The Pennsylvania State University

The Graduate School

College of Earth and Mineral Sciences

SEISMIC ANISOTROPY ACROSS THE APPALACHIAN

MOUNTAINS AND PLATEAU

A Thesis in

Geosciences

by

Austin White-Gaynor

c 2015 Austin White-Gaynor

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

August 2015 ii" " " " " " " The thesis of Austin White-Gaynor was reviewed and approved* by the following:

Andrew Nyblade Professor in Geosciences Thesis Adviser

Charles J. Ammon Professor in Geosciences

Sridhar Anandakrishnan Professor in Geosciences

Demian Saffer Professor in Geosciences Interim Associate Head of Graduate Programs and Research

*Signatures on file in the Graduate School iii Abstract

Few modern mountain ranges have as extensive of a deformational history as the

Appalachian Mountains. Running nearly the entire length of the eastern coast of North

America, the Appalachian Mountains are the result of a roughly 500 Ma Wilson Cycle.

Geochemical and geophysical evidence points toward a diachronous orogenic evolution of northern and southern segments of the mountain belt. I characterize seismic anisotropy in the mantle throughout the central Appalachian region, the boundary between the northern and southern segments, in order to identify any first-order lithospheric changes between the two segments. Shear-wave splitting measurements are made throughout the region, and while delay times are similar everywhere (average = 0.87 seconds), fast azimuth directions () change from roughly E-W in the eastern part of the study area rotating smoothly to NE-SW in the western part of the study region, across the Allegheny

Front. Extended analysis was performed at three permanent stations located in the eastern, western and central part of the study area. These results show complex, or multilayered, anisotropy in the eastern portion of the study area and less complex, likely single layered anisotropy in the western portion of the study area. The top layer of the multilayered case has a of 60, roughly normal to the continental margin, which can be associated with frozen-in anisotropy from Triassic rifting. This top layer does not extend into the western most part of the study area, but instead pinches-out or diminishes in magnitude to zero. The bottom layer, present at all three permanent stations, is modeled with = -60, which is sub parallel to apparent plate motion and likely produced by iv

finite strain in the asthenosphere. Fast azimuth directions in the northern portion of the study show less change along longitude and remain mostly E-W oriented. These results are attributed to the large E-W shear-zone in southern New York that formed during the Alleghenian orogeny and could represent a dividing boundary between northern and southern segments of the Appalachian Mountains. v Table of Contents

List of Tables ...... vivii

List of Figures ...... viiviii

Acknowledgments ...... ixx

Chapter 1...... 1

1.1 Introduction...... 1

1.2 Tectonic Background ...... 4

1.2.1 TheGrenvilleProvince...... 4

1.2.2 The Taconic Orogeny ...... 5

1.2.3 The Acadian Orogeny ...... 7

1.2.4 The Alleghanian Orogeny ...... 9

1.2.5 Continental Break Up ...... 11

1.3 Anisotropy ...... 12

1.3.1 Seismic Anisotropy ...... 12

1.3.2 Mantle Anisotropy ...... 14

1.3.3 Shear-wave Splitting ...... 15

1.3.4 Global and Regional Studies ...... 17

Chapter 2...... 20

2.1 Data and Methods ...... 20 vi

2.1.1 Data ...... 20

2.1.2 Transverse Component Energy Minimization Method . . . . . 22

2.1.3 Multiple Layer Modeling ...... 28

Chapter 3...... 29

3.1 Results...... 29

3.2 Discussion...... 34

3.3 Summary and Conclusions ...... 48

Bibliography ...... 49

Appendices ...... 59

Appendix A List of individual events for each station ...... 59

Appendix B Summed Transverse Component Energy Grid for each station . . . 76

Appendix C Individual results for each station ...... 149

Appendix D Plots of individual results for stations MVL, SSPA, and ALLY . . . 166 viivi List of Tables

1:#List#of#stacked#results#for#each#station#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.##32 viii List of Figures

