Seismic Anisotropy in the Asthenosphere Beneath the Eifel Region, Western Germany

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Anisotropy in the Asthenosphere Beneath the Eifel Region, Western Germany Seismic Anisotropy in the Asthenosphere Beneath the Eifel Region, Western Germany Kristoffer T. Walker1, Götz H.R. Bokelmann2, Simon L. Klemperer3, Gün- ter Bock4 and The Eifel Plume Team5 1Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego 2Laboratoire de Tectonophysique, Université Montpellier II, Montpellier, France 3Department of Geophysics, Stanford University 4GeoForschungsZentrum Potsdam 5U. Achauer, M. Budweg, T. Camelbeeck, U. Christensen, F. Collin, N. d'Oreye, I. Eschghi, H. Gaensicke, K.-G. Hinzen, M. Jordan, T. Kaspar, M. Keyser, R. Pelzing, J.R.R. Ritter, F. Scherbaum, Y.-F. Temme, M. Weber, and U. Wüllner Abstract We provide evidence for a plume-like upwelling beneath the Eifel hotspot, Western Germany, by using teleseismic shear-wave splitting to resolve the anisotropy associated with upwelling flow that is spreading laterally into the asthenosphere. The variation in fast–polarization azimuth we find across the Eifel hotspot is explained by a model of slowly upwelling mate- rial that is horizontally being deflected or sheared in a parabolic astheno- spheric flow (PAF) pattern toward west-southwest, a direction that corre- lates with Eurasian absolute plate motion. We suggest that the lack of an age progression for Eifel volcanism, which is expected for a fixed- upwelling model, is a result of (1) sporadic volcanism due to a low excess plume temperature and/or varying crustal stresses that periodically relax and facilitate eruption, and (2) complex upwelling flow pathways and/or Late Tertiary changes in the slow Eurasian plate motion. The success of the PAF model in fitting the data is remarkable given the small number of parameters (four) and the consistency with the plate motion direction de- termined from geology and/or geodesy. This suggests that a predictable mantle-anisotropy pattern may exist also for other hotspots driven by plume-like upwellings, and that splitting can be a useful diagnostic to dif- ferentiate between plume-like and alternative sources for mantle hotspots. 440 Walker KT, Bokelmann GHR, Klemperer SL, Bock G, Eifel Plume Team 1 Introduction The plate-tectonic hypothesis, that rigid plates move over the Earth’s sur- face above a fluid-like mantle, is used to explain most of Earth’s geologi- cal and geophysical features (Dietz 1961, Hess 1962). The plume hypothe- sis, that cylindrical conduits of hot upwelling mantle material are responsible for up to 10 % of Earth's heat flow, has been used to explain “hotspots”, anomalous volcanic regions far from plate boundaries (e.g., Hawaii and Yellowstone) that are often associated with some combination of rapid and voluminous eruptions of basaltic lava, broad topographic swells and geoid highs, and linear age progressions of volcanic centres (Morgan 1971, Sleep 1990, Davies and Richards 1992). Recently the plume hypothesis has been challenged, and complex plate-tectonic models have been proposed instead to explain such regions (e.g., Anderson 1994, King and Anderson 1998, Smith and Lewis 1999). Plumes are elusive targets of seismological investigation due to their hypothesised geometry and depth. Regional tomographic inversions of teleseismic body-wave data, which suffer from the inherent trade-off be- tween misfit reduction and model complexity, tend to smear anomalies vertically in regions penetrated by mostly subvertical rays. Consequently applications of this technique around hotspots (e.g., Bijwaard and Spak- man 1999, Foulger et al. 2001, Wolfe et al. 2002) have led to intriguing, but sometimes controversial image interpretations. In addition, resolution constraints and choice of reference velocity in past global and regional in- versions have limited reliable detailed imaging of the deep lower mantle beneath hotspots (Ritsema and Allen 2003). Although there has been recent success in detecting some plumes with surface-wave anisotropy tomography (Montagner 2002), finite-frequency body-wave tomography (Montelli et al. 2004), and SS precursor modelling and receiver functions (Li et al. 2003), and the debate for some may be shifting from "whether plumes exist" to "where and at what depth they ex- ist," new approaches for detecting plumes will help resolve the contro- versy. For example, seismic velocity anisotropy in the upper mantle that is detected by teleseismic shear-wave splitting (separation of the shear-wave in an anisotropic rock into two polarised waves travelling at different speeds) can be explained by a lattice preferred orientation (LPO) of olivine fast axes due to either past or present mantle deformation. This interpreta- tion has been made to explain correlations of fast polarisation directions with absolute plate motion (Vinnik et al. 1992, Bormann et al. 1996, Schutt and Humphreys 2001), although many other interpretations have been proposed to explain other correlations (e.g., Savage 