UNIVERSIT´E PARIS 6 PIERRE ET MARIE CURIE Th`Ese De

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSIT´E PARIS 6 PIERRE ET MARIE CURIE Th`Ese De UNIVERSITE´ PARIS 6 PIERRE ET MARIE CURIE Th`ese de Doctorat Sp´ecialit´e : Math´ematiques pr´esent´ee par Julien PAUPERT pour obtenir le grade de Docteur de l'Universit´e Paris 6 Configurations de lagrangiens, domaines fondamentaux et sous-groupes discrets de P U(2; 1) Configurations of Lagrangians, fundamental domains and discrete subgroups of P U(2; 1) Soutenue le mardi 29 novembre 2005 devant le jury compos´e de Yves BENOIST (ENS Paris) Elisha FALBEL (Paris 6) Directeur John PARKER (Durham) Fr´ed´eric PAULIN (ENS Paris) Rapporteur Jean-Jacques RISLER (Paris 6) Rapporteur non pr´esent a` la soutenance : William GOLDMAN (Maryland) Remerciements Tout d'abord, merci a` mon directeur de th`ese, Elisha Falbel, pour tout le temps et l'´energie qu'il m'a consacr´es. Merci ensuite a` William Goldman et a` Fr´ed´eric Paulin d'avoir accept´e de rapporter cette th`ese; a` Yves Benoist, John Parker et Jean-Jacques Risler d'avoir bien voulu participer au jury. Merci en particulier a` Fr´ed´eric Paulin et a` John Parker pour les nombreuses corrections et am´eliorations qu'ils ont sugg´er´ees. Pour les nombreuses et enrichissantes conversations math´ematiques durant ces ann´ees de th`ese, je voudrais remercier particuli`erement Martin Deraux et Pierre Will, ainsi que les mem- bres du groupuscule de g´eom´etrie hyperbolique complexe de Chevaleret, Marcos, Masseye et Florent. Merci ´egalement de nouveau a` John Parker et a` Richard Wentworth pour les conversations que nous avons eues et les explications qu'ils m'ont donn´ees lors de leurs visites a` Paris. Je voudrais enfin remercier particuli`erement deux enseignants qui m'ont donn´e envie de faire des maths puis de continuer: M. Monnet qui a r´eussi en deux ans de lyc´ee a` nous montrer des "vraies" maths et a` nous les faire appr´ecier, ainsi que Laurent Coppey qui m'a montr´e la beaut´e des actions g´eom´etriques de groupes en Licence. Quant aux remerciements d'ordre personnel, je les ferai de vive voix. 2 Contents 0.1 Introduction en fran¸cais . 5 0.2 Introduction in english . 11 1 Geometric preliminaries 20 1.1 Complex hyperbolic space . 21 1.1.1 Definition, models and structures . 21 1.1.2 Isometries . 22 1.2 Subspaces and configurations . 22 1.2.1 Totally geodesic subspaces . 22 1.2.2 Geodesic triangles . 23 1.2.3 Configurations of Lagrangians . 25 1.3 Isometries . 27 1.3.1 Classification of isometries . 27 1.3.2 Elliptic isometries . 28 2 Fundamental domains for finite groups of U(2) and configurations of La- grangians 32 2.1 Introduction . 33 2.2 Lagrangian subspaces and R-reflections . 33 2.3 Lagrangian pairs . 40 2.3.1 Groups generated by two R-reflections . 40 2.3.2 Representations of an R-reflection by matrices . 41 2.4 An example: the group 3[3]3 . 41 2.4.1 Action on CP 1 . 42 2.4.2 R-reflections . 43 2.4.3 Presentations and diagrams . 45 2.4.4 Fundamental domains . 46 2.5 Other two-generator subgroups of U(2) . 46 2.5.1 The strategy . 47 2.5.2 Explicit decomposition of reflection groups . 48 2.6 Appendix: explicit decomposition of reflection groups . 52 3 New constructions of fundamental polyhedra for Mostow's lattices 59 3.1 Introduction . 60 3.2 Complex hyperbolic space . 62 3.2.1 Bisectors . 64 3 3.2.2 The group Γ(p; t) . 68 3.2.3 A canonical hexagon . 71 3.2.4 Computing the vertices of the hexagon . 72 2 3.3 Description of a fundamental polyhedron Π in HC . 74 3.3.1 The core hexagon . 76 3.3.2 The 3-faces H and H 0 . 76 3.3.3 The whole polyhedron Π . 