1.1 Location of study area...... 3

1.2 Appalachian promontories and embayments...... 4

1.3 MapshowingextentofGrenvilleProvince...... 6

1.4 Cross-sectional diagram of the Taconic Orogeny...... 7

1.5 Map showing the major elements of the Taconic Orogeny...... 8

1.6 The Appalachian peri-Gondwanan realm and its major elements. . . . . 8

1.7 Schematic cross-section of the Acadian Orogeny...... 9

1.8 Schematic cross-section of the Alleghanian Orogeny...... 10

1.9 Map showing the major elements of the Alleghanian Orogeny...... 11

1.10 Map showing the extent and location of Triassic rift basins in eastern

North America...... 13

1.11 P-wave and S-wave velocities (in km/s) in a single olivine crystal. . . . . 14

1.12 Schematic diagram of an incident S-wave traveling through an anisotropic

medium(gold)...... 16

1.13 SKS raypaths at epicentral distances of 95 - 140 degrees...... 17

1.14 Global shear-wave splitting results...... 18

1.15 Shear-wave splitting results for central and southeastern North America. 19

2.1 Location of stations used in this investigation...... 21

2.2 Event (Mw 5.5) distribution for station MVL...... 23 ix

2.3 Example waveform and particle motion before and after splitting correc-

tions...... 25

2.4 Final stack for station L60A...... 26

2.5 Example waveform and particle motion for a null result...... 27

3.1 Map showing splitting results for individual stations...... 30

3.2 Consistency check for stations WRPS and SSPA with previously pub-

lishedresults...... 31

3.3 Fast Azimuth Direction () vs longitude (a) and latitude (b) for all high-

qualityresults...... 35

3.4 Map of all shear-wave splitting results in eastern North America. . . . . 36

3.5 Fast Azimuth Direction () vs. Distance from the Allegheny Front. . . . 38

3.6 Inversion results from Levin et al. [1999]...... 40

3.7 Observed vs Synthetic results at station MVL...... 41

3.8 Observed vs Synthetic results at station ALLY...... 42

3.9 Observed vs Synthetic results at station SSPA...... 43

3.10 Developed cross-section from modeling results...... 44

3.11 Previous model, new model, and observed results at station MVL. . . . 45

3.12 Previous model, new model, and observed results at station SSPA. . . . 45

3.13 Previous model, new model, and observed results at station ALLY. . . . 46

3.14 Moment tensor solutions for study area taken from Herrmann et al. [2011]. 47 x Acknowledgments

For this work I received much support from my faculty mentors, including Andy

Nyblade, family members and friends to whom I owe a big Thank You. xi

The mountains are the soul of the region.

To understand the mountains is to know ourselves.

– Sandra H.B. Clark 1

Chapter 1

1.1 Introduction

The Appalachian Mountains exhibit remnant features from a deep tectonic his- tory. Mountain building began in the Mesoproterozoic with the formation of the Grenville

Mountains. After subsequent delamination, these mountains collapsed and formed the underlying basement rock for eastern North America [Rivers, 1997]. Atop the east- ward dipping metamorphic basement now lie the Appalachian Mountains, the result of a roughly 500 Ma Wilson Cycle comprised of three distinct orogenic phases, the Taconic, the Acadian and the Alleghenian [Stanley and Ratcli↵e, 1985]. Figure 1.1 shows the study area for this investigation, including the Allegheny Front, an escarpment dividing the Valley and Ridge Province to the east from the undeformed Allegheny Plateau to the west. The Grenville Front is a demarcation of the western extent of the Grenville

Province. Substantial evidence points toward a diachronous evolution of northern and southern segments of the Appalachian Mountains which contain both throughgoing and nonthoughgoing elements (Figure 1.2). While the Taconic Suture extends the entire length of the orogen, geochronology shows a major distinction between the two segments with the northern segments incurring the oldest deformation in the west and youngest in the east [Hatcher and Odom, 1980]. The southern and central segment of the Appalachi- ans includes youngest deformation on the eastern and western flanks of the mountain 2 belt and oldest deformation in the center [Hatcher and Odom, 1980]. The boundary between the Northern and Southern Appalachians lies directly west of New York City and is also marked by the thinnest area of the orogen widening both to the north and to the south (Figure 1.2).

The aim of this study is to investigate the nature of seismic anisotropy in the upper mantle beneath the central Appalachian Mountains in order to identify any first-order boundary between the northern and southern segments. Any remnant anisotropy in the lithosphere will also provide information as to how anisotropy is created and retained through such a complex deformational system. Using shear-wave splitting analyses, I characterize anisotropic fabric in the upper mantle beneath 73 broadband seismic sta- tions spanning 10 longitude and 5 latitude encompassing Pennsylvania and portions of the surrounding states. The results of this analysis are used to further constrain deformational history of the Appalachian Mountain range.

This thesis is composed of three main chapters. The remainder of this chapter includes background information on the geology and tectonics of the Appalachian Moun- tain orogeny, seismic anisotropy, and how seismic anisotropy can be used to constrain regional tectonics and deformational history. Chapter 2 provides detailed information of the methodologies and data used in this investigation. Chapter 3 includes the results of the shear-wave splitting analyses, as well as a discussion about the splitting results and their implications for understanding seismic anisotropy and lithospheric structure beneath the orogen. 3

t n t o n r o F r F y n

Grenville lleghe A

Fig. 1.1. Map showing the study area outlined in the red box. Physiographic provinces are color-coded. The Grenville and Allegheny Fronts are drawn with dashed lines. Figure courtesy of Dr. Bruce Railsback. 4

P ennsyl

v ania

S alie n t

Fig. 1.2. Appalachian promontories and embayments. Study area for this investigation is shown in red box. Extent of the Northern and Southern Appalachians is noted. Figure taken from [Hibbard et al., 2010]

