Induction of Ectopic Myc Target Gene JAG2 Augments Hypoxic Growth and Tumorigenesis in a Human B-Cell Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms
Journal of Clinical Medicine Review Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms 1,2, 1, 3, 4 Claudia von Arx y , Monica Capozzi y, Elena López-Jiménez y, Alessandro Ottaiano , Fabiana Tatangelo 5 , Annabella Di Mauro 5, Guglielmo Nasti 4, Maria Lina Tornesello 6,* and Salvatore Tafuto 1,* On behalf of ENETs (European NeuroEndocrine Tumor Society) Center of Excellence of Naples, Italy 1 Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy 2 Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK 3 Cancer Cell Metabolism Group. Centre for Haematology, Immunology and Inflammation Department, Imperial College London, London W12 0HS, UK 4 SSD Innovative Therapies for Abdominal Metastases—Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS—Fondazione “G. Pascale”, 80131 Naples, Italy 5 Department of Pathology, Istituto Nazionale Tumori, IRCCS—Fondazione “G. Pascale”, 80131 Naples, Italy 6 Unit of Molecular Biology and Viral Oncology, Department of Research, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy * Correspondence: [email protected] (M.L.T.); [email protected] (S.T.) These authors contributed to this paper equally. y Received: 10 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of rare malignancies, mainly originating from hormone-secreting cells, which are widespread in human tissues. The identification of mutations in ATRX/DAXX genes in sporadic NENs, as well as the high burden of mutations scattered throughout the multiple endocrine neoplasia type 1 (MEN-1) gene in both sporadic and inherited syndromes, provided new insights into the molecular biology of tumour development. -
3 Cleavage Products of Notch 2/Site and Myelopoiesis by Dysregulating
ADAM10 Overexpression Shifts Lympho- and Myelopoiesis by Dysregulating Site 2/Site 3 Cleavage Products of Notch This information is current as David R. Gibb, Sheinei J. Saleem, Dae-Joong Kang, Mark of October 4, 2021. A. Subler and Daniel H. Conrad J Immunol 2011; 186:4244-4252; Prepublished online 2 March 2011; doi: 10.4049/jimmunol.1003318 http://www.jimmunol.org/content/186/7/4244 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/03/02/jimmunol.100331 Material 8.DC1 http://www.jimmunol.org/ References This article cites 45 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/186/7/4244.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 4, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ADAM10 Overexpression Shifts Lympho- and Myelopoiesis by Dysregulating Site 2/Site 3 Cleavage Products of Notch David R. -
Repressor Activity in Notch 3 3927
Development 126, 3925-3935 (1999) 3925 Printed in Great Britain © The Company of Biologists Limited 1999 DEV9635 The Notch 3 intracellular domain represses Notch 1-mediated activation through Hairy/Enhancer of split (HES) promoters Paul Beatus, Johan Lundkvist, Camilla Öberg and Urban Lendahl* Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, S-171 77 Stockholm, Sweden *Author for correspondence (e-mail: [email protected]) Accepted 9 June; published on WWW 5 August 1999 SUMMARY The Notch signaling pathway is important for cellular levels. First, Notch 3 IC competes with Notch 1 IC for differentiation. The current view is that the Notch receptor access to RBP-Jk and does not activate transcription when is cleaved intracellularly upon ligand activation. The positioned close to a promoter. Second, Notch 3 IC appears intracellular Notch domain then translocates to the to compete with Notch 1 IC for a common coactivator nucleus, binds to Suppressor of Hairless (RBP-Jk in present in limiting amounts. In conclusion, this is the first mammals), and acts as a transactivator of Enhancer of Split example of a Notch IC that functions as a repressor in (HES in mammals) gene expression. In this report we show Enhancer of Split/HES upregulation, and shows that that the Notch 3 intracellular domain (IC), in contrast to mammalian Notch receptors have acquired distinct all other analysed Notch ICs, is a poor activator, and in fact functions during evolution. acts as a repressor by blocking the ability of the Notch 1 IC to activate expression through the HES-1 and HES-5 promoters. -
Notch1 Maintains Dormancy of Olfactory Horizontal Basal Cells, A
