respectively. This links BRN2 as selected subpopulation of cancer cells having the ability an activator, and conversely, MITF as a repressor of the to form a melanoma tumour (Quintana et al., 2008), NOTCH pathway in melanoma cells. Loss of the BRN2- making it likely that other unknown factors are MITF axis in antisense-ablated cell lines decreased the responsible for the increased tumorigenesis seen with melanoma sphere-forming capability, cell adhesion during melanoma sphere formation and growth. As yet, the 3D-spheroid formation and invasion through a collagen relationship between the sphere growth characteristics, matrix. Combined, this evidence suggests that the expression profiles and behaviour in relation to mela- melanoma sphere-culture system induces subpopulations noma in situ has not been fully investigated. of cells that may more accurately portray the in vivo An important consideration in melanoma treatment is disease, than the growth as adherent melanoma cells. the high degree of heterogeneity found in tumours Oncogene (2011) 30, 3036–3048; doi:10.1038/onc.2011.33; (Hoek et al., 2008), as clearly illustrated by the inverse published online 28 February 2011 expression pattern of two transcription factors, BRN2 and MITF, important in proliferation and metastasis Keywords: cell adhesion; invasion; melanoma; (Carreira et al., 2006; Goodall et al., 2008). A metastasis; NOTCH; transcription factor phenotype-switching model in melanoma progression based on tumour microenvironmental cues has recently been highlighted (Hoek and Goding, 2010). These two proteins have been implicated in the regulation of Correspondence: Dr RA Sturm, Institute for Molecular Bioscience, downstream pathways linked to invasive abilities, as Melanogenix Group, The University of Queensland, 306 Carmody has the NOTCH pathway (Pinnix and Herlyn, 2007), Road, Brisbane, Qld. 4072, Australia. E-mail: [email protected] but as yet a relationship between these pathways has not Received 21 August 2010; revised and accepted 12 January 2011; been described. In human melanoma tumour samples, published online 28 February 2011 BRN2 and MITF mark two distinct subpopulations BRN2-MITF regulate NOTCH in melanoma AE Thurber et al 3037 predicted to have different proliferative and invasive This method utilized stem cell growth conditions with abilities, whereas in adherent cultures, they are seen to mouse embryo fibroblast-conditioned media (MEF) to be co-expressed. Therefore, the pattern of these two promote the growth of non-adherent spheres. In addition proteins may provide a measure of tumour-like hetero- to standard melanoma (MEL) and stem cell media geneity, seen using in vitro culture systems and have (human embryonic stem cell–knockout serum replace- been investigated here using adherent and non-attached ment, hESCM–KSR), we also assayed for sphere growth melanoma-cell growth states. in stem cell media supplemented with 10% fetal bovine serum (FBS; hESCM–FBS) instead of 20% KSR. Cells were allowed to grow undisturbed in each media for 14 days or until melanoma spheres formed. Results Melanoblasts were unable to sustain growth in any of these media. Of the melanoma cell lines tested, only 16% Media conditions required for melanoma sphere formation had the capacity for detached cell growth using MEL A range of diverse melanoma cell lines including those media with only a minor increase to 19%, seen using of known BRAF, NRAS, PTEN gene mutation status hESCM–FBS; however, the majority of cell lines, 87% (Pavey et al., 2004; Johansson et al., 2007), several with (27 out of 31), were capable of forming non-adherent b-catenin mutations, non-pigmented and pigmented melanoma spheres when cultured in hESCM–KSR. strains, four ocular melanomas and a cell line showing Morphological differences between cell lines were spontaneous sphere growth were available for this observed during initial sphere formation. Some lines study. In all, 31 parental melanoma cell lines (Supple- produced small spheres within the first few days of mentary Table 1) and several primary melanoblast culture, whereas others grew large sheets of cells strains (Cook et al., 2003) were investigated for their detaching after 14 days of culture. Two examples ability to form spheres in three different types of media, showing some of the variation in sphere formation are using the method first developed by Fang et al. (2005). illustrated using the pigmented A11 (Figure 1a) and the Figure 1 Melanoma sphere induction in human melanoma cell lines. (a, b) A11 and D10 cell lines were plated as adherent monolayers and grown to confluence in T75 flasks before changing to the media indicated above the panels as MEL, hESCM–FBS or hESCM– KSR. Digital pictures were taken of cells under bright-field microscopy on the days as indicated to the right of the panels (D4, D6, D9, D13). Floating-cell aggregates were harvested from the flasks at D14 or earlier and passaged as melanoma spheres, as described. Scale bars in black represent 200 m.