1999). An essen- Seismic Anisotropy in the Asthenosphere Beneath the Eifel Region 441 tial part of the plume hypothesis, the deflection of plume material by a moving plate, can be tested by analysing shear-wave splitting of shear phases generated from teleseismic earthquakes (Walker 2004). Although, because mantle anisotropy from a plume would be mostly confined to the upper 300 km of the Earth’s mantle, a positive result only suggests a “plume-like” upwelling - the depth of origin not being constrained. Fig. 1. Shear-wave splitting example for station WLF (for location, see Figure 6). We use the method of Silver and Chan (1991) as modified by Walker (2004) to find the optimum fast polarisation azimuth (φ) and delay time (dt) by performing a grid search over φ and dt to minimise coherent energy on the IPAC-90° (trans- verse) component, energy that is a diagnostic signal of anisotropy. In the upper left we show the observed horizontal-component waveforms parallel and perpen- dicular to the initial polarisation azimuth (IPAO/IPAO-90°). After correcting for the splitting using φ and dt, the energies on the corresponding waveforms IPAC and IPAC-90° are maximised and minimised, respectively. The box in the upper right indicates the date and UTC time of the analysed event (year:julday:hour), the measured φ and dt, and the energy signal-to-noise ratio (SNR) 442 Walker KT, Bokelmann GHR, Klemperer SL, Bock G, Eifel Plume Team A vertically oriented low P- and S-seismic velocity anomaly was im- aged in the mantle (Ritter et al. 2001, Keyser et al. 2002, Ritter this vol- ume) down to the 400 km depth limit of resolution beneath the 1997-98 Eifel Plume Project seismic network, a dense network of 158 mobile seis- mic stations centred on the Eifel hotspot in west-central Europe (Ritter et al. 2000). Receiver functions also resolve a depression of the 410 km dis- continuity and thinning of the transition zone beneath the Eifel (Grunewald et al. 2001, M. Budweg personal communication 2003, Weber et al. this volume). We test an upwelling model for the Eifel hotspot by analysing shear-wave splitting in seismograms recorded during the seven-month op- eration of the Eifel network, and comparing the fast directions to those predicted for a simple upwelling. 2 New Data During the seven-month deployment of the Eifel network, several core- refracted teleseismic shear phases (SKS) were recorded. However, only two of these events are analysed because they were of high quality, with energy signal-to-noise ratio (SNR) greater than 20 (Table A1 of Appen- dix). We used the method of Silver and Chan (1991) as modified by Walker et al. (2004a) to measure the apparent fast polarisation azimuth (φ) and delay time between the fast and slow waves (dt) and associated errors (Table A2 of Appendix). We also analysed up to 15 years of recorded data on permanent seismic stations throughout western and central Europe. Figure 1 shows an example of splitting at station WLF (see location in Figure 2). These permanent stations afforded us the possibility of testing between different models of mantle anisotropy: single-layer with a hori- zontal fast axis, single-layer with a dipping fast axis, and two-layer with horizontal fast axes. In general, we found that the best-fit models for both the dipping-layer and two-layer case fit the data at each station marginally better than the single-layer models, but the minor improvement in fit does not justify the inclusion of extra model parameters (see Walker 2004 for details of the statistics). In addition, these best-fit models for stations that are relatively close together are very different, and the misfit functions used to find them have many local minima. Because the single-layer model only has one local minimum, because these models are very similar for sta- tions that are relatively close together, and because there are only two seismic events for which significant splitting was measured across the Eifel network, we cautiously prefer the single-layer model to estimate the Seismic Anisotropy in the Asthenosphere Beneath the Eifel Region 443 first-order anisotropy signal beneath the study area (Table A3 of Appen- dix). Fig. 2 shows the single-layer splitting φ in the Eifel region of west- central Europe (white bars). Numerous stations did not demonstrate any splitting (white crosses), which suggests that no anisotropy exists beneath them or that the fast axis of anisotropy (assuming single layer) is parallel or perpendicular to the backazimuth. The backazimuths of the two Eifel SKS events (~70° and ~250°) are ~180° apart. Because some of these “null stations” occur between nearby constrained stations that have φ subparallel to the backazimuths, we interpret the lack of splitting to indicate there is anisotropy beneath those stations with a φ ≈70°. Fig. 2. (next page) Shear-wave splitting measurements for study area and Eifel re- gion. Short lines indicate the station splitting estimates, with orientation parallel to fast polarisation azimuth (φ) and length proportional to delay time (dt).
