Issues in Brief Five Challenges to the Future of Transboundary Water Governance Leeann M

Total Page:16

File Type:pdf, Size:1020Kb

Issues in Brief Five Challenges to the Future of Transboundary Water Governance Leeann M 029 AUGUST 2014 ISSUES IN BRIEF Five Challenges to the Future of Transboundary Water Governance Leeann M. Sullivan Along the banks of the Okavango River in Southern Africa, elephants, zebras, and hippopotami forage for food and sip from the cool, untainted waters. Fish, crocodiles, and birds take refuge in papyrus plants, and lions stalk their prey among the tall reed grasses that grow waist-high in the wet season. However, it is not only wildlife that inhabits the area surrounding the Okavango. Humans also live in this delicate ecosystem — and their numbers are increasing. The population in the river basin is projected to increase by more than 40 percent by 2050, and resource scarcity is a major concern (OKACOM 2014). This issue is not unique to the Okavango. Throughout the developing and industrialized world, water Leeann Sullivan was a 2013 managers are making tough decisions regarding the distribution and conservation of this vital, Graduate Summer Fellow with the Frederick S. Pardee Center life-sustaining resource. for the Study of the Longer- In recent decades, Range Future. She earned “ Lessons learned from the integration of her M.A. in International community-based Relations and Environmental programs have management systems in the Okavango ... Policy from Boston University flourished as efficient could highlight key components of in 2014, and was the models for interstate recipient of the Department river management Award in Excellence for sustainable water management for (Mbaiwa 2004). International Relations. Her the longer-range future.” research focuses on resource These organizations management in large river — hybrids between basins, and broadly considers traditional top-down forms of environmental governance and indigenous knowledge the political implications of systems — are often better positioned than state governments to address details involved human interactions with the in the complex management of international rivers (Kgathi 2002). Although localized water natural world. management schemes have been successful in recent decades, communities now face www.bu.edu/pardee basin-wide challenges that they cannot address alone. Transboundary institutions such as the Permanent Okavango River Basin Water Commission (OKACOM) are now integral to the planning and distribution of water between and within state boundaries. Rather than abandon community-based organizations, these regional groups must work with them to create a holistic framework for addressing challenges associated with allocation, financing, communication, and effective governance within and across borders. The integration of these two management systems is vital to the sustainable development of the Okavango Basin. Management of such a complex river system requires the active involvement of individuals who work at all levels, from local to global, to ensure that water-consumptive infrastructure development can occur alongside conservation-based development and ecotourism. Moreover, community involvement in resource management has benefits above and beyond economic development. Inclusion of stakeholders in the decision-making process for water resources increases local resilience to disaster events such as floods and droughts, promotes social wellbeing through increased access to resources and infrastructure, and fosters the development of a strong and independent civil society that demands political representation and accountability from governments. Lessons learned from the integration of management systems in the Okavango are largely transferable to other international river basins and could highlight key components of sustainable water management for the longer-range future. Experimental Governance in the Okavango Basin The Okavango River is the confluence of tributaries and streams from the Cubango and Cuito Rivers that begin in central Angola, cross the Namibian panhandle, and eventually deposit into the Kalahari Desert in Botswana. A full 1900 km in length, the Okavango results in one of the largest inland deltas in the world. Approximately 95 percent of the 9.4 billion cubic meters of water that flows through the river comes from precipitation in the Angolan catchment, which flows south for almost four months before reaching the delta. This time lag, which is due to a gradient of only 60-meters for the entire length of the river, is imperative to supporting life in the arid southern region. Here, water enters the Kalahari Desert during the dry winter months and creates an oasis that supports a diversity of wildlife, Figure 1: The Okavango River Basin plants, and human communities (Mendelsohn et al. 2010). While exact statistics on water use are difficult to obtain in the Okavango, it is clear that population growth and socioeconomic development are shifting the balance of supply and demand for water from the river. Roughly 900,000 people currently inhabit the basin: 57 percent reside in Angola, 25 percent in Namibia, and 18 percent in Botswana. Approximately 62 percent of inhabitants live in rural areas, while 38 percent live in urban centers along the river. Within a decade, 1.28 million people are projected to inhabit the basin, many of them flocking to urban areas such as Maun and Menongue where socio-economic development results in higher household water consumption per person. Houses in urban areas that are directly connected to water points use approximately 50 liters of water per person per day, while those in rural areas where residents must gather their water from