78 3.3.4 The remaining 3-faces . 79 3.4 Topology and combinatorial structure of Π . 80 3.5 Using Poincar´e's polyhedron theorem . 83 3.5.1 Side-pairings . 84 3.5.2 Cycles and orbits of faces . 85 3.5.3 Verifying the tessellation conditions . 86 3.6 Beyond the critical phase shift . 97 3.7 Comparison with Mostow's domains . 98 3.8 Appendix: list of faces and combinatorial structure of Π . 99 4 Elliptic triangle groups in P U(2; 1), Lagrangian triples and momentum maps103 4.1 Introduction . 104 4.2 Elliptic triangle groups, a polygon of configurations . 105 4.2.1 Introduction . 105 4.2.2 The group product: a group-valued momentum map . 107 4.2.3 Walls and reducible groups . 108 4.2.4 Chambers and irreducible groups . 115 4.2.5 Which chambers are full ? . 117 4.3 Configurations of Lagrangian triples . 123 4.3.1 Lagrangian triples vs. elliptic triangles . 125 4.3.2 Parametrizing the configurations . 129 4.4 Examples and experimental pictures . 135 4.4.1 The two generators are complex reflections in a point . 136 4.4.2 One generator is a complex reflection in a point . 136 4.4.3 The two generators are complex reflections: a non-convex example . 137 4.4.4 One generator is a complex reflection: families containing Mostow's lattices Γ(p; t) . 137 4.4.5 Generic examples . 137 4.5 The search for discrete groups: experimental aspects . 139 4.5.1 Families containing Mostow's lattices Γ(p; t) . 141 4.5.2 Families containing R-Fuchsian groups . 144 4 0.1 Introduction en fran¸cais Ce travail se situe dans le cadre encore assez peu explor´e des groupes discrets d'isom´etries de l'espace hyperbolique complexe, et en particulier des r´eseaux de P U(2; 1). L'´etude des sous-groupes discrets des groupes de Lie semisimples est un sujet maintenant classique et bien d´evelopp´e (voir par exemple les livres [Rag] et [Mar2] ou les expos´es intro- ductifs [Mos3], [Pan]). Une distinction fondamentale s'op`ere entre les sous-groupes discrets de covolume fini, ou r´eseaux, et ceux de covolume infini, tant pour les questions qui se posent que pour les m´ethodes d'approche possibles (le covolume d'un sous-groupe Γ d'un groupe de Lie G est la mesure de Haar du quotient G=Γ). Typiquement, on peut esp´erer classer les r´eseaux qui sont beaucoup moins nombreux que leurs homologues de covolume infini, une notion cruciale ´etant celle d'arithm´eticit´e. Dans les cas qui nous int´eressent ou` l'espace sym´etrique associ´e est a` courbure n´egative, les r´eseaux sont des points isol´es dans un gros espace (pr´ecis´ement, le th´eor`eme de rigidit´e forte de Mostow dit que dans ces cas, les repr´esentations d'un groupe donn´e Γ dont l'image est un r´eseau de G sont des point isol´es dans l'espace des repr´esentations Hom(Γ; G)=G). A l'oppos´e, les repr´esentations discr`etes de covolume infini admettent en g´en´eral des d´eformations, dont l'´etude est un sujet riche et fascinant. On pourra par exemple se reporter aux articles de Weil ([W1], [W2]) ou au m´emoire [LM] pour la th´eorie g´en´erale des d´eformations, ainsi que [GM] pour le cas hyperbolique complexe. Le cas des repr´esentations de groupes de surfaces est particuli`erement riche, voir [Gol1], [Gol2] ainsi que [H], [Lab] pour les repr´esentations dans SL(n; R), et [Tol], [GKL] pour celles dans P U(n; 1). Mentionnons enfin a` ce propos la famille des groupes triangulaires de r´eflexions (complexes) dans P U(2; 1) dont l'´etude a ´et´e initi´ee pour le cas des triangles id´eaux dans [GolPar] et qui fait depuis l'objet de nombreuses recherches, voir par exemple le panorama [Sz1]. On s'int´eressera ici plut^ot aux r´eseaux, mais les m´ethodes g´eom´etriques par