Recommended publications
  • Upper Mantle Flow Beneath and Around the Hangay Dome, Central Mongolia Guilhem Barruol, Anne Deschamps, Jacques Déverchère, Valentina V
    Upper mantle flow beneath and around the Hangay Dome, central Mongolia Guilhem Barruol, Anne Deschamps, Jacques Déverchère, Valentina V. Mordvinova, Ulziibat Munkhuu, Julie Perrot, A. Artemiev, T. Dugarmaa, Götz H.R. Bokelmann To cite this version: Guilhem Barruol, Anne Deschamps, Jacques Déverchère, Valentina V. Mordvinova, Ulziibat Munkhuu, et al.. Upper mantle flow beneath and around the Hangay Dome, central Mongolia. Earth and Planetary Science Letters, Elsevier, 2008, 274 (1-2), pp.221-233. 10.1016/j.epsl.2008.07.027. hal- 00407853 HAL Id: hal-00407853 https://hal.archives-ouvertes.fr/hal-00407853 Submitted on 24 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Upper mantle flow beneath and around the Hangay dome, Central Mongolia Guilhem Barruol a,⁎, Anne Deschamps b, Jacques Déverchère c,d, Valentina V. Mordvinova e, Munkhuu Ulziibat f, Julie Perrot c,d, Alexandre A. Artemiev e, Tundev Dugarmaa f, Götz H.R. Bokelmann a a Université Montpellier II, CNRS, Géosciences Montpellier, F-34095 Montpellier cedex 5, France b Université Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Géosciences Azur, 250, Rue Albert Einstein, F-06560 Valbonne, France c Université Européenne de Bretagne, France d Université de Brest; CNRS, UMR 6538 Domaines Océaniques; Institut Universitaire Européen de la Mer, Place Copernic, 29280 Plouzané, France e Institute of the Earth's Crust SB RAS, Lermontov st.
    [Show full text]
  • Aula 4 – Tipos Crustais Tipos Crustais Continentais E Oceânicos
    14/09/2020 Aula 4 – Tipos Crustais Introdução Crosta e Litosfera, Astenosfera Crosta Oceânica e Tipos crustais oceânicos Crosta Continental e Tipos crustais continentais Tipos crustais Continentais e Oceânicos A interação divergente é o berço fundamental da litosfera oceânica: não forma cadeias de montanhas, mas forma a cadeia desenhada pela crista meso- oceânica por mais de 60.000km lineares do interior dos oceanos. A interação convergente leva inicialmente à formação dos arcos vulcânicos e magmáticos (que é praticamente o berço da litosfera continental) e posteriormente à colisão (que é praticamente o fechamento do Ciclo de Wilson, o desparecimento da litosfera oceânica). 1 14/09/2020 Curva hipsométrica da terra A área de superfície total da terra (A) é de 510 × 106 km2. Mostra a elevação em função da área cumulativa: 29% da superfície terrestre encontra-se acima do nível do mar; os mais profundos oceanos e montanhas mais altas uma pequena fração da A. A > parte das regiões de plataforma continental coincide com margens passivas, constituídas por crosta continental estirada. Brito Neves, 1995. Tipos crustais circunstâncias geométrico-estruturais da face da Terra (continentais ou oceânicos); Característica: transitoriedade passar do Tempo Geológico e como forma de dissipar o calor do interior da Terra. Todo tipo crustal adveio de um outro ou de dois outros, e será transformado em outro ou outros com o tempo, toda esta dança expressando a perda de calor do interior para o exterior da Terra. Nenhum tipo crustal é eterno; mais "duráveis" (e.g. velhos Crátons de de "ultra-longa duração"); tipos de curta duração, muitas modificações e rápida evolução potencial (como as bacias de antearco).