(c) Loss of pigmentation in A11 melanoma cells was apparent upon changing from adherent to detached growth states. The colour of the cell pellets from adherent cells (passage P0) and those from serially-passaged melanoma spheres in hESCM–KSR medium (passages P1, P2, P3) demonstrates the cells become depigmented. Oncogene BRN2-MITF regulate NOTCH in melanoma AE Thurber et al 3038 spontaneous sphere forming D10 (Figure 1b) cell lines. Assaying of RNA transcript levels in the adherent and Melanoma spheres were harvested and passaged by melanoma spheres was performed using quantitative dissociation into single cell suspensions and replated. RT–PCR as shown by the representative data presented After passaging, the melanoma spheres tended to be for the MM96L cell line (Figure 2b). This revealed smaller and to have a more regular globular shape. In significant reductions in mRNA levels for BRN2, agreement with previous data (Fang et al., 2005), some MITF, NOTCH1 and DLL1 in line with the reduction cell lines lost pigmentation during the first few passages in their protein levels. There was inconsistency between in hESCM–KSR media. The A11 cells were initially the protein and mRNA responses seen for JAG2, with a darkly pigmented when cultured as an adherent mono- decrease in protein but not transcript in MM96L layer in MEL media and became depigmented after spheres. Notably spheroid growth did not alter the three serial passages as detached cells in hESCM–KSR transcript level of the ABCB5 gene, which had media (Figure 1c). Depigmented sphere cells did not previously been described as a cancer-initiating cell regain pigmentation after culturing as an adherent marker (Schatton et al., 2008). monolayer for 14 days in MEL media. In contrast, this Given the cell heterogeneity found in melanoma, we change in pigmentation pattern was not seen in A11 were interested to examine the protein expression and melanoma spheres derived using hESCM–FBS media. localization at a cellular level of several of these proteins Because of the greater success of sphere formation in using immunofluorescence, as well as measuring total hESCM–KSR media, only melanoma spheres generated protein levels.
Recommended publications
  • Angiocrine Endothelium: from Physiology to Cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3
    Pasquier et al. J Transl Med (2020) 18:52 https://doi.org/10.1186/s12967-020-02244-9 Journal of Translational Medicine REVIEW Open Access Angiocrine endothelium: from physiology to cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3 Abstract The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The sig- nifcance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogen- esis that is critical for tumor initiation and growth. Nevertheless, the identifcation of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profling studies have demonstrated distinctive expression patterns in tumor- associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identifed which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies. Keywords: Angiocrine, Endothelium, Cancer, Cancer microenvironment, Angiogenesis Introduction of blood vessels in initiation of tumor growth and stated Metastatic disease accounts for about 90% of patient that in the absence of such angiogenesis, tumors can- mortality. Te difculty in controlling and eradicating not expand their mass or display a metastatic phenotype metastasis might be related to the heterotypic interaction [7]. Based on this theory, many investigators assumed of tumor and its microenvironment [1].
    [Show full text]
  • DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet
    Page 1 of 41 Diabetes DLL1- and DLL4-mediated Notch signaling is essential for adult pancreatic islet homeostasis (running title –Role of Delta ligands in adult pancreas) Marina Rubey1,2,6*, Nirav Florian Chhabra1,2*, Daniel Gradinger1,2,7, Adrián Sanz-Moreno1, Heiko Lickert2,4,5, Gerhard K. H. Przemeck1,2, Martin Hrabě de Angelis1,2,3** 1 Helmholtz Zentrum München, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany 2 German Center for Diabetes Research (DZD), Neuherberg, Germany 3 Chair of Experimental Genetics, Centre of Life and Food Sciences, Weihenstephan, Technische Universität München, Freising, Germany 4 Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research and Institute of Stem Cell Research, Neuherberg, Germany 5 Technische Universität München, Medical Faculty, Munich, Germany 6 Present address Marina Rubey: WMC Healthcare GmbH, Munich, Germany 7 Present address Daniel Gradinger: PSI CRO AG, Munich, Germany *These authors contributed equally **Corresponding author: Prof. Dr. Martin Hrabě de Angelis, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Ingolstädter Landstr.1, 85764 Neuherberg, Germany. Phone: +49-89-3187-3502. Fax: +49- 89-3187-3500. E-mail address: [email protected] Word count – 4088 / Figures – 7 Diabetes Publish Ahead of Print, published online February 6, 2020 Diabetes Page 2 of 41 Abstract Genes of the Notch signaling pathway are expressed in different cell types and organs at different time points during embryonic development and adulthood. The Notch ligand Delta- like 1 (DLL1) controls the decision between endocrine and exocrine fates of multipotent progenitors in the developing pancreas, and loss of Dll1 leads to premature endocrine differentiation.