1.2 Tectonic Background

1.2.1 The Grenville Province

Proterozoic Laurentia formed through the amalgamation of orogenic belts sur- rounding the Superior, Rae, and Nain cratons (Figure 1.3. The Grenville Province, a

Mesoproterozoic orogenic belt, formed along the southern extent of Laurentia (Figure

1.3) [Rivers, 1997]. Pre-Grenvillian basement includes paleoproterozoic calc-alkaline arc magmatism and magmatic complexes that formed during the Labradorian ( 1680 Ma), ⇠ the Pinwarian ( 1500 - 1450 Ma), and the Elzevirian ( 1250 - 1190 Ma) orogenic events. ⇠ ⇠ These polycyclic basement components were later metamorphosed to become part of the current Grenvillian basement autochthon of eastern North America. The Grenvil- lian orogeny involved continent-continent collision between 1.19 - 0.98 Ga during the ⇠ formation of the supercontinent Rodinia. Orogenisis occurred in three distinct phases 5 separated by periods of extension and coeval emplacements of mafic magmatism and anorthosite complexes, suggesting possible delamination and orogenic collapse [Rivers,

1997].

Important Grenvillian lithotectonic elements within the study area include medium- grade metamorphic basement in western Pennsylvania and New York and in eastern

Ohio and West Virginia. After failed rifting 750 Ma, the supercontinent Rodinia ⇠ subsequently broke up 565 Ma during a 200 Ma rifting event forming the Iapetus ⇠ ⇠ Ocean between Laurentia and Gondwana [Aleiniko↵ et al., 1995], thus beginning the

Appalachian Wilson Cycle. Irregular rifting of Rodinia formed the series of promonto- ries and embayments defining the modern Atlantic margin (Figure 1.2).

1.2.2 The Taconic Orogeny

The formation of the Appalachian Mountains was a result of three major orogenic events that began in the Middle to Late Ordovician ( 465 Ma) with the Taconic Orogeny. ⇠ This mountain building event involved collision of volcanic island arcs and microterrains with the eastern margin of rifted Laurentia (Figure 1.4).

Taconian deformation was intense and polyphase in the interior of the Appalachian orogen in New England [Stanley and Ratcli↵e, 1985], however the ”Taconian Suture” con- sists of a major fault and terrain boundary that is traceable along the entire extent of the Appalachian orogeny with arc accretion throughout [Hatcher, 2010]. Many granitoid plutons appear in the Piedmont and Blue Ridge in the Southern Appalachians (Figure

1.5), as well as in western New England [Wilson, 2001; Stanley and Ratcli↵e, 1985]. Early

Silurian felsic volcanic rocks were extruded in central western Newfoundland, suggesting 6

Fig. 1.3. Map showing the extent of the Grenville Province. Study area is shown in red box. Figure taken from Rivers [1997]. 7

Fig. 1.4. Schematic cross-section of the Taconic Orogeny. Figure adapted from Hatcher Jr [1987]. that some rifting followed the orogeny [Van Staal et al., 1998]. Late Ordovician to Early

Silurian molasse formed outboard of the eroding Taconic Mountains across most of the central Appalachians [Rodgers, 1971].

1.2.3 The Acadian Orogeny

The peri-Gondwanan superterranes Avalon, Carolina and Gander (Figure 1.6) collided with Laurentia and the previously accreted early Paleozoic terranes during the zippered north-to-south closing of the Rheic ocean, thus resulting in the Acadian and

Neoacadian orogenies [Hatcher, 2010]. More specifically, the Acadian orogeny was a re- sult of docking of the Carolina superterrane in the south (Figure 1.7) and Avalon/Gander superterranes in the north beginning in the Middle Devonian.

The collision of the Carolina and Avalon superterranes produced plutons in both the allochthon and autochthon, however these plutons are much more abundant in the 8

Fig. 1.5. Map showing the major elements of the Taconic Orogeny. Figures taken from Hibbard et al. [2010].

Fig. 1.6. The Appalachian peri-Gondwanan realm and its major elements. Figure taken from Hibbard et al. [2007]. 9

Fig. 1.7. Schematic cross-section of the Acadian Orogeny. Figure adapted from Hatcher Jr [1987]. northern Appalachians close to the location of the more westward subduction [Butler and Fullagar, 1978; Phinney, 1986]. Also due to the transpressional nature of the colli- sion, deformation and high-grade metamorphism associated with this event raised large northern Appalachian Mountains and was the most significant mountain building event in the Appalachian Mountains of New England.