    [Show full text]
  • Observational Test of the Global Moving Hot Spot Reference Frame
    RESEARCH LETTER Observational Test of the Global Moving Hot Spot 10.1029/2019GL083663 Reference Frame Key Points: Chengzu Wang1 , Richard G. Gordon1 , Tuo Zhang1 , and Lin Zheng1 • The fit of the Global Moving Hotspot Reference Frame (GMHRF) to 1Department of Earth, Environmental, and Planetary Sciences, William Marsh Rice University, Houston, TX, USA observed geologically young trends of hot spot tracks is evaluated • The data are fit significantly worse (p = 0.005) by the GMHRF than by Abstract The Global Moving Hotspot Reference Frame (GMHRF) has been claimed to fit hot spot tracks fixed hot spots better than the fixed hot spot approximation mainly because the GMHRF predicts ≈1,000 km southward • Either plume conduits do not advect motion through the mantle of the Hawaiian mantle plume over the past 80 Ma. As the GMHRF is passively with mantle flow or the GMHRF mantle velocity field is determined by starting at present and calculating backward in time, it should be most accurate and incorrect reliable for the recent geologic past. Here we compare the fit of the GMHRF and of fixed hot spots to the observed trends of young tracks of hot spots. Surprisingly, we find that the GMHRF fits the data significantly Supporting Information: worse (p = 0.005) than does the fixed hot spot approximation. Thus, either plume conduits are not passively • Supporting Information S1 advected with the mantle flow calculated for the GMHRF or Earth's actual mantle velocity field differs substantially from that calculated for the GMHRF. Correspondence to: Hot spots are the surface manifestations of plumes of hot rock that R.
    [Show full text]
  • Absolute Plate Motions Constrained By
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B10405, doi:10.1029/2009JB006416, 2009 Click Here for Full Article Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow Corne´ Kreemer1 Received 27 February 2009; revised 11 June 2009; accepted 14 July 2009; published 22 October 2009. [1] Here, I present a new absolute plate motion model of the Earth’s surface, determined from the alignment of present-day surface motions with 474 published shear wave (i.e., SKS) splitting orientations. When limited to oceanic islands and cratons, splitting orientations are assumed to reflect anisotropy in the asthenosphere caused by the differential motion between lithosphere and mesosphere. The best fit model predicts a 0.2065°/Ma counterclockwise net rotation of the lithosphere as a whole, which revolves around a pole at 57.6°S and 63.2°E. This net rotation is particularly well constrained by data on cratons and/or in the Indo-Atlantic region. The average data misfit is 19° and 24° for oceanic and cratonic areas, respectively, but the normalized root-mean-square misfits are about equal at 5.4 and 5.2. Predicted plate motions are very consistent with recent hot spot track azimuths (<8° on many plates), except for the slowest moving plates (Antarctica, Africa, and Eurasia). The difference in hot spot propagation vectors and plate velocities describes the motion of hot spots (i.e., their underlying plumes). For most hot spots that move significantly, the motions are considerably smaller than and antiparallel to the absolute plate velocity. Only when the origin depth of the plume is considered can the hot spot motions be explained in terms of mantle flow.
    [Show full text]
  • Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions
    Surv Geophys (2009) 30:407–461 DOI 10.1007/s10712-009-9075-1 ORIGINAL PAPER Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions Maureen D. Long Æ Paul G. Silver Received: 5 February 2009 / Accepted: 3 June 2009 / Published online: 27 June 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract Measurements of the splitting or birefringence of seismic shear waves that have passed through the Earth’s mantle yield constraints on the strength and geometry of elastic anisotropy in various regions, including the upper mantle, the transition zone, and the D00 layer. In turn, information about the occurrence and character of seismic anisotropy allows us to make inferences about the style and geometry of mantle flow because anisotropy is a direct consequence of deformational processes. While shear wave splitting is an unambiguous indicator of anisotropy, the fact that it is typically a near-vertical path-integrated measure- ment means that splitting measurements generally lack depth resolution. Because shear wave splitting yields some of the most direct constraints we have on mantle flow, however, understanding how to make and interpret splitting measurements correctly and how to relate them properly to mantle flow is of paramount importance to the study of mantle dynamics. In this paper, we review the state of the art and recent developments in the measurement and interpretation of shear wave splitting—including new measurement methodologies and forward and inverse modeling techniques,—provide an overview of data sets from different tectonic settings, show how they help us relate mantle flow to surface tectonics, and discuss new directions that should help to advance the shear wave splitting field.
