The Eastern Desert
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
5.3 Water Environment
5.3 Water Environment (1) Scarcity and Degradation of Freshwater in Egypt The water resources of Egypt could be divided into two systems; the Nile system and the groundwater system in desert area. The Nile system consisting of the Nile River, its branches, the irrigation canals, the agricultural drains and the valley and Delta aquifers. These water resources are interconnected. This system is replenished yearly with approximately 58.5 billion m3 of freshwater, as is given in the survey by MWRI. Egypt depends on the Nile for almost all of water resources; naturally, it is a crucial issue on how to preserve water quality of the River Nile. On the other hand, water in desert area is in deep sandstone aquifer and is generally non-renewable source, though considerable amounts of water are stored in the groundwater system. Table 5.13: Water Balance of the River Nile Water balance 3 Items (billion m /yr) Inflow Outflow & use HAD release 55.50 Effective rainfall 1.00 Sea water intrusion 2.00 Total inflow 58.50 Consumptive use agriculture 40.82 Consumptive use industries 0.91 Consumptive use domestic 0.45 Evaporation 3.00 Total use and evaporation 45.18 Navigation fresh water 0.26 Fayoum terminal drainage 0.65 Delta drainage to the sea 12.41 Total outflow 13.31 Source: MWRI Water demand in Egypt has been increasing due to population growth, higher standard of living, reclaiming new land, and advancing industrialization. Available water per capita per year for all purpose in 1999 was about 900m3; nonetheless, it is expected to fall to 670m3 and 536m3 by the years 2017 and 2025, respectively. -
No More Hills Ahead?
No More Hills Ahead? The Sudan’s Tortuous Ascent to Heights of Peace Emeric Rogier August 2005 NETHERLANDS INSTITUTE OF INTERNATIONAL RELATIONS CLINGENDAEL CIP-Data Koninklijke bibliotheek, The Hague Rogier, Emeric No More Hills Ahead? The Sudan’s Tortuous Ascent to Heights of Peace / E. Rogier – The Hague, Netherlands Institute of International Relations Clingendael. Clingendael Security Paper No. 1 ISBN 90-5031-102-4 Language-editing by Rebecca Solheim Desk top publishing by Birgit Leiteritz Netherlands Institute of International Relations Clingendael Clingendael Security and Conflict Programme Clingendael 7 2597 VH The Hague Phonenumber +31(0)70 - 3245384 Telefax +31(0)70 - 3282002 P.O. Box 93080 2509 AB The Hague E-mail: [email protected] Website: http://www.clingendael.nl The Netherlands Institute of International Relations Clingendael is an independent institute for research, training and public information on international affairs. It publishes the results of its own research projects and the monthly ‘Internationale Spectator’ and offers a broad range of courses and conferences covering a wide variety of international issues. It also maintains a library and documentation centre. © Netherlands Institute of International Relations Clingendael. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyrightholders. Clingendael Institute, P.O. Box 93080, 2509 AB The Hague, The Netherlands. Contents Foreword i Glossary of Abbreviations iii Executive Summary v Map of Sudan viii Introduction 1 Chapter 1 The Sudan: A State of War 5 I. -
Proposal for Inclusion of the African Wild Ass (Eritrea)
CMS CONVENTION ON Distribution: General MIGRATORY UNEP/CMS/COP12/Doc.25.1.7(a) 9 June 2017 SPECIES Original: English 12th MEETING OF THE CONFERENCE OF THE PARTIES Manila, Philippines, 23 - 28 October 2017 Agenda Item 25.1 PROPOSAL FOR THE INCLUSION OF THE AFRICAN WILD ASS (Equus africanus) ON APPENDIX I AND II OF THE CONVENTION Summary: The Government of Eritrea has submitted the attached proposal* for the inclusion of the African Wild Ass (Equus africanus) on Appendix I and II of CMS. A proposal for the inclusion of the same taxon on Appendix I of CMS has been submitted independently by the Government of Ethiopia. The proposal is reproduced in document UNEP/CMS/COP12/Doc.25.1.7(b). *The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CMS Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. UNEP/CMS/COP12/Doc.25.1.7(a) PROPOSAL FOR THE INCLUSION OF THE AFRICAN WILD ASS (Equus africanus) ON APPENDIX I AND II OF THE CONVENTION A. PROPOSAL Inclusion of all subspecies of African wild ass Equus africanus to Appendix I and Appendix II of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: ERITREA C. SUPPORTING STATEMENT 1. Taxonomy This proposal does not follow the current nomenclatural reference for terrestrial mammals adopted by CMS, i.e. -
'Silif': Breaking the Silence on FGM Among the Beja