1.2.4 The Alleghanian Orogeny

The final stage of the Appalachian Wilson Cycle, the closing of the Theic Ocean and formation of Pangea, was the continent-continent collision of Laurentia with Gond- wana resulting in the Alleghanian orogeny c. 325 Ma (Figure 1.8). Similar to previous orogenic events, the Alleghanian orogeny involved north-to-south transpressional closing of the Theic ocean, with sparse deformation mainly near the coastal edge of the Northern 10

Appalachians [Rast, 1984]. Rotation of Gondwana would later cause head on collision in the southern Appalachians, resulting in the formation of the Blue Ridge-Piedmont megathrust sheet, and later, the Early Permian Alleghanian fold-thrust belt and the approximately 160 km of shortening in the region [Hatcher, 2010; Arthaud and Matte,

1977]. Significant dextral faulting occurred from New England to Nova Scotia [Hatcher,

2010]. It has also been suggested that the narrow, strongly curved segment of the Penn- sylvania Salient (Figure 1.2) is a result of the Reguibat Promonotory in West Africa colliding with the eastern margin of Laurentia prior to the main African collision [Lefort and Van der Voo, 1981].

Fig. 1.8. Schematic cross-section of the Alleghanian Orogeny. Image adapted from Hatcher Jr [1987].

Pull-apart basins formed in the Northern Appalachians were later destroyed by the Alleghenian orogeny which resulted in a 1000 km wide dextral shear zone with the ⇠ southern extent at the Central-Northern Appalachian Boundary [Arthaud and Matte, 11

1977]. Right-lateral wrench-faulting dominates the Northern Appalachians, the southern extent of which marks the southern boundary of the New York Promontory and runs along the latitude of Long Island [Arthaud and Matte, 1977]. This large right-lateral transcurrent fault is known as the Kelvin, or Cornwell-Kelvin, Fault [Arthaud and Matte,

1977]. Similar shearing occurred south of the Southern Appalachians [Arthaud and

Matte, 1977].

Fig. 1.9. Map showing the major elements of the Alleghanian Orogeny. Figure taken from Hibbard et al. [2010].

1.2.5 Continental Break Up

Beginning in the Late Triassic ( 200 Ma), the eastern Gondwanan continent ⇠ began to pull apart from western Laurasia and successful rifting occurred along the

Atlantic margin. Thus, following the 490 Ma Appalachian orogeny, the supercontinent ⇠ Pangea proceeded to rift and drift, completing the Appalachian Wilson Cycle. Former thrust faults shifted to low-angle normal faults creating the roughly 40 northeast-trending 12 elongate rift basins (Figure 1.10) [Manspeizer, 2013]. Prior to drifting, this margin underwent tectonic uplift and crustal thinning. Cooling and subsidence occurred in the o↵shore basins of the Atlantic margin starting in the Middle Jurassic, thus marking the drift period and formation of the Atlantic Ocean [Manspeizer, 2013].

1.3 Anisotropy

1.3.1 Seismic Anisotropy

Anisotropy can be defined as the property of being directionally dependent. In the case of an elastic medium, this applies to physical properties such as seismic wave speed.

Seismic anisotropy is a direct result of the intrinsic mineralogical structure, or mineral lattice, which can be and is altered during mineral deformation [Stein and Wysession,

2009]. While some lattice systems are inherently isotropic, it is quite common for a crystal to have an anisotropic structure with orthorhombic or hexagonal lattice systems.

Anisotropic lattice systems are the natural order for many minerals, such as olivine, however in lattice preferred orientation, LPO, the orienting of anisotropic min- erals is produced through high strain processes such as dislocation creep, or plastic flow in the mantle [Zhang and Karato, 1995; Christensen, 1984]. This should not be confused with di↵usion creep, which occurs at low stress and/or small grain size but does not result in seismic anisotropy [Savage, 1999]. In general, the seismically fast axes are in the plane of the flow with the a-axis (Figure 1.11), the fastest direction, pointing in the direction of flow and the b-axis, the slow axis, normal to the direction of flow [Dziewonski and Anderson, 1981]. While measurements of seismic anisotropy of individual minerals 13

Fig. 1.10. Map showing the extent and location of Triassic rift basins in eastern North America. Figure created from the USGS database by the National Park Service. 14

Fig. 1.11. P-wave and S-wave velocities (in km/s) in a single olivine crystal. The a, b, and c axes are label. Figure taken from Kumazawa and Anderson [1969]. can be conducted in a laboratory environment, a large assemblage of statistically aligned

LPO is necessary for the anisotropy to be detectable on the scale of propagating seismic waves; it has been shown that olivine is easily oriented by the ambient stress or flow field over suciently large areas [Anderson and Dziewonski, 1982; Silver, 1996].