    [Show full text]
  • Crustal and Mantle Structure Beneath the Terre Adélie Craton, East Antarctica: Insights from Receiver Function and Seismic Anis
    Crustal and mantle structure beneath the Terre Adélie Craton, East Antarctica: insights from receiver function and seismic anisotropy measurements Gaëlle Lamarque, Guilhem Barruol, Fabrice R. Fontaine, Jerôme Bascou, René-Pierre Ménot To cite this version: Gaëlle Lamarque, Guilhem Barruol, Fabrice R. Fontaine, Jerôme Bascou, René-Pierre Ménot. Crustal and mantle structure beneath the Terre Adélie Craton, East Antarctica: insights from receiver function and seismic anisotropy measurements. Geophysical Journal International, Oxford University Press (OUP), 2015, 10.1093/gji/ggu430. hal-01236105 HAL Id: hal-01236105 https://hal.univ-reunion.fr/hal-01236105 Submitted on 1 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophysical Journal International Geophys. J. Int. (2015) 200, 809–823 doi: 10.1093/gji/ggu430 GJI Seismology Crustal and mantle structure beneath the Terre Adelie´ Craton, East Antarctica: insights from receiver function and seismic anisotropy measurements Gaelle¨ Lamarque,1 Guilhem Barruol,2 Fabrice R. Fontaine,2 Jer´ omeˆ Bascou1 and Rene-Pierre´ Menot´ 1 1UniversitedeLyon,Universit´ eJeanMonnet,UMRCNRSIRD´ 6524,LaboratoireMagmasetVolcans,F-42023 Saint Etienne, France. E-mail: [email protected] 2Laboratoire GeoSciences´ Reunion,´ UniversitedeLaR´ eunion,´ Institut de Physique du Globe de Paris, Sorbonne Paris Cite,´ UMR CNRS 7154,Universite´ Paris Diderot, F-97744 Saint Denis, France Accepted 2014 October 30.
    [Show full text]
  • Seismic Anisotropy Across the Appalachian Mountains
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences SEISMIC ANISOTROPY ACROSS THE APPALACHIAN MOUNTAINS AND PLATEAU A Thesis in Geosciences by Austin White-Gaynor c 2015 Austin White-Gaynor Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2015 ii" " " " " " " The thesis of Austin White-Gaynor was reviewed and approved* by the following: Andrew Nyblade Professor in Geosciences Thesis Adviser Charles J. Ammon Professor in Geosciences Sridhar Anandakrishnan Professor in Geosciences Demian Saffer Professor in Geosciences Interim Associate Head of Graduate Programs and Research *Signatures on file in the Graduate School iii Abstract Few modern mountain ranges have as extensive of a deformational history as the Appalachian Mountains. Running nearly the entire length of the eastern coast of North America, the Appalachian Mountains are the result of a roughly 500 Ma Wilson Cycle. Geochemical and geophysical evidence points toward a diachronous orogenic evolution of northern and southern segments of the mountain belt. I characterize seismic anisotropy in the mantle throughout the central Appalachian region, the boundary between the northern and southern segments, in order to identify any first-order lithospheric changes between the two segments. Shear-wave splitting measurements are made throughout the region, and while delay times are similar everywhere (average = 0.87 seconds), fast azimuth directions (φ) change from roughly E-W in the eastern part of the study area rotating smoothly to NE-SW in the western part of the study region, across the Allegheny Front. Extended analysis was performed at three permanent stations located in the eastern, western and central part of the study area.