distant wells use only 25. Agriculture is the most dominant use of water in the Okavango, accounting for 83 percent of total withdrawals. Other uses include livestock maintenance, mining, and water consumed at tourism facilities. Ecosystem and wildlife maintenance requires additional water reserves; however, these statistics are largely Data Source: Rivers Network (Map by Author) unknown at the basin-wide scale (FAO 2014). THE FREDERICK S. PARDEE CENTER FOR www.bu.edu/pardee 2 THE STUDY OF THE LONGER-RANGE FUTURE Excluding water for ecosystem maintenance, the uses listed above constitute only 90 million cubic meters, or one percent of available water supply. While the future of development in the basin remains uncertain, growth predictions for the coming century estimate that as much as 39 percent of available supply may be extracted. This is particularly worrying in an environment as variable as the Okavango, where seasonal floods and droughts result in dramatic changes to flow. Whether this level of development could be sustained during drought periods is uncertain at best, and may coincide with climate change driven increases in temperature that will raise the already high rate of evaporation in the delta. The resulting decrease in the value of downstream tourism would almost certainly be detrimental to communities, wildlife, and the ecosystem as a whole (FAO 2014). Table 1: Average Annual Okavango Basin Water Use (2008–2011), by Sector (1000s of m3) 80,000 78,545 70,000 60,000 50,000 40,000 30,000 32,564 20,000 10,000 3,935 2,810 0 0.1 0 Irrigation Livestock Household Mining Tourism Other Data Source: Food and Agricultural Organization of the United Nations, 2014 * Note: Tourism values include only water consumed at facilities and do not account for resources necessary to maintain wildlife populations. Coordination at the local, state, and regional level is necessary to manage the complexities of a river the size of the Okavango. To address this, Angola, Namibia, and Botswana came together in 1994 to create OKACOM, a regional advisory body that works with state governments and non-governmental organizations to collect and share information on the sustainable use of water in the basin. OKACOM is composed of a Commission tasked with creating policy recommendations, a Secretariat that facilitates information flow between groups, and three steering committees that conduct technical studies on issues related to the political institutions that manage water, the hydrology of the river, and biodiversity in the basin. Soon after the founding of OKACOM, conservation groups from Namibia and Botswana came forward to present the Commission with the Every River has its People Initiative, a program aimed at providing communities with the skills and tools to participate in the management process. Eager to garner stakeholder involvement, OKACOM agreed to recognize the authority of community trusts and offered observer status to representatives THE FREDERICK S. PARDEE CENTER FOR www.bu.edu/pardee THE STUDY OF THE LONGER-RANGE FUTURE 3 from these communities through a “basin-wide forum.” In the last decade, community- based water management groups — known in the Okavango as community trusts or water point committees — have become increasingly important to management. The groups are recognized by both OKACOM and state officials as legitimate governing bodies, and while important resource decisions are still made mostly at the state level, the trusts represent the interests of stakeholders in the policy process (Mbaiwa 2004). Alongside representation, community management groups in the Okavango have the dual objective of providing public services while also promoting programs for conservation. Since the advent of community-based water management in Namibia, rural access to drinkable water has increased from 75 percent to 91 percent and urban access has improved from 95 percent to 98 percent (UN Mission to Namibia 2011). Trusts educate communities on the sustainable use of resources,
Recommended publications
  • Ramsar Information Sheet
    Ramsar Information Sheet Text copy-typed from the original document. 1. Date this sheet was completed: 20.11.1996 2. Country: Botswana 3. Name of wetland: The Okavango Delta System 4. Geographical co-ordinates: The Okavango Delta System lies between Longitudes 21 degrees 45 minutes East and 23 degrees 53 minutes East; and Latitudes 18 degrees 15 minutes South and 20 degrees 45 minutes South. It includes the Okavango River, commonly referred to as the Pan handle; the entire Okavango Delta; Lake Ngami; and parts of the Kwando and Linyanti River systems that fall west of the western boundary of the Chobe National Park. The entire area is as depicted on the attached map. 5. Altitude: Generally between 930 metres and 1000 metres above sea level. 6. Area: Approximately 68 640 km² (6 864 000 hectares) 7. Overview Three main features characterise the region, the Okavango, the Kwando and Linyanti river system connected to the Okavango Delta through the Selinda spillway and the intervening and surrounding dryland areas. These features are located within the Okavango rift, a geological structure subject to tectonis control and infilled with Kahalari Group sediments, principally sand, up to 300 metres thick. The Delta is the most important of the above named features. It is an inland delta in a semi arid region in which inflow fluctuations result in large fluctuations in flooded area (10,000 - 16,000 km²), which is comprised of permanent swamp, seasonal swamp and intermittently flooded areas. Similar flooding takes place in the Kwando/Linyanti river system. This leads to high seasonal concentrations of birdlife and wildlife, giving the area a very high tourism potential.