Towards a New ‘Silif’: Breaking the Silence on FGM Among the Beja Pastoralists of Eastern Sudan Development Practice Series 1 Ibrahim M. G. Sahl Asha A. K. Elkarib El Mutalib Ibrahim Mohamed © 2004 Towards a New Silif, Ibrahim Sahl • Asha Elkarib • El Mutalib Ibrahim First published in July 2004 by: ACORD – Agency for Co-operation and Research in Development ACK Garden House, P.O. Box 61216 – 00200 Nairobi, Kenya Construction House, 56-64 Leonard Street, London EC2A 4JX, UK Copyright © 2004 by ACORD – Agency for Co-operation and Research in Development ISSN: 1812-1284 (print) / ISSN: 1812-1322 (online) All rights reserved 1- Development Practice Series 1 2- Towards a New Silif: Breaking the Silence on FGM among the Beja Pastoralists of Eastern Sudan 3- Authors: Ibrahim M. G. Sahl, Asha A. K. Elkarib and El Mutalib Ibrahim Mohamed 4- Key words: FGM, Circumcision, Silif,Beja, Social Exclusion, ACORD, Sudan 5- Text edited by: Simon Sossion and Sylvia Mwichuli 6- Design and layout: Creative Edge - Nairobi, Kenya 7- Printed for ACORD by: Ramco Printing Works – Nairobi, Kenya This publication is copyright, but may be duplicated or translated into other languages, especially Arabic, for non-sale purposes. However, prior permission for such uses is formally required from ACORD. The findings, interpretations and conclusions expressed in this publication are entirely those of the authors and should not be attributed in any manner to ACORD, to its members, or to its Board. ACORD is a UK registered charity No. 283302. It is an Africa-led organisation working in 18 countries in Africa with poor and marginalised communities against social injustice and exclusion. -
A Window Into Paleocene to Early Eocene Depositional History in Egypt Basedoncoccolithstratigraphy
The Dababiya Core: A window into Paleocene to Early Eocene depositional history in Egypt basedoncoccolithstratigraphy Marie-Pierre Aubry1 and Rehab Salem1,2 1Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, NJ 08854-8066, USA email: [email protected] 2Geology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt [email protected] ABSTRACT: The composite Paleocene-lower Eocene Dababiya section recovered in the Dababiya Quarry core and accessible in out- crop in the Dababiya Quarry exhibits an unexpected contrast in thickness between the Lower Eocene succession (~Esna Shales) and the Paleocene one (~Dakhla Shales and Tarawan Chalk). We investigate the significance of this contrast by reviewing calcareous nannofossil stratigraphic studies performed on sections throughout Egypt. We show that a regional pattern occurs, and distinguish six areas—Nile Valley, Eastern Desert and western Sinai, Central and eastern Sinai, northern Egypt and Western Desert. Based on patterns related to thicknesses of selected lithobiostratigraphic intervals and distribution of main stratigraphic gaps, we propose that the differences in the stratigraphic architecture between these regions result from differential latest Paleocene and Early Eocene subsidence following intense Middle to Late Paleocene tectonic activity in the Syrian Arc folds as a result of the closure of the Neo-Tethys. INTRODUCTION view of coccolithophore studies in Egypt since their inception During the Late Cretaceous and Early Paleogene Egypt was (1968). Coccolith-bearing sedimentary rocks as old as part of a vast epicontinental shelf at the edge of the southern Cenomanian outcrop in central Sinai (Thamed area; Bauer et al. Tethys (text-fig. 1). Bounded by the Arabian-Nubian craton to 2001; Faris and Abu Shama 2003). -
West Africa Part III: Central Africa Part IV: East Africa & Southern Africa Name: Date
Part I: North Africa Part II: West Africa Part III: Central Africa Part IV: East Africa & Southern Africa Name: Date: AFRI CA Overview RICA lies at the heart of the earth's land Then, during the nineteenth century, masses. It sits astride the equator, with European traders began setting up trading sta . almost half the continent to the north tions along the coast of West Africa. The of the equator, and half to the south. It con traders, and their governments, soon saw great tains some of the world's greatest deserts, as opportunity for profit in Africa. Eventually, well as some of the world's greatest rivers. It many European countries took control of the has snow-capped mountains, and parched, arid land and divided it into colonies. plains. The first humans came from Africa. By the middle of the twentieth century, peo And in the millennia since those fust humans ple all across Africa had demanded indepen walked the plains of Africa, many different cul dence from colonial rule. By the end of the tures have arisen there. century, government had passed firmly into Physically, Africa is one enormous plateau. It African hands. However, the newly independ has no continental-scale mountain chains, no ent nations must still deal with the legacy of peninsulas, no deep fjords. Most of the conti colonialism. The boundaries the European nent is more than 1000 feet (300m) above sea powers created often cut across ethnic and cul level; over half is above 2500 feet (800 m). tural groups. Many African nations today are Africa's early history reflects the wide stretch still struggling to reconcile the different cul of the continent. -
