The I Nternationa I Congress of Mathematicians

Total Page:16

File Type:pdf, Size:1020Kb

The I Nternationa I Congress of Mathematicians ____ i 1 Proceedings of ~------ the I nternationa I Congress of Mathematicians August 3-ll, 1994 ZUrich, Switzerland Birkhauser Verlag Basel · Boston · Berlin Editor: S. D. Chatterji EPFL Departement de Mathematiques I 015 Lausanne Switzerland The logo for ICM 94 was designed by Georg Staehelin, Bachweg 6, 8913 Ottenbach, Switzerland. A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Deutsche Bibliothek Cataloging-in-Publication Data International Congress of Mathematicians <1994, Ziirich>: Proceedings of the International Congress of Mathematicians 1994: August 3- I I, 1994, Zurich, Switzerland I [Ed.: S.D. Chatterji]. - Basel ; Boston ; Berlin : Birkhauser. ISBN 978-3-0348-9897-3 ISBN 978-3-0348-9078-6 (eBook) DOI 10.1007/978-3-0348-9078-6 NE: S. D. Chauerji [Hrsg.] Vol. I ( 1995) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations. broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 1995 B irkhauser Verlag Softcover reprint of the hardcover 1st edition 1995 P.O. Box 133 CH-4010 Basel Switzerland Printed on acid-free paper produced from chlorine-free pulp. TCF oo Layout, typesetting by mathScreen online, Allschwil 98765432 1 Table of Contents Volume I Preface vii Past Congresses viii Past Fields Medalists and Rolf Nevanlinna Prize Winners ix Organization of the Congress . xi The Organizing Committee of the Congress . xiii List of Donors . XV Opening Ceremonies xvii Closing Ceremonies xxxi Scientific Program xxxvii Invited One-Hour Addresses at the Plenary Sessions Invited Forty-Five Minute Addresses at the Section Meetings List of Participants (Ordinary Members) xlv Membership by Country . lxx The Work of the Fields Medalists and the Rolf Nevanlinna Prize Winner . 1 Invited One-Hour Plenary Addresses . 29 Invited Forty-Five Minute Addresses at the Section Meetings 267 Section 1. Logic .. 269 Section 2. Algebra 298 Section 3. Number theory 363 Section 4. Geometry 443 Section 5. Topology. 548 Section 6. Algebraic geometry 648 Author Index . 716 vi Table of Contents Volume II Table of Contents . v Scientific Program vii Invited Forty-Five Minute Addresses at the Section Meetings (cont.) 719 Section 7. Lie groups and representations 721 Section 8. Real and complex analysis . 817 Section 9. Operator algebras and functional analysis 922 Section 10. Probability and statistics . 980 Section 11. Partial differential equations 1055 Section 12. Ordinary differential equations and dynamical systems . 1159 Section 13. Mathematical physics 1238 Section 14. Combinatorics . 1333 Section 15. Mathematical aspects of computer science 1395 Section 16. Numerical analysis and scientific computing 1420 Section 17. Applications of mathematics in the sciences 1473 Section 18. Teaching and popularization of mathematics 1546 Section 19. History of mathematics 1568 Author Index . 1604 Preface The Proceedings of the International Congress of Mathematicians 1994, held in Zurich from August 3rd to 11th, 1994, are published in two volumes. Volume I con­ tains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1-6. Volume II contains the invited addresses for Section Meetings 7-19. A complete author index is included in both volumes. The five invited lectures organized by the ICMI (International Commission on Mathematical Instruction) and the five invited lectures organized by the ICHM (In­ ternational Commission on History of Mathematics) which were a part of the sci­ entific programme have not been included in these Proceedings. Also not included are the short communications presented in poster sessions during the Congress; summaries of those communications which were received in due time were printed in a separate volume Abstracts of Short Communications; another volume contain­ ing the available abstracts of the plenary addresses, the invited section lectures and the ICMI and ICHM lectures was also prepared. Both volumes of abstracts were given to all ordinary members at the time of their registration at the Congress. Lausanne, April 1995 The Editor Past Congresses 1897 Zurich 1900 Paris 1904 Heidelberg 1908 Roma 1912 Cambridge, UK 1920 Strasbourg 1924 Toronto 1928 Bologna 1932 Zurich 1936 Oslo 1950 Cambridge, USA 1954 Amsterdam 1958 Edinburgh 1962 Stockholm 1966 Moskva 1970 Nice 1974 Vancouver 1978 Helsinki 1982 Warszawa (held in 1983) 1986 Berkeley 1990 Kyoto Past Fields Medalists and Rolf N evanlinna Prize Winners Recipients of Fields Medals 1936 1974 Lars V. Ahlfors Enrico Bombieri Jesse Douglas David B. Mumford 1950 1978 Laurent Schwartz Pierre R. Deligne Atle Selberg Charles F. Fefferman Grigorii A. Margulis 1954 Daniel G. Quillen K unihiko Kodaira Jean-Pierre Serre 1982 Alain Connes 1958 William P. Thurston Klaus F. Roth Shing-Thng Yau Rene Thorn 1986 1962 Simon K. Donaldson Lars Hi:irmander Gerd Faltings John W. Milnor Michael H. Freedman 1966 1990 