    [Show full text]
  • Final Report: Southern Africa Regional Environmental Program
    SOUTHERN AFRICA REGIONAL ENVIRONMENTAL PROGRAM FINAL REPORT DISCLAIMER The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States government. FINAL REPORT SOUTHERN AFRICA REGIONAL ENVIRONMENTAL PROGRAM Contract No. 674-C-00-10-00030-00 Cover illustration and all one-page illustrations: Credit: Fernando Hugo Fernandes DISCLAIMER The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States government. CONTENTS Acronyms ................................................................................................................ ii Executive Summary ............................................................................................... 1 Project Context ...................................................................................................... 4 Strategic Approach and Program Management .............................................. 10 Strategic Thrust of the Program ...............................................................................................10 Project Implementation and Key Partners .............................................................................12 Major Program Elements: SAREP Highlights and Achievements .................. 14 Summary of Key Technical Results and Achievements .......................................................14 Improving the Cooperative Management of the River
    [Show full text]
  • The Hydrology of the Okavango Delta, Botswana—Processes, Data and Modelling
    Regional review: the hydrology of the Okavango Delta, Botswana—processes, data and modelling Christian Milzow & Lesego Kgotlhang & Peter Bauer-Gottwein & Philipp Meier & Wolfgang Kinzelbach Abstract The wetlands of the Okavango Delta accom- Introduction modate a multitude of ecosystems with a large diversity in fauna and flora. They not only provide the traditional The Okavango wetlands, commonly called the Okavango livelihood of the local communities but are also the basis Delta, are spread on top of an alluvial fan located in of a tourism industry that generates substantial revenue for northern Botswana, in the western branch of the East the whole of Botswana. For the global community, the African Rift Valley. Waters forming the Okavango River wetlands retain a tremendous pool of biodiversity. As the originate in the highlands of Angola, flow southwards, upstream states Angola and Namibia are developing, cross the Namibian Caprivi-Strip and eventually spread however, changes in the use of the water of the Okavango into the terminal wetlands on Botswanan territory cover- River and in the ecological status of the wetlands are to be ing the alluvial fan (Fig. 1). Whereas the climate in the expected. To predict these impacts, the hydrology of the headwater region is subtropical and humid with an annual Delta has to be understood. This article reviews scientific precipitation of up to 1,300 mm, it is semi-arid in Botswana work done for that purpose, focussing on the hydrological with precipitation amounting to only 450 mm/year in the modelling of surface water and groundwater. Research Delta area. High potential evapotranspiration rates cause providing input data to hydrological models is also over 95% of the wetland inflow and local precipitation to be presented.