    [Show full text]
  • And DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet Homeostasis
    Diabetes Volume 69, May 2020 915 DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet Homeostasis Marina Rubey,1,2 Nirav Florian Chhabra,1,2 Daniel Gradinger,1,2 Adrián Sanz-Moreno,1 Heiko Lickert,2,3,4 Gerhard K.H. Przemeck,1,2 and Martin Hrabe de Angelis1,2,5 Diabetes 2020;69:915–926 | https://doi.org/10.2337/db19-0795 Genes of the Notch signaling pathway are expressed in with type 2 diabetes (3), sparking investigation into their different cell types and organs at different time points roles in glucose metabolism. The highly conserved D/N during embryonic development and adulthood. The Notch signaling pathway is crucial for embryonic development ligand Delta-like 1 (DLL1) controls the decision between in a wide range of different tissues (4). Although Notch ac- endocrine and exocrine fates of multipotent progenitors in tivity is required during pancreatic development (5), some the developing pancreas, and loss of Dll1 leads to pre- D/N components have also been reported to be active mature endocrine differentiation. However, the role of during adulthood. D/N signaling mediates cell-cycle regu- Delta-Notch signaling in adult tissue homeostasis is not lation via transmembrane-bound ligands (DLL1, DLL3, DLL4, ISLET STUDIES well understood. Here, we describe the spatial expression JAGGED1, and JAGGED2) and receptors (NOTCH1–4). pattern of Notch pathway components in adult murine Studies have shown that DLL1 and DLL4 regulate tissue pancreatic islets and show that DLL1 and DLL4 are renewal and maintain intestinal progenitor cells (6). Fur- specifically expressed in b-cells, whereas JAGGED1 is thermore, NOTCH/NEUROG3 signaling is active in adult expressed in a-cells.
    [Show full text]
  • Full Text (PDF)
    Published OnlineFirst April 26, 2017; DOI: 10.1158/0008-5472.CAN-16-3146 Cancer Molecular and Cellular Pathobiology Research tRF/miR-1280 Suppresses Stem Cell–like Cells and Metastasis in Colorectal Cancer Bingqing Huang1,2, Huipeng Yang1, Xixi Cheng1, Dan Wang1, Shuyu Fu1, Wencui Shen3, Qi Zhang1, Lijuan Zhang1, Zhenyi Xue1, Yan Li1, Yurong Da1, Qing Yang4,5, Zesong Li6, Li Liu7, Liang Qiao8, Ying Kong9, Zhi Yao1, Peng Zhao4,5, Min Li10,11, and Rongxin Zhang1,12 Abstract Several studies have shown that tRNAs can be enzymatically tasis. Notably, tRF/miR-1280–mediated inactivation of Notch cleaved to generate distinct classes of tRNA-derived fragments signaling suppressed CSC phenotypes, including by direct (tRF). Here, we report that tRF/miR-1280, a 17-bp fragment transcriptional repression of the Gata1/3 and miR-200b genes. derived from tRNALeu and pre-miRNA, influences Notch sig- These results were consistent with findings of decreased levels naling pathways that support the function of cancer stem-like of miR-200b and elevated levels of JAG2, Gata1, Gata3, Zeb1, cells (CSC) in colorectal cancer progression. tRF/miR-1280 and Suz12 in colorectal cancer tissue specimens. Taken togeth- expression was decreased in human specimens of colorectal er, our results established that tRF/miR-1280 suppresses colo- cancer. Ectopic expression of tRF/miR-1280 reduced cell pro- rectal cancer growth and metastasis by repressing Notch sig- liferation and colony formation, whereas its suppression naling pathways that support CSC phenotypes. Furthermore, reversed these effects. Mechanistic investigations implicated they provide evidence that functionally active miRNA can be the Notch ligand JAG2 as a direct target of tRF/miR-1280 derived from tRNA, offering potential biomarker and thera- binding through which it reduced tumor formation and metas- peutic uses.