1.3.2 Mantle Anisotropy

Anisotropy is a fundamental characteristic of Earth materials ranging radially in space from the core to the crust [Shearer and Toy, 1991; Silver and Chan, 1991; Vinnik et al., 1989; Crampin and Booth, 1985]. Fluid filled cracks are likely the dominant source of anisotropy in the continental crust [Crampin and Booth, 1985; McNamara and Owens,

1993], however the major source of anisotropy, up to five times the magnitude [Silver,

1996], recorded teleseismically, derives from LPO of olivine. Peridotite, the primary 15 rock type found in the mantle, is composed of 60% olivine [Christensen, 1984; Nicolas and Christensen, 1987]. Orthopyroxene, which is also susceptible to LPO, makes up another 20% [Nicolas and Christensen, 1987; Babuska and Cara, 1991; Christensen and

Lundquist, 1982]. As mentioned before, olivine-rich aggregates are susceptible to finite strain on kilometer scales and deformation causes the a-axes of the LPO to concentrate in the direction of flow [Ribe, 1989; Silver, 1996; Mainprice and Silver, 1993]. Upper mantle anisotropy has been measured by numerous long-period surface wave investiga- tions [Tanimoto and Anderson, 1985; Montagner and Tanimoto, 1991; Anderson, 1965;

Forsyth, 1975], many studies of the Pn body phase [Hess, 1964; Shearer and Orcutt, 1986;

Raitt et al., 1969; Bamford, 1977], and also through free oscillation inversions [Anderson and Dziewonski, 1982], with an anisotropic layer necessary to a depth of at least 200km.

Because intrinsic anisotropy requires both anisotropic crystals and preferred orientation, the anisotropy of the mantle contains information about both composition as well as long-term strain deformation [Anderson and Dziewonski, 1982].

1.3.3 Shear-wave Splitting

One important and useful manifestation of anisotropy is shear-wave splitting, a phenomenon analogous to birefringence observed in an optically anisotropic medium, such as a calcite crystal [Silver, 1996]. When a single shear-wave encounters an anisotropic fabric, it will split into two orthogonal shear waves that propagate through the anisotropic medium at di↵erent velocities. One S-wave will travel polarized along the a-, or fast, axis while another will travel with displacement along the b-, or slow, axis (Figure 1.12) 16

[Babuska and Cara, 1991]. Shear-wave splitting expresses itself over a range of frequen- cies and exhibits a range of sensitivities to structures on di↵erent length scales in di↵erent parts of the Earth [Long and Silver, 2009].

Fig. 1.12. Schematic diagram of an incident S-wave traveling through an anisotropic medium (gold). Figure taken from W¨ustefeld et al. [2008].

The polarization of the fast component, , and the time delay, t,betweenthe components provide simple measurements to characterize anisotropy [Savage, 1999]. In order to simplify the calculations, core phases, such as SKS and SKKS (Figure 1.13), are utilized due to their known initial radial polarization, equal to back-azimuth, for the P-to-S converted wave exiting the core; an unaltered shear-wave radial polarization depends on the focal mechanism which complicates computation. 17

Fig. 1.13. SKS raypaths at epicentral distances of 95 - 140 degrees. Figure taken from Dziewonski and Anderson [1981].

1.3.4 Global and Regional Studies

Early work in the study of seismic anisotropy was done by Christo↵el (1877) and

Lord Kelvin (1905), however it was not until the last 15 years that shear-wave splitting studies were commonly made (Figure 1.14) [Savage, 1999]. It has been shown that the orientation and magnitude of the anisotropy varies widely between geologic settings and that there is no simple way to interpret shear-wave splitting results [Wenk et al., 1991;

Zhang and Karato, 1995; Ribe and Yu, 1991].

Nonetheless, observations of shear-wave splitting have led to a better understand- ing of deep structural geology in cratonic, oceanic rift, and subduction zones settings, among others. In orogenic environments, when uniaxial compression is the driving force,

should be parallel with surficial geologic features [Christensen and Crosson, 1968;

MILEV and Vinnik, 1991], whereas in a strike-slip region should be parallel to the strike of the fault [Vinnik et al., 1992; Holt, 2000]. Complexity arises, however, if mul- tiple anisotropic layers with varying fast axis directions are being sampled [Levin et al., 18

Fig. 1.14. Global shear-wave splitting results. Figure taken from Wuestefeld and Bokelmann [2007]. Red lines are oriented in the direction of and segment length is relative to t. Nearly all results were measured within the last 15 years.

1999]. The presence of two anisotropic layers is typically reflected by a 90 periodicity of , as well as t, as a function of back-azimuth (Appendix C) [Silver and Chan, 1991].

Previous investigations (Figure 1.15) in the Appalachians have provided evidence of both a lithospheric and asthenospheric contribution to splitting [Levin et al., 1999; Wagner et al., 2012].