Notch1 maintains dormancy of olfactory horizontal PNAS PLUS basal cells, a reserve neural stem cell Daniel B. Herricka,b,c, Brian Lina,c, Jesse Petersona,c, Nikolai Schnittkea,b,c, and James E. Schwobc,1 aCell, Molecular, and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111; bMedical Scientist Training Program, Tufts University School of Medicine, Boston, MA 02111; and cDepartment of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved May 31, 2017 (received for review January 25, 2017) The remarkable capacity of the adult olfactory epithelium (OE) to OE (10, 11). p63 has two transcription start sites (TSS) sub- regenerate fully both neurosensory and nonneuronal cell types after serving alternate N-terminal isoforms: full-length TAp63 and severe epithelial injury depends on life-long persistence of two stem truncated ΔNp63, which has a shorter transactivation domain. In cell populations: the horizontal basal cells (HBCs), which are quies- addition, alternative splicing generates five potential C-terminal cent and held in reserve, and mitotically active globose basal cells. It domains: α, β, γ, δ, e (13). ΔNp63α is the dominant form in the OE has recently been demonstrated that down-regulation of the ΔN by far (14). ΔNp63α expression typifies the basal cells of several form of the transcription factor p63 is both necessary and sufficient epithelia, including the epidermis, prostate, mammary glands, va- to release HBCs from dormancy. However, the mechanisms by which gina, and thymus (15). -
Angiocrine Endothelium: from Physiology to Cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3
Pasquier et al. J Transl Med (2020) 18:52 https://doi.org/10.1186/s12967-020-02244-9 Journal of Translational Medicine REVIEW Open Access Angiocrine endothelium: from physiology to cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3 Abstract The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The sig- nifcance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogen- esis that is critical for tumor initiation and growth. Nevertheless, the identifcation of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profling studies have demonstrated distinctive expression patterns in tumor- associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identifed which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies. Keywords: Angiocrine, Endothelium, Cancer, Cancer microenvironment, Angiogenesis Introduction of blood vessels in initiation of tumor growth and stated Metastatic disease accounts for about 90% of patient that in the absence of such angiogenesis, tumors can- mortality. Te difculty in controlling and eradicating not expand their mass or display a metastatic phenotype metastasis might be related to the heterotypic interaction [7]. Based on this theory, many investigators assumed of tumor and its microenvironment [1]. -
Notch 2 (M-20): Sc-7423
SAN TA C RUZ BI OTEC HNOL OG Y, INC . Notch 2 (M-20): sc-7423 BACKGROUND SELECT PRODUCT CITATIONS The LIN-12/Notch family of transmembrane receptors is believed to play a 1. Nijjar, S.S., et al. 2002. Altered Notch ligand expression in human liver central role in development by regulating cell fate decisions. To date, four disease: further evidence for a role of the Notch signaling pathway in notch homologs have been identified in mammals and have been designated hepatic neovascularization and biliary ductular defects. Am. J. Pathol. 160: Notch 1, Notch 2, Notch 3 and Notch 4. The notch genes are expressed in a 1695-1703. variety of tissues in both the embryonic and adult organism, suggesting that 2. Tsunematsu, R., et al. 2004. Mouse Fbw7/SEL-10/Cdc4 is required for the genes are involved in multiple signaling pathways. The notch proteins Notch degradation during vascular development. J. Biol. Chem. 279: have been found to be overexpressed or rearranged in human tumors. Ligands 9417-9423. for notch include Jagged1, Jagged2 and Delta. Jagged can activate notch and prevent myoblast differentiation by inhibiting the expression of muscle 3. Parr, C., et al. 2004. The possible correlation of Notch receptors, Notch 1 regulatory and structural genes. Jagged2 is thought to be involved in the and Notch 2, with clinical outcome and tumour clinicopathological development of various tissues whose development is dependent upon epithe - para- meters in human breast cancers. Int. J. Mol. Med. 14: 779-786. lial-mesenchymal interactions. Normal Delta expression is restricted to the 4. -
Conditional Ablation of Ezh2 in Murine Hearts Reveals Its Essential Roles in Endocardial Cushion Formation, Cardiomyocyte Proliferation and Survival
Conditional Ablation of Ezh2 in Murine Hearts Reveals Its Essential Roles in Endocardial Cushion Formation, Cardiomyocyte Proliferation and Survival Li Chen1, Yanlin Ma2, Eun Young Kim1,3, Wei Yu4, Robert J. Schwartz4, Ling Qian1, Jun Wang1* 1 Department of Stem Cell Engineering, Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America, 2 Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America, 3 Program in Genes and Development, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America, 4 Department of Biochemistry and Molecular Biology, University of Houston, Houston, Texas, United States of America Abstract Ezh2 is a histone trimethyltransferase that silences genes mainly via catalyzing trimethylation of histone 3 lysine 27 (H3K27Me3). The role of Ezh2 as a regulator of gene silencing and cell proliferation in cancer development has been extensively investigated; however, its