    [Show full text]
  • Altimetry, SAR and GRACE Applied for Modelling of an Ungauged Catchment
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Hydrol. Earth Syst. Sci. Discuss., 7, 9123–9154, 2010 Hydrology and www.hydrol-earth-syst-sci-discuss.net/7/9123/2010/ Earth System HESSD doi:10.5194/hessd-7-9123-2010 Sciences 7, 9123–9154, 2010 © Author(s) 2010. CC Attribution 3.0 License. Discussions Altimetry, SAR and This discussion paper is/has been under review for the journal Hydrology and Earth GRACE applied for System Sciences (HESS). Please refer to the corresponding final paper in HESS modelling of an if available. ungauged catchment Combining satellite radar altimetry, SAR C. Milzow et al. surface soil moisture and GRACE total Title Page storage changes for model calibration Abstract Introduction and validation in a large ungauged Conclusions References catchment Tables Figures 1 2 1 C. Milzow , P. E. Krogh , and P. Bauer-Gottwein J I 1 Department of Environmental Engineering, Technical University of Denmark, J I 2800 Kgs. Lyngby, Denmark 2National Space Institute, Technical University of Denmark, 2100 Copenhagen, Denmark Back Close Received: 12 November 2010 – Accepted: 20 November 2010 Full Screen / Esc – Published: 30 November 2010 Correspondence to: C. Milzow ([email protected]) Printer-friendly Version Published by Copernicus Publications on behalf of the European Geosciences Union. Interactive Discussion 9123 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract HESSD The availability of data is a major challenge for hydrological modelling in large
    [Show full text]
  • Estimating Rainfall and Water Balance Over the Okavango River Baprovidedsin Byfor South Easthydrological Academic Libraries System (SEALS) Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Estimating rainfall and water balance over the Okavango River Baprovidedsin byfor South Easthydrological Academic Libraries System (SEALS) applications Julie Wilk, Dominic Kniveton, Lotta Andersson, Russell Layberry, Martin C. Todd, Denis Hughes, Susan Ringrose and Cornelis Vanderpost Department of Water and Environmental Studies, Linköping University, S-581 83 Linköping, Sweden Department of Physics Chemistry and Environmental Science, University of Sussex, Falmer, Brighton, UK Swedish Meteorological and Hydrological Institute, 601 76 Norrköping, Sweden University College of London, 26 Bedford Way, WC1H 0AP, London, UK Institute of Water Research, Rhodes University, Grahamstown, South Africa Harry Oppenheimer Okavango Research Centre, Private Bag 285, Maun, Botswana Abstract A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance, which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges were evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) datasets. The consistency between the gauges and satellite estimates was considered.
    [Show full text]
  • The Okavango; a River Supporting Its People, Environment and Economic Development
    The Okavango; a river supporting its people, environment and economic development Article (Accepted Version) Kgathi, D L, Kniveton, D, Ringrose, S, Turton, A R, Vanderpost, C H M, Lundqvist, J and Seely, M (2006) The Okavango; a river supporting its people, environment and economic development. Journal of Hydrology, 331 (1-2). pp. 3-17. ISSN 0022-1694 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/1690/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Special Issue Journal of Hydrology The Hydrology of the Okavango Basin and Delta in a development perspective Guest editors: Dominic Kniveton, and Martin Todd Paper 1.
    [Show full text]
  • Overview of the Cubango Okavango
    Transboundary Cooperation for Protecting the Cubango- Okavango River Basin and Improving the Integrity of the Okavango Delta World Heritage Property Overview of the Cubango-Okavango River Basin in Angola: Challenges and Perspectives Maun, 3-4 June 2019 Botswana National Development Plan (2018-2022) The National Development Plan 6 Axis provides framework for the development of infrastructure, 25 Policies environmental sustainability and land and territorial planning. 83 Programs Cubango-Okavango River Basin Key Challenges To develop better conditions for the economic development of the region. To foster sustainable development considering technical, socio- economic and environmental aspects. To combat poverty and increase the opportunities of equitable socioeconomic benefits. Key Considerations 1. Inventory of the water needs and uses. 2. Assessment of the water balance between needs and availability. 3. Water quality. 4. Risk management and valorization of the water resources. Some of the Main Needs Water Institutional Monitoring Capacity Network Decision- Participatory making Management Supporting Systems Adequate Funding Master Plans for Cubango Zambezi and Basins Cubango/ Approved in 6 main Up to 2030 Okavango 2016 programs Final Draft 9 main Zambezi Up to 2035 2018 programs Cubango/Okavango Basin Master Plan Main Programs Rehabilitation of degraded areas. Maintaining the natural connectivity between rivers and river corridors. Implementing water monitoring network. Managing the fishery activity and water use. Biodiversity conservation. Capacity building and governance. Zambezi Basin Master Plan Main Programs Water supply for communities and economic activities. Sewage and water pollution control. Economic and social valorisation of water resources. Protection of ecosystems. Risk management. Economic sustainability of the water resources. Institutional and legal framework.