    [Show full text]
  • Prognostic Significance of Notch Ligands in Patients with Non‑Small Cell Lung Cancer
    506 ONCOLOGY LETTERS 13: 506-510, 2017 Prognostic significance of Notch ligands in patients with non‑small cell lung cancer 1 2 JOANNA PANCEWICZ-WOJTKIEWICZ , ANDRZEJ ELJASZEWICZ , 3 1 3 OKSANA KOWALCZUK , WIESLAWA NIKLINSKA , RADOSLAW CHARKIEWICZ , 4 1 2 MIROSLAW KOZŁOWSKI , AGNIESZKA MIASKO and MARCIN MONIUSZKO Departments of 1Histology and Embryology, 2Regenerative Medicine and Immune Regulation, 3Clinical Molecular Biology and 4Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland Received June 14, 2016; Accepted September 29, 2016 DOI: 10.3892/ol.2016.5420 Abstract. The Notch signaling pathway is deregulated in cancer patients are diagnosed with non-small-cell lung cancer numerous solid types of cancer including non-small cell (NSCLC) (3). Currently, lung cancer therapy is mainly based lung cancer (NSCLC). However, the profile of Notch ligand on Tumor-Node-Metastasis (TNM) disease staging and expression remains unclear. Therefore, the present study tumor histological classification. However, despite progress aimed to determine the profile of Notch ligands in NSCLC in surgical techniques, chemotherapy and radiotherapy, the patients and to investigate whether quantitative assessment 5-year survival rate of patients with lung cancer remains low of Notch ligand expression may have prognostic significance (~16%) (4,5). Therefore, there is a continuous need to identify in NSCLC patients. The study was performed in 61 pairs of specific and sensitive biomarkers that may improve cancer tumor and matched unaffected lung tissue specimens obtained patient management. Such markers should allow prediction from patients with various stages of NSCLC, which were and prognostication of patient survival, disease free survival analyzed by reverse transcription-polymerase chain reac- or treatment response (6).
    [Show full text]
  • Induction of Ectopic Myc Target Gene JAG2 Augments Hypoxic Growth and Tumorigenesis in a Human B-Cell Model
    Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model Jason T. Yusteina,1,2, Yen-Chun Liub, Ping Gaoc, Chunfa Jied, Anne Lec, Milena Vuica-Rossb, Wee Joo Chnge,f, Charles G. Eberhartb, P. Leif Bergsagele, and Chi V. Dangb,c,g,2 Departments of aPediatrics, bPathology, and cMedicine, dMicroarray Facility, and gSidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205; eComprehensive Cancer Center, Mayo Clinic, Scottsdale, AZ 85259; and fDepartment of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 545523 Edited* by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved December 22, 2009 (received for review February 5, 2009) Ectopic Myc expression plays a key role in human tumorigenesis, provides an experimentally tractable system to identify putative and Myc dose-dependent tumorigenesis has been well established endogenous and ectopic Myc target genes (6). in transgenic mice, but the Myc target genes that are dependent on The P493-6 cells were derived from human peripheral blood B Myc levels have not been well characterized. In this regard, we used cells immortalized by an Epstein–Barr viral (EBV) genome that is the human P493-6 B cells, which have a preneoplastic state depend- complemented with an EBV nuclear antigen-estrogen receptor ent on the Epstein–Barr viral EBNA2 protein and a neoplastic state (EBNA2-ER) fusion protein and a tetracycline-repressible Myc with ectopic inducible Myc, to identify putative ectopic Myc target transgene (6). We selected P493-6 cells because they exist in at genes.
    [Show full text]
  • Potential New Biomarkers for Endometrial Cancer Michelle H
    Townsend et al. Cancer Cell Int (2019) 19:19 https://doi.org/10.1186/s12935-019-0731-3 Cancer Cell International PRIMARY RESEARCH Open Access Potential new biomarkers for endometrial cancer Michelle H. Townsend1, Zac E. Ence2, Abigail M. Felsted1, Alyssa C. Parker2, Stephen R. Piccolo2,3, Richard A. Robison1 and Kim L. O’Neill1* Abstract Background: Incidence of endometrial cancer are rising both in the United States and worldwide. As endometrial cancer becomes more prominent, the need to develop and characterize biomarkers for early stage diagnosis and the treatment of endometrial cancer has become an important priority. Several biomarkers currently used to diagnose endometrial cancer are directly related to obesity. Although epigenetic and mutational biomarkers have been identi- fed and have resulted in treatment options for patients with specifc aberrations, many tumors do not harbor those specifc aberrations. A promising alternative is to determine biomarkers based on diferential gene expression, which can be used to estimate prognosis. Methods: We evaluated 589 patients to determine diferential expression between normal and malignant patient samples. We then supplemented these evaluations with immunohistochemistry staining of endometrial tumors and normal tissues. Additionally, we used the Library of Integrated Network-based Cellular Signatures to evaluate the efects of 1826 chemotherapy drugs on 26 cell lines to determine the efects of each drug on HPRT1 and AURKA expression. Results: Expression of HPRT1, Jag2, AURKA, and PGK1 were elevated when compared to normal samples, and HPRT1 and PGK1 showed a stepwise elevation in expression that was signifcantly related to cancer grade. To determine the prognostic potential of these genes, we evaluated patient outcome and found that levels of both HPRT1 and AURKA were signifcantly correlated with overall patient survival.