function in heart development during embryonic cardiogenesis has not been well studied. In the present study, we used a genetically modified mouse system in which Ezh2 was specifically ablated in the mouse heart. We identified a wide spectrum of cardiovascular malformations in the Ezh2 mutant mice, which collectively led to perinatal death. In the Ezh2 mutant heart, the endocardial cushions (ECs) were hypoplastic and the endothelial-to- mesenchymal transition (EMT) process was impaired. The hearts of Ezh2 mutant mice also exhibited decreased cardiomyocyte proliferation and increased apoptosis. We further identified that the Hey2 gene, which is important for cardiomyocyte proliferation and cardiac morphogenesis, is a downstream target of Ezh2. The regulation of Hey2 expression by Ezh2 may be independent of Notch signaling activity. -
Inverse Expression States of the BRN2 and MITF Transcription Factors in Melanoma Spheres and Tumour Xenografts Regulate the NOTCH Pathway
Oncogene (2011) 30, 3036–3048 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway AE Thurber1, G Douglas1, EC Sturm1, SE Zabierowski2, DJ Smit1, SN Ramakrishnan1, E Hacker3, JH Leonard3, M Herlyn2 and RA Sturm1,2 1Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Queensland, Australia; 2The Wistar Institute, Philadelphia, PA, USA and 3Queensland Institute of Medical Research, Brisbane, Queensland, Australia The use of adherent monolayer cultures have produced Introduction many insights into melanoma cell growth and differentia- tion, but often novel therapeutics demonstrated to act on Despite several decades of research on the causes and these cells are not active in vivo. It is imperative that new potential treatments for melanoma, little improvement methods of growing melanoma cells that reflect growth has been made in the prognosis of this cancer, which in vivo are investigated. To this end, a range of human remains at less than 15% survival after 5 yrs for patients melanoma cell lines passaged as adherent cultures or diagnosed with metastatic disease (Miller and Mihm, induced to form melanoma spheres (melanospheres) in 2006). One issue slowing progress is the large disparity stem cell media have been studied to compare cellular that often exists between experimental results and characteristics and protein expression. Melanoma spheres clinical outcomes. In order to screen new therapeutic and tumours grown from cell lines as mouse xenografts drugs more quickly and cost effectively, new culture had increased heterogeneity when compared with adherent models representative of the clinical setting are needed. -
Dendritic Cell-Mediated NK Cell Activation Is Controlled by Jagged2–Notch Interaction
Dendritic cell-mediated NK cell activation is controlled by Jagged2–Notch interaction Mika Kijima*, Takeshi Yamaguchi*†, Chieko Ishifune*, Yoichi Maekawa*, Akemi Koyanagi‡, Hideo Yagita‡§, Shigeru Chiba¶, Kenji Kishihara*, Mitsuo Shimada†, and Koji Yasutomo*ʈ Departments of *Immunology and Parasitology and †Digestive and Pediatric Surgery, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan; ‡Division of Cell Biology, Bio-medical Research Center, and §Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and ¶Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, 7-3-1 Hongo, Tokyo 113-8421, Japan Edited by Tak Wah Mak, University of Toronto, Toronto, ON, Canada, and approved February 29, 2008 (received for review October 18, 2007) Natural killer (NK) cells regulate various immune responses by exert- strated that Notch signaling controls both the development ing cytotoxic activity or secreting cytokines. The interaction of NK cells and activation of T cells (7–10). Furthermore, two papers with dendritic cells (DC) contributes to NK cell-mediated antitumor or reported that stimulation of hematopoietic stem cells by antimicrobial responses. However, the cellular and molecular mech- Jagged1 or Jagged2 promotes NK cell differentiation (11–12). anisms for controlling this interaction are largely unknown. Here, we However, whether Jagged controls mature NK cell activa- show an involvement of Jagged2–Notch interaction in augmenting tion or functional differentiation in vivo requires further NK cell cytotoxicity mediated by DC. Enforced expression of Jagged2 investigation. on A20 cells (Jag2-A20 cells) suppressed their growth in vivo, which In this report, we addressed whether or not one of the Notch was abrogated by depleting NK cells. -
DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet
Page 1 of 41 Diabetes DLL1- and DLL4-mediated Notch signaling is essential for adult pancreatic islet homeostasis (running title –Role of Delta ligands in adult pancreas) Marina Rubey1,2,6*, Nirav Florian Chhabra1,2*, Daniel Gradinger1,2,7, Adrián Sanz-Moreno1, Heiko Lickert2,4,5, Gerhard K. H. Przemeck1,2, Martin Hrabě de Angelis1,2,3** 1 Helmholtz Zentrum München, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany 2 German Center for Diabetes Research (DZD), Neuherberg, Germany 3 Chair of Experimental Genetics, Centre of Life and Food Sciences, Weihenstephan, Technische Universität München, Freising, Germany 4 Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research and Institute of Stem Cell Research, Neuherberg, Germany 5 Technische Universität München, Medical Faculty, Munich, Germany 6 Present address Marina Rubey: WMC Healthcare GmbH, Munich, Germany 7 Present address Daniel Gradinger: PSI CRO AG, Munich, Germany *These authors contributed equally **Corresponding author: Prof. Dr. Martin Hrabě de Angelis, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Ingolstädter Landstr.1, 85764 Neuherberg, Germany. Phone: +49-89-3187-3502. Fax: +49- 89-3187-3500. E-mail address: [email protected] Word count – 4088 / Figures – 7 Diabetes Publish Ahead of Print, published online February 6, 2020 Diabetes Page 2 of 41 Abstract Genes of the Notch signaling pathway are expressed in different cell types and organs at different time points during embryonic development and adulthood. The Notch ligand Delta- like 1 (DLL1) controls the decision between endocrine and exocrine fates of multipotent progenitors in the developing pancreas, and loss of Dll1 leads to premature endocrine differentiation. -
And DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet Homeostasis
Diabetes Volume 69, May 2020 915 DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet Homeostasis Marina Rubey,1,2 Nirav Florian Chhabra,1,2 Daniel Gradinger,1,2 Adrián Sanz-Moreno,1 Heiko Lickert,2,3,4 Gerhard K.H. Przemeck,1,2 and Martin Hrabe de Angelis1,2,5 Diabetes 2020;69:915–926 | https://doi.org/10.2337/db19-0795 Genes of the Notch signaling pathway are expressed in with type 2 diabetes (3), sparking investigation into their different cell types and organs at different time points roles in glucose metabolism. The highly conserved D/N during embryonic development and adulthood. The Notch signaling pathway is crucial for embryonic development ligand Delta-like 1 (DLL1) controls the decision between in a wide range of different tissues (4). Although Notch ac- endocrine and exocrine fates of multipotent progenitors in tivity is required during pancreatic development (5), some the developing pancreas, and loss of Dll1 leads to pre- D/N components have also been reported to be active mature endocrine differentiation. However, the role of during adulthood. D/N signaling mediates cell-cycle regu- Delta-Notch signaling in adult tissue homeostasis is not lation via transmembrane-bound ligands (DLL1, DLL3, DLL4, ISLET STUDIES well understood. Here, we describe the spatial expression JAGGED1, and JAGGED2) and receptors (NOTCH1–4). pattern of Notch pathway components in adult murine Studies have shown that DLL1 and DLL4 regulate tissue pancreatic islets and show that DLL1 and DLL4 are renewal and maintain intestinal progenitor cells (6). Fur- specifically expressed in b-cells, whereas JAGGED1 is thermore, NOTCH/NEUROG3 signaling is active in adult expressed in a-cells. -
Full Text (PDF)
Published OnlineFirst April 26, 2017; DOI: 10.1158/0008-5472.CAN-16-3146 Cancer Molecular and Cellular Pathobiology Research tRF/miR-1280 Suppresses Stem Cell–like Cells and Metastasis in Colorectal Cancer Bingqing Huang1,2, Huipeng Yang1, Xixi Cheng1, Dan Wang1, Shuyu Fu1, Wencui Shen3, Qi Zhang1, Lijuan Zhang1, Zhenyi Xue1, Yan Li1, Yurong Da1, Qing Yang4,5, Zesong Li6, Li Liu7, Liang Qiao8, Ying Kong9, Zhi Yao1, Peng Zhao4,5, Min Li10,11, and Rongxin Zhang1,12 Abstract Several studies have shown that tRNAs can be enzymatically tasis. Notably, tRF/miR-1280–mediated inactivation of Notch cleaved to generate distinct classes of tRNA-derived fragments signaling suppressed CSC phenotypes, including by direct (tRF). Here, we report that tRF/miR-1280, a 17-bp fragment transcriptional repression of the Gata1/3 and miR-200b genes. derived from tRNALeu and pre-miRNA, influences Notch sig- These results were consistent with findings of decreased levels naling pathways that support the function of cancer stem-like of miR-200b and elevated levels of JAG2, Gata1, Gata3, Zeb1, cells (CSC) in colorectal cancer progression. tRF/miR-1280 and Suz12 in colorectal cancer tissue specimens. Taken togeth- expression was decreased in human specimens of colorectal er, our results established that tRF/miR-1280 suppresses colo- cancer. Ectopic expression of tRF/miR-1280 reduced cell pro- rectal cancer growth and metastasis by repressing Notch sig- liferation and colony formation, whereas its suppression naling pathways that support CSC phenotypes. Furthermore, reversed these effects. Mechanistic investigations implicated they provide evidence that functionally active miRNA can be the Notch ligand JAG2 as a direct target of tRF/miR-1280 derived from tRNA, offering potential biomarker and thera- binding through which it reduced tumor formation and metas- peutic uses.