    [Show full text]
  • Vulkanismus“ (§ 22 Abs
    Fachliche Position der Staatlichen Geologischen Dienste Deutschlands (SGD) zu den Ausschlusskriterien des Standortauswahlgesetzes (StandAG) Ausschlusskriterium „Vulkanismus“ (§ 22 Abs. 2 Nr. 5 StandAG) 07. Oktober 2020 Anlass Die Bundesgesellschaft für Endlagerung mbH (BGE) hat auf ihrer Internetseite den „Methodensteckbrief: Ausschlusskriterium Vulkanismus“ (BGE 2020) veröffentlicht. Zur gemeinsamen Herbstsitzung des BLA-GEO und des DK am 09. und 10. September 2020 lag ein Positionspapier zur Anwendung des Ausschlusskriteriums Vulkanismus (§ 22 Abs. 2 Nr. 5 StandAG) der drei Bundesländer Bayern, Rheinland-Pfalz und Sachsen vor, in denen die quartären Vulkanfelder der Eifel und der Region Vogtland-Fichtelgebirge/Oberpfalz- Egerbecken auftreten. Das Vorgehen wurde im Anschluss mit den SGD aller Bundesländer abgestimmt. BGE-Ansatz zum Teil-Ausschlusskriterium Vulkanismus Gemäß o. g. Methodensteckbrief „Ausschlusskriterium Vulkanismus“ schlägt die BGE vor, Gebiete, in denen quartärer Vulkanismus nachgewiesen ist, von der Endlagersuche auszuschließen. Diese potentiellen Gefährdungsgebiete werden als Umkreis um quartäre vulkanische Eruptionszentren in der Eifel und der Region Vogtland-Oberpfalz abgegrenzt, wobei die Auswirkungen zukünftiger vulkanischer Aktivitäten mit einem Radius von 10 km um jedes Eruptionszentrum undifferenziert berücksichtigt werden. „Dieser gilt als ,Minimalabstand‘ und wird auf Grundlage eines extern vergebenen Forschungsprojektes mit einem individuell an die jeweiligen Gebiete angepassten und vom konkreten Chemismus
    [Show full text]
  • Seismic Imaging of Mantle Plumes
    Annu. Rev. Earth Planet. Sci. 2000. 28:391±417 Copyright q 2000 by Annual Reviews. All rights reserved SEISMIC IMAGING OF MANTLE PLUMES Henri-Claude Nataf Observatoire des Sciences de l'Univers de Grenoble, Grenoble Cedex 9, France; BP 53, 38041; e-mail: [email protected] Key Words mantle plume, hotspot, seismic tomography, mantle convection Abstract The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires speci®c developments as well as dedicated ®eld experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it de¯ects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very dif®cult to detect, so speci®c methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high- resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface.
    [Show full text]
  • Abstract Volume
    GeoPRISMS / EarthScope Cascadia Science Workshop April 5-6, 2012 Portland, OR Abstract Volume GeoPRISMS / EarthScope Cascadia Science Workshop Resolving mantle structure beneath the Pacific Northwest Darold, Amberlee; Humphreys, Eugene; Schmandt, Brandon; Gao, Haiying University of Oregon, Eugene, OR, United States. Cenozoic tectonics of the Pacific Northwest and the associated mantle structures are remarkable, the latter revealed only recently by EarthScope seismic data. Over the last ~66 Ma this region experienced a wide range of tectonic and magmatic conditions: Laramide compression, ~75-53 Ma, involving Farallon flat-slab subduction, regional uplift, and magmatic quiescence. With the ~53 Ma accretion of Siletzia ocean lithosphere within the Columbia Embayment, westward migration of subduction beginning Cascadia, along with initiation of the Cascade volcanic arc. Within the continental interior the Laramide orogeny was quickly followed by a period of extension involving metamorphic core complexes and the associated initial ignimbrite flare-up (both in northern Washington, Idaho, and western Montana); interior magmo-tectonic activity is attributed to flat-slab removal and (to the south) slab rollback. Rotation of Siletzia created new crust on SE Oregon and, at ~16 Ma, the Columbia River Flood Basalt eruptions renewed vigorous magmatism. We have united several EarthScope studies in the Pacific Northwest and have focused on better resolving the major mantle structures that have been discovered. We combine an ambient-noise surface wave model with body wave models to resolve structures continuously from the surface to the base of the upper mantle. Specifically, we tomographically modeled the body waves with teleseismic, finite-frequency code under the constraints of ambient noise tomography and teleseismic receiver function models of Page 1 of 54 Compiled by the GeoPRISMS Office on 3/29/2012 GeoPRISMS / EarthScope Cascadia Science Workshop Gao et al.