    [Show full text]
  • NOTCH2 Participates in Jagged1-Induced Osteogenic Differentiation in Human Periodontal Ligament Cells
    www.nature.com/scientificreports OPEN NOTCH2 participates in Jagged1‑induced osteogenic diferentiation in human periodontal ligament cells Jeeranan Manokawinchoke1, Piyamas Sumrejkanchanakij1, Lawan Boonprakong2, Prasit Pavasant1, Hiroshi Egusa3 & Thanaphum Osathanon1,2,4* Jagged1 activates Notch signaling and subsequently promotes osteogenic diferentiation in human periodontal ligament cells (hPDLs). The present study investigated the participation of the Notch receptor, NOTCH2, in the Jagged1‑induced osteogenic diferentiation in hPDLs. NOTCH2 and NOTCH4 mRNA expression levels increased during hPDL osteogenic diferentiation. However, the endogenous NOTCH2 expression levels were markedly higher compared with NOTCH4. NOTCH2 expression knockdown using shRNA in hPDLs did not dramatically alter their proliferation or osteogenic diferentiation compared with the shRNA control. After seeding on Jagged1‑immobilized surfaces and maintaining the hPDLs in osteogenic medium, HES1 and HEY1 mRNA levels were markedly reduced in the shNOTCH2‑transduced cells compared with the shControl group. Further, shNOTCH2‑transduced cells exhibited less alkaline phosphatase enzymatic activity and in vitro mineralization than the shControl cells when exposed to Jagged1. MSX2 and COL1A1 mRNA expression after Jagged1 activation were reduced in shNOTCH2-transduced cells. Endogenous Notch signaling inhibition using a γ‑secretase inhibitor (DAPT) attenuated mineralization in hPDLs. DAPT treatment signifcantly promoted TWIST1, but decreased ALP, mRNA expression, compared
    [Show full text]
  • Class II Phosphatidylinositol 3-Kinase-C2α Is Essential for Notch
    www.nature.com/scientificreports OPEN Class II phosphatidylinositol 3‑kinase‑C2α is essential for Notch signaling by regulating the endocytosis of γ‑secretase in endothelial cells Shota Shimizu, Kazuaki Yoshioka, Sho Aki & Yoh Takuwa* The class II α‑isoform of phosphatidylinositol 3‑kinase (PI3K‑C2α) plays a crucial role in angiogenesis at least in part through participating in endocytosis and, thereby, endosomal signaling of several cell surface receptors including VEGF receptor‑2 and TGFβ receptor in vascular endothelial cells (ECs). The Notch signaling cascade regulates many cellular processes including cell proliferation, cell fate specifcation and diferentiation. In the present study, we explored a role of PI3K‑C2α in Delta‑like 4 (Dll4)‑induced Notch signaling in ECs. We found that knockdown of PI3K‑C2α inhibited Dll4‑induced generation of the signaling molecule Notch intracellular domain 1 (NICD1) and the expression of Notch1 target genes including HEY1, HEY2 and NOTCH3 in ECs but not in vascular smooth muscle cells. PI3K‑C2α knockdown did not inhibit Dll4‑induced endocytosis of cell surface Notch1. In contrast, PI3K‑C2α knockdown as well as clathrin heavy chain knockdown impaired endocytosis of Notch1‑cleaving protease, γ‑secretase complex, with the accumulation of Notch1 at the perinuclear endolysosomes. Pharmacological blockage of γ‑secretase also induced the intracellular accumulation of Notch1. Taken together, we conclude that PI3K‑C2α is required for the clathrin‑mediated endocytosis of γ‑secretase complex, which allows for the cleavage of endocytosed Notch1 by γ‑secretase complex at the endolysosomes to generate NICD1 in ECs. Phosphatidylinositol 3-kinases (PI3Ks) are a family of lipid kinases which phosphorylate membrane phospho- inositides at the 3′-position of their inositol rings.