lesquelles on esp`ere trouver de nouveaux sous- groupes discrets de P U(2; 1) (voir en particulier le dernier chapitre) peuvent a priori fournir des exemples des deux types. Il existe une construction g´en´erale de r´eseaux dans un groupe de Lie semisimple, due a` Borel et Harish-Chandra, qui g´en´eralise la situation classique du r´eseau SL(n; Z) dans SL(n; R) (voir l'article original [BHC] ou le trait´e introductif [WM] pour la construction exacte et diff´erents exemples). Un r´eseau qui peut s'obtenir par ce biais est dit arithm´etique; cette approche permet en particulier de montrer que tout groupe de Lie semisimple admet des r´eseaux, cocompacts et non cocompacts (Γ est dit cocompact si G=Γ est compact). D'autres exemples classiques de r´eseaux arithm´etiques sont les groupes de Bianchi SL(2; d) SL(2; C) form´es des matrices ayant leurs coefficients dans un anneau d'entiers quadratiqueO imaginaire⊂ tel que les entiers Od de Gauss Z[i] ou les entiers d'Eisenstein Z[e2iπ=3]; ceux-ci ressemblent beaucoup aux premiers exemples de Picard dans SU(2; 1) dont nous reparlerons plus bas. Comme premier exemple de r´eseau non-arithm´etique, consid´erons les groupes triangulaires 2 1 de r´eflexions dans le plan hyperbolique HR HC (plan de Poincar´e). Ces groupes sont engendr´es par les r´eflexions par rapport aux'c^ot´es d'un triangle g´eod´esique de ce plan; il n'est pas difficile de voir que si les angles de ce triangle ont pour mesure π=p; π=q; π=r avec p; q; r Z (conditions de Coxeter) alors le groupe en question est un sous-groupe discret de P S2L(2;[Rf1g) SO (2; 1) et le triangle en est un domaine fondamental.
Recommended publications
  • Tsinghua Lectures on Hypergeometric Functions (Unfinished and Comments Are Welcome)
    Tsinghua Lectures on Hypergeometric Functions (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] December 8, 2015 1 Contents Preface 2 1 Linear differential equations 6 1.1 Thelocalexistenceproblem . 6 1.2 Thefundamentalgroup . 11 1.3 The monodromy representation . 15 1.4 Regular singular points . 17 1.5 ThetheoremofFuchs .. .. .. .. .. .. 23 1.6 TheRiemann–Hilbertproblem . 26 1.7 Exercises ............................. 33 2 The Euler–Gauss hypergeometric function 39 2.1 The hypergeometric function of Euler–Gauss . 39 2.2 The monodromy according to Schwarz–Klein . 43 2.3 The Euler integral revisited . 49 2.4 Exercises ............................. 52 3 The Clausen–Thomae hypergeometric function 55 3.1 The hypergeometric function of Clausen–Thomae . 55 3.2 The monodromy according to Levelt . 62 3.3 The criterion of Beukers–Heckman . 66 3.4 Intermezzo on Coxeter groups . 71 3.5 Lorentzian Hypergeometric Groups . 75 3.6 Prime Number Theorem after Tchebycheff . 87 3.7 Exercises ............................. 93 2 Preface The Euler–Gauss hypergeometric function ∞ α(α + 1) (α + k 1)β(β + 1) (β + k 1) F (α, β, γ; z) = · · · − · · · − zk γ(γ + 1) (γ + k 1)k! Xk=0 · · · − was introduced by Euler in the 18th century, and was well studied in the 19th century among others by Gauss, Riemann, Schwarz and Klein. The numbers α, β, γ are called the parameters, and z is called the variable. On the one hand, for particular values of the parameters this function appears in various problems. For example α (1 z)− = F (α, 1, 1; z) − arcsin z = 2zF (1/2, 1, 3/2; z2 ) π K(z) = F (1/2, 1/2, 1; z2 ) 2 α(α + 1) (α + n) 1 z P (α,β)(z) = · · · F ( n, α + β + n + 1; α + 1 − ) n n! − | 2 with K(z) the Jacobi elliptic integral of the first kind given by 1 dx K(z)= , Z0 (1 x2)(1 z2x2) − − p (α,β) and Pn (z) the Jacobi polynomial of degree n, normalized by α + n P (α,β)(1) = .