    [Show full text]
  • 7.09 Hot Spots and Melting Anomalies G
    7.09 Hot Spots and Melting Anomalies G. Ito, University of Hawaii, Honolulu, HI, USA P. E. van Keken, University of Michigan, Ann Arbor, MI, USA ª 2007 Elsevier B.V. All rights reserved. 7.09.1 Introduction 372 7.09.2 Characteristics 373 7.09.2.1 Volcano Chains and Age Progression 373 7.09.2.1.1 Long-lived age-progressive volcanism 373 7.09.2.1.2 Short-lived age-progressive volcanism 381 7.09.2.1.3 No age-progressive volcanism 382 7.09.2.1.4 Continental hot spots 383 7.09.2.1.5 The hot-spot reference frame 386 7.09.2.2 Topographic Swells 387 7.09.2.3 Flood Basalt Volcanism 388 7.09.2.3.1 Continental LIPs 388 7.09.2.3.2 LIPs near or on continental margins 389 7.09.2.3.3 Oceanic LIPs 391 7.09.2.3.4 Connections to hot spots 392 7.09.2.4 Geochemical Heterogeneity and Distinctions from MORB 393 7.09.2.5 Mantle Seismic Anomalies 393 7.09.2.5.1 Global seismic studies 393 7.09.2.5.2 Local seismic studies of major hot spots 395 7.09.2.6 Summary of Observations 399 7.09.3 Dynamical Mechanisms 400 7.09.3.1 Methods 400 7.09.3.2 Generating the Melt 401 7.09.3.2.1 Temperature 402 7.09.3.2.2 Composition 402 7.09.3.2.3 Mantle flow 404 7.09.3.3 Swells 405 7.09.3.3.1 Generating swells: Lubrication theory 405 7.09.3.3.2 Generating swells: Thermal upwellings and intraplate hot spots 407 7.09.3.3.3 Generating swells: Thermal upwellings and hot-spot–ridge interaction 408 7.09.3.4 Dynamics of Buoyant Upwellings 410 7.09.3.4.1 TBL instabilities 410 7.09.3.4.2 Thermochemical instabilities 411 7.09.3.4.3 Effects of variable mantle properties 412 7.09.3.4.4 Plume
    [Show full text]
  • Insights Into the Structure and Dynamics of the Upper Mantle Beneath Bass
    1 Insights into the structure and dynamics of the upper mantle beneath Bass 2 Strait, southeast Australia, using shear wave splitting 3 M. Bello*1,2, D.G. Cornwell1, N. Rawlinson3 and A. M. Reading4 4 5 1School of Geosciences, University of Aberdeen, Aberdeen, UK 6 2Department of Physics, Abubakar Tafawa Balewa University, Bauchi, Nigeria 7 3Department of Earth Sciences-Bullard Labs, University of Cambridge, Cambridge, UK 8 4School of Natural Sciences (Physics), University of Tasmania, Tasmania, Australia 9 10 We investigate the structure of the upper mantle using teleseismic shear wave splitting measurements obtained at 32 11 broadband seismic stations located in Bass Strait and the surrounding region of southeast Australia. Our dataset includes 12 ~366 individual splitting measurements from SKS and SKKS phases. The pattern of seismic anisotropy from shear 13 wave splitting analysis beneath the study area is complex and does not always correlate with magnetic lineaments or 14 current N-S absolute plate motion. In the eastern Lachlan Fold Belt, fast shear waves are polarized parallel to the 15 structural trend (~N25E). Further south, fast shear wave polarization directions trend on average N25-75E from the 16 Western Tasmania Terrane through Bass Strait to southern Victoria, which is consistent with the presence of an exotic 17 Precambrian microcontinent in this region as previously postulated. Stations located on and around the Neogene- 18 Quaternary Newer Volcanics Province in southern Victoria display sizeable delay times (~2.7 s). These values are 19 among the largest in the world and hence require either an unusually large intrinsic anisotropy frozen within the 20 lithosphere, or a contribution from both the lithospheric and asthenospheric mantle.
    [Show full text]