Michael F. Atiyah Vladimir G. Drinfeld Paul J. Cohen Vaughan F. R. Jones Alexander Grothendieck Shigefumi Mori Stephen Smale Edward Witten 1970 Alan Baker Heisuke Hironaka Sergei P. N ovikov John G. Thompson Rolf Nevanlinna Prize Winners 1982 Robert E. Tarjan 1986 Leslie G. Valiant 1990 Alexander A. Razborov The Kongresshaus in Zurich Organization of the Congress The 1994 International Congress of Mathematicians (ICM) was held in Zurich, Switzerland, at the invitation of the Swiss Mathematical Society (SMS), repre­ senting the Swiss mathematical community, and under the auspices of the Inter­ national Mathematical Union (IMU) whose official approval was announced at the 1990 ICM held in Kyoto. The SMS invitation was made possible by the support promised at the very outset by the appropriate authorities of the Federal Govern­ ment, the Government of the Canton of Zurich and the Municipality of the city of Zurich. Financial help given by these and other public and academic bodies as well as the donations of many private corporations and individuals were crucial for the realization of the Congress; a list of the donors is given in these Proceedings. Naturally, the registration fees paid by the participants of the Congress were an essential element in financing the organization. The members of the Organizing Committee are listed in the following pages; also listed are the members of the Honorary Committee, the Finance Committee, the Scientific Committee and the Administrative Staff. The scientific program of the Congress was in the hands of the Programme Committee appointed by the IMU. Its members were Louis Nirenberg (Chair­ man), Simon K. Donaldson, Vladimir Drinfeld, Pierre de laHarpe, Richard Karp, Hanspeter Kraft, Andrew J. Majda, Michel Raynaud andY. Sinai. Recipients of the Fields Medals and the Rolf Nevanlinna Prize were selected by the respective committees appointed by the IMU. The Fields Medal Commit­ tee consisted of David Mumford (Chairman), Masaki Kashiwara, Barry Mazur, Alexander Schrijver, Dennis Sullivan, Jacques Tits and S. R. S. Varadhan. The Rolf Nevanlinna Prize Committee consisted of Jacques-Louis Lions (Chairman), H. W. Lenstra, R. Tarjan, M. Yamaguti and J. Matiyasevic. The Organizing Committee was responsible for all the other activities of the Congress. MCI Travel (Zurich) handled accomodation and related arrangements as the official travel agency of the Organizing Committee. The opening and the closing ceremonies as well as all the one-hour Plenary Addresses were held in the Zurich KongreBhaus. The forty-five minute section lectures were organized in various parallel sessions in the auditoria of the ETH Zurich and the University of Zurich. There were 16 plenary lectures and 148 sec­ tion lectures on the program. In addition, there were five lectures organized by the International Commission on Mathematical Instruction and five lectures organized by the International Commission on the History of Mathematics which were sched­ uled along with the section lectures. Poster sessions arranged at the ETH Zurich permitted the presentation of numerous short communications; summaries of 782 of these, received before a fixed deadline, were printed in a separate abstracts volume and a further 100 additional contributions were actually presented at the xii Organization of the Congress poster sessions. There were also several informal seminars as well as a symposium organized on Thursday, August 4, by the Association for Women in Mathematics and the European Women in Mathematics. In the afternoon of August 3, lectures reporting on the works of the Fields Medalists and the N evanlinna Prize Winner were presented; an account will be found in these Proceedings. A total of 2476 participants from 92 countries along with 363 accompanying members attended the Congress; 77 exhibitors were present. The Organizing Committee was able to give financial support for the partic­ ipation of the prize winners, the officials of the IMU, 19 of the invited speakers and some 200 participants from Eastern Europe. The IMU, through its special Development Fund, paid the travel expenses of 79 young scholars from developing countries whose living expenses were covered by the Organizing Committee. All participants were invited to a number of social events. A reception was offered by the city of Zurich in the Kongrel3haus on the evening of the opening day of the Congress, on Wednesday, August 3. A Buffet-Banquet was given in the Irchel campus of the Universiy of Zurich, on the evening of Friday, August 5. Tuesday evening, August 9, a violin recital by Hansheinz Schneeberger, accompanied by Gerard Wyss, in the Tonhalle (Kongrel3haus) and a performance by the pantomime group Mummenschanz together with the folk music group Trio da Besto in the Kongrel3saal (Kongrel3haus) were proposed. Evening reception at Irchel Campus of the University of Zurich The Organizing Committee of the Congress Honorary Committee Mrs.