2016|2017 2016|2017
Egyypt 2016|2017 Discovering Business in association with Copyright © Allurentis Limited 2016. All rights reserved. Allurentis is delighted to have been involved in association with UK Trade & Investment on this, the first edition of Egypt - Discovering Business and would like to thank all sponsoring organisations for their kind contributions. We are confident that it will raise awareness with all readers and prove to be an invaluable resource, especially for those wishing to become involved in the extraordinary business opportunities and growth prospects within Egypt. Electronic copies of this publication may be downloaded from Allurentis Limited's website at www.allurentis.com, provided that the use of any copy so downloaded, complies with the terms and conditions specified on the website. Except as expressly stated above, no part of this publication may be copied, reproduced, stored or transmitted in any form or by any means without the prior permission in writing from Allurentis Limited. To enquire about obtaining permission for uses other than those permitted above, please contact Allurentis by sending an email to [email protected] Photos courtesy of: www.istockphoto.com & www.123rf.com USINESS B Contents ISCOVERING Introduction Egypt turns to private sector to build new economy 5 D - 2016|2017 Messages GYPT E H.E. Ambassador Nasser Kamel: Egyptian Ambassador to the UK 8 HMA John Casson: British Ambassador to Egypt 9 UK Trade & Investment in Egypt 10 Egyptian Commercial Service in the UK 11 Business - Legal - Finance Egypt’s economic -
Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia
land Article Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia Mouldi Gamoun and Mounir Louhaichi * International Center for Agricultural Research in the Dry Areas (ICARDA), 2049 Ariana, Tunisia; [email protected] * Correspondence: [email protected]; Tel.: +216-7175-2099 Abstract: Natural rangelands occupy about 5.5 million hectares of Tunisia’s landmass, and 38% of this area is in Tataouine governorate. Although efforts towards natural restoration are increasing rapidly as a result of restoration projects, the area of degraded rangelands has continued to expand and the severity of desertification has continued to intensify. Any damage caused by disturbances, such as grazing and recurrent drought, may be masked by a return of favorable rainfall conditions. In this work, conducted during March 2018, we surveyed the botanical composition and species diversity of natural rangelands in Tataouine in southern Tunisia. The flora comprised about 279 species belonging to 58 families, with 54% annuals and 46% perennials. The Asteraceae family had the greatest richness of species, followed by Poaceae, Fabaceae, Amaranthaceae, Brassicaceae, Boraginaceae, Caryophyllaceae, Lamiaceae, Apiaceae, and Cistaceae. Therophytes made the highest contribution, followed by chamaephytes and hemicryptophytes. Of all these species, 40% were palatable to highly palatable and more than 13% are used in both traditional and modern medicine. Citation: Gamoun, M.; Louhaichi, M. Keywords: vegetation; species richness; drylands; south of Tunisia Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia. Land 2021, 10, 313. https://doi.org/ 1. Introduction 10.3390/land10030313 Climate change and human activity represent a big threat to biodiversity [1–3]. -
In Wadi Allaqi, Egypt