    [Show full text]
  • Okavango River Basin Transboundary Diagnostic Analysis May 1998
    Table of Contents SECTION A 1. INTRODUCTION 2. AVAILABILITY OF INFORMATION AND DATA 3. STAKEHOLDER CONSULTATION AND PARTICIPATION 3.1 Introduction/General 3.2 Namibia and Botswana 3.2.1 The Stakeholders 3.2.2 Work carried Out 3.2.3 Feedback 3.3 Angola 3.2.1 General 4. DESCRIPTION AND HISTORY OF THE AREA 4.1 History 4.2 Geology, Soils, Topography, Geomorphology and Vegetation 4.2.1 Introduction 4.2.2 Data Available 4.2.2.1 General 4.2.2.2 Catchment Topography Topographic Maps and aerial photography Satellite Imagery 4.2.2.3 Catchment Geomorphology Soils (Data available 4.2.2.4 Vegetation 4.2.3 Overview/Analysis 4.2.3.1 Catchment Topography 4.2.3.2 Catchment Geomorphology Soils Geological Setting 4.2.3.3 Catchment Vegetation 4.3 Climate 4.3.1 Introduction 4.3.2 Data available 4.3.2.1 Rainfall 4.3.2.2 Temperature 4.3.2.3 Other Climatic paramaters 4.3.3 Overview 4.3.3.1 General 4.3.3.2 Precipitation 4.3.3.3 Temperature 4.2.3.4 Evaporation 4.4 Human Links with the Basin 4.4.1 Introduction 4.4.2 Data Available 1 4.4.3 Previous Studies and Research 4.4.4 Overview 5. HYDROLOGY, HYDRAULICS AND GEOHYDROLOGY OF THE OKAVANGO RIVER 5.1 Introduction 5.2 River Morphology 5.2.1 Data Available 5.2.2 Overview/Analysis 5.3 Water levels and Runoff 5.3.1 Introduction 5.3.2 Data Availability 5.3.2.1 Gauging Network 5.3.2.2 Completeness and Quality of Data 5.3.3 Overview/Analysis 5.3.3.1 General 5.3.3.2 Cubango River and Tributaries (take down through Angola and include Rundu) 5.3.3.3 Cuito River and Tributaries 5.3.3.4 Okavango River 5.3.3.5 Inflow: Okavango at Mohembo 5.3.3.6 Outflow Rivers 5.3.3.7 Conclusions 5.4 Erosion, Sediment Loads and Sedimentation 5.5 Groundwater 6.
    [Show full text]
  • Estimating Rainfall and Water Balance Over the Okavango River Basin for Hydrological Applications
    Estimating rainfall and water balance over the Okavango River Basin for hydrological applications Article (Accepted Version) Wilk, Julie, Kniveton, Dominic, Andersson, Lotta, Layberry, Russell, Todd, Martin C, Hughes, Denis, Ringrose, Susan and Vanderpost, Cornelis (2006) Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. Journal of Hydrology, 331 (1-2). pp. 18-29. ISSN 0022-1694 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/1696/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Estimating rainfall and water balance over the Okavango River Basin for hydrological applications Julie Wilk*a, Dominic Kniveton b Lotta Andersson c, Russell Layberry b, Martin C.