    [Show full text]
  • Analytic Vortex Solutions on Compact Hyperbolic Surfaces
    Analytic vortex solutions on compact hyperbolic surfaces Rafael Maldonado∗ and Nicholas S. Mantony Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, U.K. August 27, 2018 Abstract We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. 1 Introduction Consider the Abelian-Higgs field theory on a background surface M with metric ds2 = Ω(x; y)(dx2+dy2). At critical coupling the static energy functional satisfies a Bogomolny bound 2 1 Z B Ω 2 E = + jD Φj2 + 1 − jΦj2 dxdy ≥ πN; (1) 2 2Ω i 2 where the topological invariant N (the `vortex number') is the number of zeros of Φ counted with multiplicity [1]. In the notation of [2] we have taken e2 = τ = 1. Equality in (1) is attained when the fields satisfy the Bogomolny vortex equations, which are obtained by completing the square in (1). In complex coordinates z = x + iy these are 2 Dz¯Φ = 0;B = Ω (1 − jΦj ): (2) This set of equations has smooth vortex solutions. As we explain in section 2, analytical results are most readily obtained when M is hyperbolic, having constant negative cur- vature K = −1, a case which is of interest in its own right due to the relation between arXiv:1502.01990v1 [hep-th] 6 Feb 2015 hyperbolic vortices and SO(3)-invariant instantons, [3].
    [Show full text]
  • Arxiv:1711.01247V1 [Math.CO] 3 Nov 2017 Theorem 1.1
    DEGREE-REGULAR TRIANGULATIONS OF SURFACES BASUDEB DATTA AND SUBHOJOY GUPTA Abstract. A degree-regular triangulation is one in which each vertex has iden- tical degree. Our main result is that any such triangulation of a (possibly non- compact) surface S is geometric, that is, it is combinatorially equivalent to a geodesic triangulation with respect to a constant curvature metric on S, and we list the possibilities. A key ingredient of the proof is to show that any two d-regular triangulations of the plane for d > 6 are combinatorially equivalent. The proof of this uniqueness result, which is of independent interest, is based on an inductive argument involving some combinatorial topology. 1. Introduction A triangulation of a surface S is an embedded graph whose complementary regions are faces bordered by exactly three edges (see x2 for a more precise definition). Such a triangulation is d-regular if the valency of each vertex is exactly d, and geometric if the triangulation are geodesic segments with respect to a Riemannian metric of constant curvature on S, such that each face is an equilateral triangle. Moreover, two triangulations G1 and G2 of S are combinatorially equivalent if there is a homeomorphism h : S ! S that induces a graph isomorphism from G1 to G2. The existence of such degree-regular geometric triangulations on the simply- connected model spaces (S2; R2 and H2) is well-known. Indeed, a d-regular geomet- ric triangulation of the hyperbolic plane H2 is generated by the Schwarz triangle group ∆(3; d) of reflections across the three sides of a hyperbolic triangle (see x3.2 for a discussion).
    [Show full text]
  • Local Symmetry Preserving Operations on Polyhedra
    Local Symmetry Preserving Operations on Polyhedra Pieter Goetschalckx Submitted to the Faculty of Sciences of Ghent University in fulfilment of the requirements for the degree of Doctor of Science: Mathematics. Supervisors prof. dr. dr. Kris Coolsaet dr. Nico Van Cleemput Chair prof. dr. Marnix Van Daele Examination Board prof. dr. Tomaž Pisanski prof. dr. Jan De Beule prof. dr. Tom De Medts dr. Carol T. Zamfirescu dr. Jan Goedgebeur © 2020 Pieter Goetschalckx Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University This work is licensed under a “CC BY 4.0” licence. https://creativecommons.org/licenses/by/4.0/deed.en In memory of John Horton Conway (1937–2020) Contents Acknowledgements 9 Dutch summary 13 Summary 17 List of publications 21 1 A brief history of operations on polyhedra 23 1 Platonic, Archimedean and Catalan solids . 23 2 Conway polyhedron notation . 31 3 The Goldberg-Coxeter construction . 32 3.1 Goldberg ....................... 32 3.2 Buckminster Fuller . 37 3.3 Caspar and Klug ................... 40 3.4 Coxeter ........................ 44 4 Other approaches ....................... 45 References ............................... 46 2 Embedded graphs, tilings and polyhedra 49 1 Combinatorial graphs .................... 49 2 Embedded graphs ....................... 51 3 Symmetry and isomorphisms . 55 4 Tilings .............................. 57 5 Polyhedra ............................ 59 6 Chamber systems ....................... 60 7 Connectivity .......................... 62 References
    [Show full text]
  • Wythoffian Skeletal Polyhedra
    Wythoffian Skeletal Polyhedra by Abigail Williams B.S. in Mathematics, Bates College M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Dedication I would like to dedicate this dissertation to my Meme. She has always been my loudest cheerleader and has supported me in all that I have done. Thank you, Meme. ii Abstract of Dissertation Wythoff's construction can be used to generate new polyhedra from the symmetry groups of the regular polyhedra. In this dissertation we examine all polyhedra that can be generated through this construction from the 48 regular polyhedra. We also examine when the construction produces uniform polyhedra and then discuss other methods for finding uniform polyhedra. iii Acknowledgements I would like to start by thanking Professor Schulte for all of the guidance he has provided me over the last few years. He has given me interesting articles to read, provided invaluable commentary on this thesis, had many helpful and insightful discussions with me about my work, and invited me to wonderful conferences. I truly cannot thank him enough for all of his help. I am also very thankful to my committee members for their time and attention. Additionally, I want to thank my family and friends who, for years, have supported me and pretended to care everytime I start talking about math. Finally, I want to thank my husband, Keith.