ENVIRONMENTAL VALUATION AND MANAGEMENT OF PLANTS IN WADI ALLAQI, EGYPT FINAL REPORT IDRC OQ w W1.44 Trent University AUGUST 1998 ENVIRONMENTAL VALUATION AND-MANAGEMENT OF PLANTS IN WADI ALLAQI, EGYPT Final report Editors: Belal, A.E. , B. Leith, J. Solway and 1. Springuel Submitted To INTERNATIONAL DEVELOPMENT RESEARCH CENTRE (IDRC) CANADA File: 95-100"1/02 127-01 UNIT OF ENVIRONMENTAL STUDIES AND DEVELOPMENT, SOUTH VALLEY UNIVERSITY, ASWAN, EGYPT A-RC hf v 5 91, 5 7 By Acknowledgements The Project team of both South Valley and Trent Universities wish to thank the International Development Research Center (IDRC) Ottawa, Canada, for supporting the project with funding and for visiting the site. We also thank the staff of the IDRC Cairo Office for their assistance. This report is based upon the knowledge, hard work, and support of many people and institutions. We thank the British Council for the support they have provided in training many members of the team and UNESCO for providing support for the Allaqi project and Biosphere Reserve. We appreciate the good working relationship that we have developed with the Egyptian Environment Affairs Agency. Dr. M. Kassas of Cairo University has provided valuable intellectual direction for the project. We thank C. Fararldi who has assisted the project in numerous ways and Gordon Dickinson for writing notes on establishing the visitor center in Wadi Allaqi We wish to thank the research offices of Trent University and South Valley University. We are deeply grateful to the residents of Wadi Allaqi for their help and continued support and patience towards our project. -
Mints – MISR NATIONAL TRANSPORT STUDY
No. TRANSPORT PLANNING AUTHORITY MINISTRY OF TRANSPORT THE ARAB REPUBLIC OF EGYPT MiNTS – MISR NATIONAL TRANSPORT STUDY THE COMPREHENSIVE STUDY ON THE MASTER PLAN FOR NATIONWIDE TRANSPORT SYSTEM IN THE ARAB REPUBLIC OF EGYPT FINAL REPORT TECHNICAL REPORT 11 TRANSPORT SURVEY FINDINGS March 2012 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. ALMEC CORPORATION EID KATAHIRA & ENGINEERS INTERNATIONAL JR - 12 039 No. TRANSPORT PLANNING AUTHORITY MINISTRY OF TRANSPORT THE ARAB REPUBLIC OF EGYPT MiNTS – MISR NATIONAL TRANSPORT STUDY THE COMPREHENSIVE STUDY ON THE MASTER PLAN FOR NATIONWIDE TRANSPORT SYSTEM IN THE ARAB REPUBLIC OF EGYPT FINAL REPORT TECHNICAL REPORT 11 TRANSPORT SURVEY FINDINGS March 2012 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. ALMEC CORPORATION EID KATAHIRA & ENGINEERS INTERNATIONAL JR - 12 039 USD1.00 = EGP5.96 USD1.00 = JPY77.91 (Exchange rate of January 2012) MiNTS: Misr National Transport Study Technical Report 11 TABLE OF CONTENTS Item Page CHAPTER 1: INTRODUCTION..........................................................................................................................1-1 1.1 BACKGROUND...................................................................................................................................1-1 1.2 THE MINTS FRAMEWORK ................................................................................................................1-1 1.2.1 Study Scope and Objectives .........................................................................................................1-1 -
Biological Synthesis of Gold and Silver Nanoparticles by Nitraria Schoberi Fruits
American Journal of Advanced Drug Delivery www.ajadd.co.uk Original Article Biological Synthesis of Gold and Silver Nanoparticles by Nitraria schoberi Fruits Majid Sharifi Rad 1, 2 , Javad Sharifi Rad 3, 4 *, Gholam Ali Heshmati 2, Abdolhossein Miri 3,4 and Dhrubo Jyoti Sen 5 1Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Iran 2Department of Rangeland Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138–15739, Iran 3Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, P.O. Box 61615- 585 Zabol, Iran 4Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, P.O. Box 61615-585 Zabol, Iran 5Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Gujarat Technological University, Arvind Baug, Mehsana-384001, Gujarat, India Date of Receipt - 18/0 6/2013 ABSTRACT Date of Revision- 20/06/2013 Date of Acceptance- 29/06/2013 Biological synthesis of nanoparticles by the use of natural solvents Address for and it’s natural protecting method was compared with physical and Correspondence chemical methods. Among of biological synthesis of nanoparticles Zabol Medicinal Plants methods, using of plant and particularly medical plants are more Research Center, important. Synthesis of silver and gold nanoparticles may be Zabol University of influenced directly or indirectly by phytochemicals in plants such as Medical Sciences, P.O. flavonoids, diosgenin and phenolics compounds. In this study the Box 61615- extracts of dry fruit was used for biological synthesis of gold and 585 Zabol, Iran & silver nanoparticles as a reducing agent. Salt of these elements was Department of added to extract with 1mM concentration and the reaction was Pharmacognosy, performed at room temperature. -
Guidelines for Using the Checklist
Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. This grows naturally under favourable conditions, but there are should be considered preliminary information because much usually only a few isolated individuals.