As stated in the introduction, the purpose of this investigation is to provide higher lateral resolution of shear-wave splitting observations in the central Appalachian region in order to better understand first-order lithospheric fabric of the northern and southern segments of the orogenic system, as well as the transition between the two. 19

Fig. 1.15. Shear-wave splitting results for central and southeastern North America. Figure taken from Wagner et al. [2012]. 20

Chapter 2

2.1 Data and Methods

2.1.1 Data

In this study I utilize teleseismic data from broadband seismographs located throughout Pennsylvania and surrounding states. Data were gathered from two ma- jor networks (PASEIS and EarthScope’s USArray Transportable Array), and were aug- mented using data from a number of permanent stations within Pennsylvania. 22 seismic stations in the PASEIS network were equipped with Nanometrics 120-second Trillium

Compact seismometers and RefTek RT130 data loggers strategically deployed through- out Pennsylvania between February 2013 and June 2015 to densify the USArray Trans- portable Array. The study region contained seventy USArray Transportable Array sta- tions from which data collected between August 2012 until January 2015 were used

(Figure 2.1).

In addition, data were used from twelve permanent broadband seismic stations be- longing to the Pennsylvania State Network ( PENN), the Lamont-Doherty Cooperative

Seismographic Network (LCSN), the United States National Seismic Network (US), and the Global Seismograph Network (GSN). Teleseismic data were selected in accordance with common SKS splitting procedures [Silver and Chan, 1991]. Data from magntiude

(Mw) 5.5 events between epicentral distances ranging from 90 to 140 were used. An 21

85˚W 84˚W 83˚W 82˚W 81˚W 80˚W 79˚W 78˚W 77˚W 76˚W 75˚W 74˚W 73˚W 72˚W 71˚W 70˚W 44˚N 44˚N

a) 43˚N 43˚N

42˚N PACH PALRPAHC 42˚N PALW PAMG PACF PAHR PAPL PANP PARB 41˚N 41˚N PAYC PARC PSAL PALBPASW PATY PASH PAMC PSUF PAPG 40˚N PARS 40˚N PACW

39˚N 39˚N

38˚N 38˚N 85˚W 84˚W 83˚W 82˚W 81˚W 80˚W 79˚W 78˚W 77˚W 76˚W 75˚W 74˚W 73˚W 72˚W 71˚W 70˚W m −1000 0 1000 2000 3000

85˚W 84˚W 83˚W 82˚W 81˚W 80˚W 79˚W 78˚W 77˚W 76˚W 75˚W 74˚W 73˚W 72˚W 71˚W 70˚W 44˚N 44˚N

b) 43˚N 43˚N K52A K55A K57A K58A K59A K54A K56A K60A

L54A L55A L56A L59A L57A L58A L60A 42˚N L53A 42˚N M52A M59A M53A M54A M55A M56A M62A M57A M58A M60A M61A N54A 41˚N N56A N58A N59AN60A 41˚N N52A N53A N55A N57A N61A O60A O53A O55A O56A O57A O59A O51A O52A O54A O58A O61A 40˚N P60A 40˚N P52A P54A P59A P61A P55A P56A P51A P53A P57A P58A Q51A Q52A Q54A Q55A Q56A Q57A Q60A 39˚N Q53A Q58A Q59A Q61A 39˚N

38˚N 38˚N 85˚W 84˚W 83˚W 82˚W 81˚W 80˚W 79˚W 78˚W 77˚W 76˚W 75˚W 74˚W 73˚W 72˚W 71˚W 70˚W m −1000 0 1000 2000 3000

85˚W 84˚W 83˚W 82˚W 81˚W 80˚W 79˚W 78˚W 77˚W 76˚W 75˚W 74˚W 73˚W 72˚W 71˚W 70˚W 44˚N 44˚N

c) 43˚N 43˚N HRV ERPA 42˚N 42˚N ALLY PSWB PSDB 41˚N WRPS 41˚N LUPA UPAO SSPA PAGS FMPA PSUB 40˚N 40˚N MVL

39˚N 39˚N

38˚N 38˚N 85˚W 84˚W 83˚W 82˚W 81˚W 80˚W 79˚W 78˚W 77˚W 76˚W 75˚W 74˚W 73˚W 72˚W 71˚W 70˚W m

−1000 0 1000 2000 3000

Fig. 2.1. Location of stations used in this investigation. (a) PASEIS (b) USArray TA (c) Permanent stations 22 average of 300 events were processed for TA stations, 250 for PASEIS stations and 1000 for permanent stations. Waveforms were bandpass filtered between corner frequencies of

.02 and .2 Hz in order to remove noise and increase the quality of the results. The event distribution for a single permanent station can be seen in Figure 2.2, illustrating good azimuthal data coverage. A list of all events used is provided in the Appendix A.