Recommended publications
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Stable Real Cohomology of Arithmetic Groups
    ANNALES SCIENTIFIQUES DE L’É.N.S. ARMAND BOREL Stable real cohomology of arithmetic groups Annales scientifiques de l’É.N.S. 4e série, tome 7, no 2 (1974), p. 235-272 <http://www.numdam.org/item?id=ASENS_1974_4_7_2_235_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1974, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. sclent. EC. Norm. Sup., 46 serie, t. 7, 1974, p. 235 a 272. STABLE REAL COHOMOLOGY OF ARITHMETIC GROUPS BY ARMAND BOREL A Henri Cartan, a Poccasion de son 70® anniversaire Let r be an arithmetic subgroup of a semi-simple group G defined over the field of rational numbers Q. The real cohomology H* (T) of F may be identified with the coho- mology of the complex Q^ of r-invariant smooth differential forms on the symmetric space X of maximal compact subgroups of the group G (R) of real points of G. Let 1^ be the space of differential forms on X which are invariant under the identity component G (R)° of G (R). It is well-known to consist of closed (in fact harmonic) forms, whence a natural homomorphism^* : 1^ —> H* (T).
    [Show full text]
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Institut Des Hautes Ét Udes Scientifiques
    InstItut des Hautes É t u d e s scIentIfIques A foundation in the public interest since 1981 2 | IHES IHES | 3 Contents A VISIONARY PROJECT, FOR EXCELLENCE IN SCIENCE P. 5 Editorial P. 6 Founder P. 7 Permanent professors A MODERN-DAY THELEMA FOR A GLOBAL SCIENTIFIC COMMUNITY P. 8 Research P. 9 Visitors P. 10 Events P. 11 International INDEPENDENCE AND FREEDOM, ­­ THE INSTITUTE’S TWO OPERATIONAL PILLARS P. 12 Finance P. 13 Governance P. 14 Members P. 15 Tax benefits The Marilyn and James Simons Conference Center The aim of the Foundation known as ‘Institut des Hautes Études Scientifiques’ is to enable and encourage theoretical scientific research (…). [Its] activity consists mainly in providing the Institute’s professors and researchers, both permanent and invited, with the resources required to undertake disinterested IHES February 2016 Content: IHES Communication Department – Translation: Hélène Wilkinson – Design: blossom-creation.com research. Photo Credits: Valérie Touchant-Landais / IHES, Marie-Claude Vergne / IHES – Cover: unigma All rights reserved Extract from the statutes of the Institut des Hautes Études Scientifiques, 1958. 4 | IHES IHES | 5 A visionary project, for excellence in science Editorial Emmanuel Ullmo, Mathematician, IHES Director A single scientific program: curiosity. A single selection criterion: excellence. The Institut des Hautes Études Scientifiques is an international mathematics and theoretical physics research center. Free of teaching duties and administrative tasks, its professors and visitors undertake research in complete independence and total freedom, at the highest international level. Ever since it was created, IHES has cultivated interdisciplinarity. The constant dialogue between mathematicians and theoretical physicists has led to particularly rich interactions.