    [Show full text]
  • 1 Southern Africa Regional Flood Update
    Southern Africa Regional Flood Update 20 January 2011 Highlights • In Mozambique, a number of river basins have registered alert levels, and water levels are increasing; • River levels in the upper Zambezi and the Okavango rivers are very high for this early in the rainfall season; • Two spillway gates of Lake Kariba will be opened on 22 January 2011, which could in time lead to flooding downstream; • In South Africa, 40 people have died and 6,000 displaced due to flooding. A National State of Disaster will be declared in 28 municipalities in 7 provinces. • A map of the region is found on Page 7 in this Bulletin Rainfall forecast According to the regional rainfall forecast, all countries in contiguous southern Africa are expected to receive normal to above-normal rainfall between January and March 2011, specifically the regions of northern Zimbabwe, central Zambia, southern Malawi, central Mozambique and most of Madagascar, which are expected to receive above-normal rainfall. In the case of Mozambique and Madagascar, this rainfall could come in the form of tropical cyclones, which affect these countries every season. Likely scenarios Flooding along the major rivers of the region is an annual occurrence, and regularly affected communities, who depend on the floodplains for food production, usually move to higher ground well in advance of the floodwaters. Meteorological and hydrological authorities are monitoring the situation and regular warnings are being issued. It should be noted that exchange of information between countries that share major rivers have improved significantly. All countries have contingency plans prepared with scenarios of what could happen and interventions needed.
    [Show full text]
  • A Seasonal Survey of the Fish of the Kavango River Floodplain Along The
    A Decade of Namibian Fisheries Science Payne, A. I. L., Pillar, S. C. and R. J. M. Crawford (Eds). S. Afr. J. mar. Sci. 23: 449–464 2001 449 FISH RESPONSE TO THE ANNUAL FLOODING REGIME IN THE KAVANGO RIVER ALONG THE ANGOLA/NAMIBIA BORDER C. H. HOCUTT* and P. N. JOHNSON† The results of the first seasonal survey of the fish of the Kavango River floodplain along the Angola/Namibia border are reported. The river experiences peak flooding from February through June, with the 375-km long flood- plain extending up to 5 km across. The floodplain was sampled five times in 1992 by seine, fish traps and rotenone. The data indicated a pronounced structural and functional response of the fish community in relation to the alternating flood and drought conditions in the river. Catch per unit effort and diversity were highest during months of peak flooding (May and June), and lowest during the month of least flow (November). The reproductive strategies of K-selected piscivorous cichlids and tigerfish were in advance of flooding. Many r-selected invertivores, especially cyprinids, were in relative synchrony with flooding and the stimulation of littoral zone plant growth, while other invertivores lagged the cyprinids. Herbivores had lowest relative abundance during peak flooding; this seemingly inverse relationship with the invertivores should not be interpreted as replacement, but rather the swamping of the system with young-of-the-year r-selected invertivores. The data support the Flood Pulse Concept, which hypothesizes that flooding is the major “driver” of productivity in lowland or floodplain rivers. Key words: behaviour, floodplain fishery, migration, Okavango Delta, r-/K-selection, subsistence fishery A seasonal survey of the fish of the Kavango River long-term shifts in the structural and functional com- floodplain along the Angola/Namibia border was ponents of the fish community.
    [Show full text]
  • The Okavango River Basin in Southern Africa: a Case Study of Transboundary Resource Management Issues
    University of Colorado Law School Colorado Law Scholarly Commons Allocating and Managing Water for a Sustainable Future: Lessons from Around the 2002 World (Summer Conference, June 11-14) 6-14-2002 The Okavango River Basin in Southern Africa: A Case Study of Transboundary Resource Management Issues Robert K. Hitchcock Follow this and additional works at: https://scholar.law.colorado.edu/allocating-and-managing-water-for- sustainable-future Part of the Environmental Policy Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Sustainability Commons, Transnational Law Commons, Water Law Commons, and the Water Resource Management Commons Citation Information Hitchcock, Robert K., "The Okavango River Basin in Southern Africa: A Case Study of Transboundary Resource Management Issues" (2002). Allocating and Managing Water for a Sustainable Future: Lessons from Around the World (Summer Conference, June 11-14). https://scholar.law.colorado.edu/allocating-and-managing-water-for-sustainable-future/71 Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. Robert K. Hitchcock, The Okavango River Basin in Southern Africa: A Case Study of Transboundary Resource Management Issues, in ALLOCATING AND MANAGING WATER FOR A SUSTAINABLE FUTURE: LESSONS FROM AROUND THE WORLD (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law 2002). Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. The Okavango River Basin in Southern Africa: A Case Study of Transboundary Resource Management Issues Robert K.
    [Show full text]