2.1.2 Transverse Component Energy Minimization Method

In order to obtain shear-wave splitting parameters, namely lag time and fast polarization direction, I applied methods described by Silver and Chan [1991]. Among the variety of measurement methods for shear-wave splitting, the Transverse Component

Energy Minimization Method is the most common method utilized because it provides the least amount of skewing as initial polarization becomes close to the fast or slow axis direction [Long and Silver, 2009]. For this method, I first identify and window the SKS phase in the processed time-series. Because of the large amount of data available among the stations, the SKKS phase was not used. A grid search was then undertaken for lag times, t, between 0 and 4 seconds and ↵ (the angle between the back-azimuth and fast polarization direction) between -180 to 180. It is interesting to note that this range of lag time is much smaller than the dominant period, T, of the waves so there is not full separation of the two shear-waves [Long and Silver, 2009]. Within the grid search, the horizontal components of the seismograms are rotated into a radial (R) and transverse

(T) coordinate system, where the radial component corresponds to the back-azimuthal direction for core phases [Vecsey et al., 2008]. This produces a contour plot of transverse component energy within the selected window for the entire grid space and parameter 23

Fig. 2.2. Event (Mw 5.5) distribution for station MVL. 24 pairs that most remove the a↵ects of splitting, i.e. reduces the noise on the transverse component after rotating and shifting, are recorded and documented.

The quality of results are based on three criteria, 1) a clear and distinct SKS phase signal, 2) waveform signal-to-noise ratios greater than 3, and 3) elliptical particle motion of the windowed phase prior to corrections changing to linear particle motion after corrections are applied (Figure 2.3). Individual results that passed all criteria and were shown to constrain 95% misfit confidence within 0.3 seconds and less than 15 were considered A quality results, consistent with previous work by Wagner et al. [2012].

Those fulfilling two of the three criteria were considered B quality results and those only passing a single criterion were considered C quality results. A and B quality results were stacked using the method of Wolfe and Silver [1998] modified by Restivo and Hel↵rich

[1999]. Stacked results containing five or more high-quality individual results and 95% confidence within 0.5 seconds and 8 degrees were considered high-quality final results.

An example stack is shown in Figure 2.4 and stacked results for all stations are given in

Appendix B. Outside of these restrictions, the quality of the stacks degenerated quickly so these bounds were deemed sucient.

While the Transverse Component Energy Minimization Method is considered the most robust for near null results [Wuestefeld and Bokelmann, 2007], individual null results were common and many near null results showed predictable skewing (Figure

2.5). For the purposes of stacking, null and near-null results were not used. However, for the multi-layer forward modeling, null and near-null results were valuable and vital

[Silver and Savage, 1994]. 25

!

Fig. 2.3. Example waveform and particle motion before and after splitting corrections for event 2013 134 M6.8 at station ERPA. 26

!

Fig. 2.4. Final stack for station L60A. 27

! Fig. 2.5. Example waveform and particle motion for a null result for event 2013 24 M5.8 at station L54A. 28

2.1.3 Multiple Layer Modeling

We chose three permanent stations, ALLY, SSPA and MVL (Figure 2.1), due to their locations and long data records, to forward model for one- and two-layer cases using the SplitLab processing code. This was done so that results could be compared with two-layer inversion results of Levin et al. [1999] for station HRV. 29

Chapter 3

3.1 Results

Of the 104 stations used in this study for shear-wave splitting analyses, high- quality stacked measurements were obtained for a total of 73. Of the 70 Earthscope

USARRAY Transportable Array stations, 47 provided high-quality stacks with an aver- age of 8 A or B individual results per stack. Of the 22 PASEIS stations, high-quality stacks with an average of 6 individual A or B results per stack were obtained for 15 stations. Lastly, of the 12 permanent stations within the study area, high-quality stacks with an average of 13 A or B individual results per stack were obtained for 10 stations.

Due to the longer data records for the permanent stations, I was able to stack results from a wide range of back-azimuths, which decreases directional bias and is also im- portant for the modeling. Figure 3.1 shows all high-quality results mapped along with results from previous studies. The results are tabulated in Table 1.

Fast azimuth directions, , from this investigation are consistent with previous studies in the region [Vinnik et al., 1992; Eaton et al., 2004; Silver and Chan, 1991; Wag- ner et al., 2012; Levin et al., 2000]. While stacked results from this study might vary slightly from stacked results from previous studies (a result of various methodologies and datasets), stacked results from previous studies fall within the range of individ- ual results from this study (Figure 3.2). The average splitting delay-time for all stations 30

90˚W 80˚W 70˚W 60˚W

45˚N 84˚W 80˚W 76˚W 72˚W

40˚N

44˚N 44˚N 35˚N

30˚N

25˚N

40˚N 40˚N

Grenville Front Allegheny Front 84˚W 80˚W 76˚W 72˚W HS3 - Nuvel 1A m PASEIS This Study Permanent Wagner et al., 2012 −1000 0 1000 2000 3000 USArray TA Fouch et al., 2000 Eaton et al., 2004 1 sec Barruol, Helffrich, Vauchez, 1997 0.5 sec Levin et al., 1999 Morvel 2010 Silver and Chan, 1991 Barruol , Silver, Vauchez., 1997 Vinnik et al, 1992