    [Show full text]
  • Hyperbolization of Euclidean Ornaments
    Hyperbolization of Euclidean Ornaments Martin von Gagern & J¨urgen Richter-Gebert Lehrstuhl f¨ur Geometrie und Visualisierung Zentrum Mathematik, Technische Universit¨at M¨unchen, Germany [email protected], [email protected] Submitted: Oct 30, 2008; Accepted: May 5, 2009; Published: May 22, 2009 Mathematics Subject Classification: Primary 51M09, 52C26; Secondary 51F15, 53A30, 53A35 Abstract In this article we outline a method that automatically transforms an Euclidean ornament into a hyperbolic one. The necessary steps are pattern recognition, sym- metry detection, extraction of a Euclidean fundamental region, conformal deforma- tion to a hyperbolic fundamental region and tessellation of the hyperbolic plane with this patch. Each of these steps has its own mathematical subtleties that are discussed in this article. In particular, it is discussed which hyperbolic symmetry groups are suitable generalizations of Euclidean wallpaper groups. Furthermore it is shown how one can take advantage of methods from discrete differential geometry in order to perform the conformal deformation of the fundamental region. Finally it is demonstrated how a reverse pixel lookup strategy can be used to obtain hyperbolic images with optimal resolution. 1 Introduction Ornaments and regular tiling patterns have a long tradition in human culture. Their ori- gins reach back to ancient cultures like China, Egypt, Greece and the Islam. Each of these cultures has its own specific way to create symmetric decorative patterns. Mathemati- cally the underlying structures are well understood. Taking only the pattern into account (and neglecting possible color symmetries) there are just 24 sporadic groups and 2 infi- nite classes of groups governing the symmetry structure of plane images.
    [Show full text]
  • Definitions Topology/Geometry of Geodesics
    Definitions Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 Magnus J. Wenninger 28-29 June 2003 Introduction • Definitions • Topology – Goldberg’s polyhedra – Classes of Geodesic polyhedra – Triangular tessellations – Diamond tessellations – Hexagonal tessellations • Geometry – Methods Definitions • Parent Polyhedra Definitions • Planer form of the Parent Polyhedra • Spherical form of the Parent Polyhedra Definitions • Polyhedron Face (F) – Any of the plane or spherical polygons making up the surface of the polyhedron F F Definitions • Principle Triangle (PT) – One of the triangles of the parent polyhedron used in development of the three-way grid of the geodesic form. – It may be planer (PPT) or it PPT may be spherical (PST) PPT PST Definitions • Schwarz Triangle (ST) – “A problem proposed and solved by Schwarz in 1873: to find all spherical triangles which lead, by repeated reflection in their sides, to a set of congruent triangles ST covering the sphere a finite number of times.” – There are only 44 kinds of Schwarz triangles. Definitions • Great Circle Great Circle – Any plane passing through the center of a sphere its intersection with the surface of the sphere is a Great Circle and is the largest circle on the sphere. – All other circles on the surface of the sphere are referred to as Lesser Circles. Circle Center and Sphere Center Definitions cf α Ω • Geodesic Geometrical β Elements – Face angle (α) – Dihedral angle (β) – Central angle (δ) – Axial angle (Ω) – Chord factor (cf) δ Sphere Center (0,0,0) Definitions • Face Angle (Alpha α) – An angle formed by two chords meeting in a common point and lying in a plane that is the face of the α geodesic polyhedron.