    [Show full text]
  • What Are Lyapunov Exponents, and Why Are They Interesting?
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 1, January 2017, Pages 79–105 http://dx.doi.org/10.1090/bull/1552 Article electronically published on September 6, 2016 WHAT ARE LYAPUNOV EXPONENTS, AND WHY ARE THEY INTERESTING? AMIE WILKINSON Introduction At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.”1 Although it is not explicitly mentioned in this citation, there is a second unify- ing concept in Avila’s work that is closely tied with renormalization: Lyapunov (or characteristic) exponents. Lyapunov exponents play a key role in three areas of Avila’s research: smooth ergodic theory, billiards and translation surfaces, and the spectral theory of 1-dimensional Schr¨odinger operators. Here we take the op- portunity to explore these areas and reveal some underlying themes connecting exponents, chaotic dynamics and renormalization. But first, what are Lyapunov exponents? Let’s begin by viewing them in one of their natural habitats: the iterated barycentric subdivision of a triangle. When the midpoint of each side of a triangle is connected to its opposite vertex by a line segment, the three resulting segments meet in a point in the interior of the triangle. The barycentric subdivision of a triangle is the collection of 6 smaller triangles determined by these segments and the edges of the original triangle: Figure 1. Barycentric subdivision. Received by the editors August 2, 2016.
    [Show full text]
  • Twenty Female Mathematicians Hollis Williams
    Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg .............................................................................................................................
    [Show full text]
  • Arxiv:1402.0409V1 [Math.HO]
    THE PICARD SCHEME STEVEN L. KLEIMAN Abstract. This article introduces, informally, the substance and the spirit of Grothendieck’s theory of the Picard scheme, highlighting its elegant simplicity, natural generality, and ingenious originality against the larger historical record. 1. Introduction A scientific biography should be written in which we indicate the “flow” of mathematics ... discussing a certain aspect of Grothendieck’s work, indicating possible roots, then describing the leap Grothendieck made from those roots to general ideas, and finally setting forth the impact of those ideas. Frans Oort [60, p. 2] Alexander Grothendieck sketched his proof of the existence of the Picard scheme in his February 1962 Bourbaki talk. Then, in his May 1962 Bourbaki talk, he sketched his proofs of various general properties of the scheme. Shortly afterwards, these two talks were reprinted in [31], commonly known as FGA, along with his commentaries, which included statements of nine finiteness theorems that refine the single finiteness theorem in his May talk and answer several related questions. However, Grothendieck had already defined the Picard scheme, via the functor it represents, on pp.195-15,16 of his February 1960 Bourbaki talk. Furthermore, on p.212-01 of his February 1961 Bourbaki talk, he had announced that the scheme can be constructed by combining results on quotients sketched in that talk along with results on the Hilbert scheme to be sketched in his forthcoming May 1961 Bourbaki talk. Those three talks plus three earlier talks, which prepare the way, were also reprinted in [31]. arXiv:1402.0409v1 [math.HO] 3 Feb 2014 Moreover, Grothendieck noted in [31, p.
    [Show full text]
  • Continuity of the Lyapunov Exponents of Linear Cocycles
    Continuity of the Lyapunov Exponents of Linear Cocycles Publicações Matemáticas Continuity of the Lyapunov Exponents of Linear Cocycles Pedro Duarte Universidade de Lisboa Silvius Klein PUC-Rio 31o Colóquio Brasileiro de Matemática Copyright 2017 by Pedro Duarte e Silvius Klein Direitos reservados, 2017 pela Associação Instituto Nacional de Matemática Pura e Aplicada - IMPA Estrada Dona Castorina, 110 22460-320 Rio de Janeiro, RJ Impresso no Brasil / Printed in Brazil Capa: Noni Geiger / Sérgio R. Vaz 31o Colóquio Brasileiro de Matemática Álgebra e Geometria no Cálculo de Estrutura Molecular - C. Lavor, N. Maculan, M. Souza e R. Alves Continuity of the Lyapunov Exponents of Linear Cocycles - Pedro Duarte e Silvius Klein Estimativas de Área, Raio e Curvatura para H-superfícies em Variedades Riemannianas de Dimensão Três - William H. Meeks III e Álvaro K. Ramos Introdução aos Escoamentos Compressíveis - José da Rocha Miranda Pontes, Norberto Mangiavacchi e Gustavo Rabello dos Anjos Introdução Matemática à Dinâmica de Fluídos Geofísicos - Breno Raphaldini, Carlos F.M. Raupp e Pedro Leite da Silva Dias Limit Cycles, Abelian Integral and Hilbert’s Sixteenth Problem - Marco Uribe e Hossein Movasati Regularization by Noise in Ordinary and Partial Differential Equations - Christian Olivera Topological Methods in the Quest for Periodic Orbits - Joa Weber Uma Breve Introdução à Matemática da Mecânica Quântica - Artur O. Lopes Distribuição: IMPA Estrada Dona Castorina, 110 22460-320 Rio de Janeiro, RJ e-mail: [email protected] http://www.impa.br ISBN: 978-85-244-0433-7 i \notes" | 2017/5/29 | 19:08 | page i | #1 i i i Contents Preface 1 1 Linear Cocycles 7 1.1 The definition and examples of ergodic systems .