    [Show full text]
  • A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer
    cancers Article A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer Chuan Zhang 1,2 , Mandy Berndt-Paetz 1 and Jochen Neuhaus 1,* 1 Department of Urology, University of Leipzig, 04109 Leipzig, Germany; [email protected] (C.Z.); [email protected] (M.B.-P.) 2 Department of Urology, Chengdu Fifth People’s Hospital Affiliated to the Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China * Correspondence: [email protected]; Tel.: +49-341-971-7688 Simple Summary: The Notch pathway is important in embryology and numerous tumor diseases. However, its role in bladder cancer (BCa) has not been deeply investigated thus far. Gene expression data are available for BCa, and bioinformatics analysis can provide insights into a possible role of the Notch pathway in BCa development and prognosis. Using this information can help in better understanding the origin of BCa, finding novel biomarkers for prediction of disease progression, and potentially opening new avenues to improved treatment. Our analysis identified the Notch receptors NOTCH2/3 and their ligand DLL4 as potential drivers of BCa by direct interaction with basic cell functions and indirect by modulating the immune response. Abstract: Background: A hallmark of Notch signaling is its variable role in tumor biology, ranging from tumor-suppressive to oncogenic effects. Until now, the mechanisms and functions of Notch pathways in bladder cancer (BCa) are still unclear. Methods: We used publicly available data from the GTEx and TCGA-BLCA databases to explore the role of the canonical Notch pathways Citation: Zhang, C.; Berndt-Paetz, in BCa on the basis of the RNA expression levels of Notch receptors, ligands, and downstream M.; Neuhaus, J.
    [Show full text]
  • Defects in Limb, Craniofacial, and Thymic Development in Jagged2 Mutant Mice
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice Rulang Jiang,1,3 Yu Lan,1,3 Harry D. Chapman,1 Carrie Shawber,2 Christine R. Norton,1 David V. Serreze,1 Gerry Weinmaster,2 and Thomas Gridley1,4 1The Jackson Laboratory, Bar Harbor, Maine 04609 USA; 2Department of Biological Chemistry, University of California, Los Angeles (UCLA), The School of Medicine, Los Angeles, California 90024 USA The Notch signaling pathway is a conserved intercellular signaling mechanism that is essential for proper embryonic development in numerous metazoan organisms. We have examined the in vivo role of the Jagged2 (Jag2) gene, which encodes a ligand for the Notch family of transmembrane receptors, by making a targeted mutation that removes a domain of the Jagged2 protein required for receptor interaction. Mice homozygous for this deletion die perinatally because of defects in craniofacial morphogenesis. The mutant homozygotes exhibit cleft palate and fusion of the tongue with the palatal shelves. The mutant mice also exhibit syndactyly (digit fusions) of the fore- and hindlimbs. The apical ectodermal ridge (AER) of the limb buds of the mutant homozygotes is hyperplastic, and we observe an expanded domain of Fgf8 expression in the AER. In the foot plates of the mutant homozygotes, both Bmp2 and Bmp7 expression and apoptotic interdigital cell death are reduced. Mutant homozygotes also display defects in thymic development, exhibiting altered thymic morphology and impaired differentiation of gd lineage T cells. These results demonstrate that Notch signaling mediated by Jag2 plays an essential role during limb, craniofacial, and thymic development in mice.
    [Show full text]
  • Role of Jagged1-Mediated Notch Signaling Activation in the Differentiation and Stratification of the Human Limbal Epithelium
    cells Article Role of Jagged1-mediated Notch Signaling Activation in the Differentiation and Stratification of the Human Limbal Epithelium Sheyla González, Maximilian Halabi, David Ju, Matthew Tsai and Sophie X. Deng * Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; [email protected] (S.G.); [email protected] (M.H.); [email protected] (D.J.); [email protected] (M.T.) * Correspondence: [email protected] Received: 17 July 2020; Accepted: 21 August 2020; Published: 22 August 2020 Abstract: The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation. Keywords: Notch signaling; stratification; differentiation; limbal epithelium; limbal stem cells 1. Introduction The corneal epithelium is the outermost layer of the eye that functions as a barrier to prevent infections and maintains the corneal transparency.
    [Show full text]