    [Show full text]
  • Dictionary of Mathematics
    Dictionary of Mathematics English – Spanish | Spanish – English Diccionario de Matemáticas Inglés – Castellano | Castellano – Inglés Kenneth Allen Hornak Lexicographer © 2008 Editorial Castilla La Vieja Copyright 2012 by Kenneth Allen Hornak Editorial Castilla La Vieja, c/o P.O. Box 1356, Lansdowne, Penna. 19050 United States of America PH: (908) 399-6273 e-mail: [email protected] All dictionaries may be seen at: http://www.EditorialCastilla.com Sello: Fachada de la Universidad de Salamanca (ESPAÑA) ISBN: 978-0-9860058-0-0 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage or retrieval system without permission in writing from the author Kenneth Allen Hornak. Reservados todos los derechos. Quedan rigurosamente prohibidos la reproducción de este libro, el tratamiento informático, la transmisión de alguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros medios, sin el permiso previo y por escrito del autor Kenneth Allen Hornak. ACKNOWLEDGEMENTS Among those who have favoured the author with their selfless assistance throughout the extended period of compilation of this dictionary are Andrew Hornak, Norma Hornak, Edward Hornak, Daniel Pritchard and T.S. Gallione. Without their assistance the completion of this work would have been greatly delayed. AGRADECIMIENTOS Entre los que han favorecido al autor con su desinteresada colaboración a lo largo del dilatado período de acopio del material para el presente diccionario figuran Andrew Hornak, Norma Hornak, Edward Hornak, Daniel Pritchard y T.S. Gallione. Sin su ayuda la terminación de esta obra se hubiera demorado grandemente.
    [Show full text]
  • Symmetrical-Geometry Constructions Defining Helicoidal Biostructures
    Symmetrical-geometry constructions defining helicoidal biostructures. The case of alpha- helix. Mikhail Samoylovicha and Alexander Talisb a Central Scientific Research Institute of Technology "Technomash", Moscow b A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow Correspondence email: [email protected] Abstract The chain of algebraic geometry constructions permits to transfer from the minimal surface with zero instability index, and from the lattice over the ring of cyclotomic integers to the tetra-block helix. The tetra-block is the 7-vertex joining of four tetrahedra sharing common faces; it is considered as a building unit for structures approximated by the chains of regular tetrahedra. The minimality condition of the 7 – vertex tetrablock as a building unit is the consequence of its unique mapping by the Klein’s quartic (which is characterized by the minimal hyperbolic Schwartz triangle) into the minimal finite projective geometry. The topological stability of this helix provided by the pitch to radius ratio H/R of 2π/τ2 (τ is the golden section) and by the local rotation axis order of 40/11 = 40 exp(-H/R). These parameters determine the helix of Сα atoms inside the α – helix with the accuracy of up to 2%. They explain also the bonding relationship i→ i+4 between the i-th amide group and the (i+4)-th carbonil group of the residues in the peptide chain and the observed value of the average segment length of the α-helix which is equal to 11 residues. The tetra-block helix with the N, Сα, С′, О, H atoms in the symmetrically selected positions, determines the structure of the α – helix.
    [Show full text]
  • Uniform Solution for Uniform Polyhedra*
    Uniform Solution for Uniform Polyhedra* Zvi Har'El Department of Mathematics Technion − Israel Institute of Technology Haifa32000, Israel E-Mail: [email protected] ABSTRACT An arbitrary precision solution of uniform polyhedra and their duals is presented. The solution is uniform for all polyhedra givenbytheir kaleidoscopic construction, with no need to ‘examine’ each polyhedron separately. 1. Introduction. Uniform polyhedra, whose faces are regular and vertices equivalent, have been studied since antiq- uity.Best known are the fivePlatonic solids and the 13 Archimedean solids. Wethen have the twoinfinite families of uniform prisms and antiprisms. Allowing for star faces or vertices, we have the four Kepler- Poinsot regular star polyhedra and a rowof53nonconvex uniform polyhedra discovered in the 1880s and the 1930s. The complete set appeared in print for the first time in 1953, in a paper by Coxeter,Longuet- Higgins and Miller ([CLM], see also [S]). Magnus Wenninger’sdelightful book Polyhedron Models [W1], which appeared in 1971 but since has been reprinted manytimes, contains photos and building instructions for cardboard models of these 75 uniform polyhedra. Reading the book, makes the mathematically minded reader wonder: Howare the data for the models obtained? For example, what makes 1. 1600030093 the proper circumradius for a great ret- rosnub icosidodecahedron1 with edge length two? It is easy to check, that these data originate in [CLM, Table 7]. Some of the circumradii are exact, as theyare giveninterms of integers and radicals only,but few, asthe one mentioned above,are givenapprox- imately,toten decimal digits. This may be considered perhaps accurate enough, but if one wants to incor- porate polyhedra in a computer modeling software (cf.