    [Show full text]
  • Opening Ceremony
    Opening ceremony Sir John Ball, President of the International Mathematical Union Your Majesty, Señor Ruiz Gallardón, Señora Cabrera, Señora Aguirre, Professor Manuel de León, Distinguished guests, Ladies and gentlemen, ¡Bienvenidos al ICM dos mil seis! Welcome to ICM 2006, the 25th International Congress of Mathematicians, and the first ICM to be held in Spain. We offer our heartfelt thanks to the Spanish nation, so rich in history and culture, for its invitation to Madrid. We greatly appreciate that His Majesty King Juan Carlos is honouring mathematics by His presence here today. While celebrating this feast of mathematics, with the many talking-points that it will provide, it is worth reflecting on the ways in which our community functions. Mathematics is a profession of high standards and integrity. We freely discuss our work with others without fear of it being stolen, and research is communicated openly prior to formal publication. Editorial procedures are fair and proper, and work gains its reputation through merit and not by how it is promoted. These are the norms operated by the vast majority of mathematicians. The exceptions are rare, and they are noticed. Mathematics has a strong record of service, freely given. We see this in the time and care spent in the refereeing of papers and other forms of peer review. We see it in the running of mathematical societies and journals, in the provision of free mathematical software and teaching resources, and in the various projects world-wide to improve electronic access to the mathematical literature, old and new. We see it in the nurturing of students beyond the call of duty.
    [Show full text]
  • All That Math Portraits of Mathematicians As Young Researchers
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep.
    [Show full text]
  • Algebraic Geometry of Topological Spaces I 3
    ALGEBRAIC GEOMETRY OF TOPOLOGICAL SPACES I GUILLERMO CORTINAS˜ AND ANDREAS THOM Abstract. We use techniques from both real and complex algebraic geometry to study K- theoretic and related invariants of the algebra C(X) of continuous complex-valued functions on a compact Hausdorff topological space X. For example, we prove a parametrized version of a theorem of Joseph Gubeladze; we show that if M is a countable, abelian, cancella- tive, torsion-free, seminormal monoid, and X is contractible, then every finitely generated n projective module over C(X)[M] is free. The particular case M = N0 gives a parametrized version of the celebrated theorem proved independently by Daniel Quillen and Andrei Suslin that finitely generated projective modules over a polynomial ring over a field are free. The conjecture of Jonathan Rosenberg which predicts the homotopy invariance of the negative algebraic K-theory of C(X) follows from the particular case M = Zn. We also give alge- braic conditions for a functor from commutative algebras to abelian groups to be homotopy invariant on C∗-algebras, and for a homology theory of commutative algebras to vanish on C∗-algebras. These criteria have numerous applications. For example, the vanishing cri- terion applied to nil-K-theory implies that commutative C∗-algebras are K-regular. As another application, we show that the familiar formulas of Hochschild-Kostant-Rosenberg and Loday-Quillen for the algebraic Hochschild and cyclic homology of the coordinate ring of a smooth algebraic variety remain valid for the algebraic Hochschild and cyclic homology of C(X). Applications to the conjectures of Be˘ılinson-Soul´eand Farrell-Jones are also given.
    [Show full text]