    [Show full text]
  • Fuchsian Triangle Groups and Grothendieck Dessins. Variations on a Theme of Belyi
    Commun. Math. Phys. 163, 605~527 (1994) Communications in Mathematical Physics Springer-Verlag 1994 Fuchsian Triangle Groups and Grothendieck Dessins. Variations on a Theme of Belyi Paula Beazley Cohen 1, Claude Itzykson 2, Jiirgen Wolfart 3 1 URA 747 CNRS, Collbge de Prance, 3 rue d'Ulm, F-75231 Paris Cedex 05, France 2 Service de Physique Th6orique, Centre d'6tudes de Saclay, F-91191 Gif-sur-Yvette Cedex, France 3 Math. Seminar der Univ., Robert-Mayer-Strasse 10, D-60054 Frankfurt a.M., Germany Received: 13 May 1993/in revised form: 22 September 1993 Abstract: According to a theorem of Belyi, a smooth projective algebraic curve is defined over a number field if and only if there exists a non-constant element of its function field ramified only over 0, 1 and ec. The existence of such a Belyi function is equivalent to that of a representation of the curve as a possibly compactified quotient space of the Poincar6 upper half plane by a subgroup of finite index in a Fuchsian triangle group. On the other hand, Fuchsian triangle groups arise in many contexts, such as in the theory of hypergeometric functions and certain triangular billiard problems, which would appear at first sight to have no relation to the Galois problems that motivated the above discovery of Belyi. In this note we review several results related to Belyi's theorem and we develop certain aspects giving examples. For preliminary accounts, see the preprint [Wol], the conference proceedings article [Baultz] and the "Comptes Rendus" note [CoWo2]. 0. Introduction While several years ago the moduli space of compact Riemann surfaces seemed to be as remote a subject of consideration in theoretical physics as possible, it plays nowadays a considerable role from various points of view.
    [Show full text]
  • On Arithmetic Properties of Fuchsian Groups and Riemann Surfaces
    On arithmetic properties of Fuchsian groups and Riemann surfaces Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn vorgelegt von Robert Anselm Kucharczyk aus Essen Bonn, im Oktober 2014 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn 1. Gutachterin: Prof. Dr. Ursula Hamenst¨adt 2. Gutachter: Prof. Dr. Jakob Stix (Goethe-Universit¨at Frankfurt) Tag der Promotion: 12. Januar 2015 Erscheinungsjahr: 2015 On arithmetic properties of Fuchsian groups and Riemann surfaces Contents 1 Introduction 7 1.1 Three ways to be arithmetic . .7 1.1.1 Riemann . .7 1.1.2 Jacobi . .8 1.1.3 Fuchs . .8 1.2 Interaction . .9 1.2.1 A simple example . .9 1.2.2 Bely˘ı’stheorem, dessins d’enfants and triangle groups . 11 1.2.3 Arithmetic and semi-arithmetic Fuchsian groups . 13 1.3 A summary of our results . 13 1.4 Acknowledgements . 15 ˆ 2 On copies of the absolute Galois group in Out F2 17 2.1 Introduction . 17 2.2 Some anabelian geometry . 18 2.3 The Galois actions . 20 2.4 Concluding remarks . 23 3 Jarden’s property and Hurwitz curves 25 3.1 Introduction and statement of results . 25 3.1.1 Hurwitz curves and translation surfaces. 25 3.1.2 Jarden’s property. 26 3.2 Jarden’s property: the proof . 27 3.3 Galois actions . 33 4 Modular embeddings and rigidity for Fuchsian groups 37 4.1 Introduction . 37 4.2 Traces on PSL(2) and M¨obiustransformations .
    [Show full text]