Fig. 3.1. Map showing splitting results for individual stations. The direction of the line segment is also the direction of the fast azimuth, , and the length of the line segment is relative to the splitting delay time, t. Various colors show splitting results for other studies (see key) and results from this study are shown in black. The inset map shows all published shear-wave splitting results for eastern North America in red. 31

79˚W 78˚W 77˚W 76˚W

41˚N 41˚N

40˚N 40˚N

79˚W 78˚W 77˚W 76˚W m

−1000 0 1000 2000 3000

Fig. 3.2. Individual results for stations WRPS (SCP) and SSPA. Individual results from this study are shown in black and stacked results from Vinnik et al. [1992], Barruol et al. [1997b], and Barruol et al. [1997a] are shown in red. In order to better visualize the distribution of , delay times are normalized to 1 second, however t values between the various studies are consistent and between 0.6 to 2.0 seconds 32

Table&1:&Stacked&shear1wave&splitting&results&for&this&study.& #(of( Network( Station( Latitude((°)( Longitude(((°)( Φ((°)( ±(dΦ((°)( δt((s)( ±(dδt((s)( Results( TA( K52A 42.78 -80.71 74 1 1.100 0.038 12 TA( K54A 42.61 -78.69 83 2 0.825 0.038 7 TA( K55A 42.73 -78.07 78 3 0.400 0.038 11 TA( K56A 42.70 -77.32 -78 5 0.975 0.125 5 TA( K57A 42.73 -76.52 -79 4 0.625 0.050 8 TA( K58A 42.76 -75.65 77 2 0.775 0.063 8 TA( L53A 41.95 -80.26 57 1 1.225 0.088 7 TA( L54A 42.23 -79.32 74 2 0.925 0.075 8 TA( L55A 42.18 -78.44 75 5 0.700 0.088 8 TA( L56A 42.14 -77.56 -77 2 0.575 0.050 9 TA( L57A 42.00 -76.85 -73 2 0.975 0.100 10 TA( L59A 42.19 -75.04 85 3 0.650 0.063 7 TA( L60A 41.99 -74.22 84 4 0.675 0.050 12 TA( M52A 41.54 -81.36 69 2 0.775 0.050 8 TA( M53A 41.44 -80.67 50 2 1.150 0.050 11 TA( M54A 41.51 -79.66 69 1 0.675 0.025 10 TA( M55A 41.47 -78.76 73 2 0.775 0.038 6 TA( M56A 41.48 -78.18 76 3 0.725 0.075 4 TA( M57A 41.37 -77.02 -72 5 0.525 0.033 5 TA( M58A 41.37 -76.46 71 7 0.700 0.088 8 TA( M59A 41.54 -75.43 -88 3 0.850 0.063 5 TA( M60A 41.33 -74.63 85 6 0.975 0.175 3 TA( N52A 40.81 -81.69 52 2 1.000 0.038 10 TA( N53A 40.81 -80.84 53 3 0.850 0.163 6 TA( N54A 40.96 -79.99 64 2 0.525 0.025 11 TA( N55A 40.78 -78.99 64 2 0.625 0.038 7 TA( N56A 40.92 -78.30 85 3 0.800 0.075 6 TA( N58A 40.84 -76.72 -82 2 0.825 0.050 12 TA( N59A( 40.92 -75.77 -77 3( 0.650 0.050 10 TA( N60A 40.87 -75.10 75 3 0.925 0.113 8 TA( N61A 40.75 -74.29 -68 1 1.200 0.113 6 TA( O51A 40.15 -82.61 60 1 1.000 0.050 10 TA( O52A 40.12 -81.84 42 2 0.875 0.063 9 TA( O53A 40.25 -81.21 38 5 0.600 0.050 7 TA( O55A 40.21 -79.30 73 4 0.825 0.088 3 TA( O56A 40.27 -78.57 73 5 0.650 0.075 7 TA( O60A 40.32 -75.41 -72 2 0.950 0.050 12 TA( P51A 39.48 -83.06 56 2 0.900 0.050 14 TA( P52A 39.63 -82.13 52 2 0.850 0.065 11 TA( P54A 39.61 -80.48 74 3 0.600 0.063 6 33

TA( P55A 39.51 -79.83 66 3 0.650 0.063 8 TA( P59A 39.61 -76.43 77 3 1.075 0.075 5 TA( Q51A 39.03 -83.35 68 2 1.175 0.075 8 TA( Q52A 38.96 -82.27 63 2 0.950 0.088 8 TA( Q53A 38.86 -81.53 -87 6 0.550 0.038 8 TA( Q54A 38.98 -80.83 68 1 1.125 0.050 8 TA( Q55A 39.00 -80.08 65 2 0.850 0.075 9 TA( Q57A 39.04 -78.41 86 3 0.800 0.025 11 TA( Q61A 38.88 -75.33 58 4 0.750 0.075 6 XY( PARB 40.99 -77.20 86 5 0.720 0.070 9 XY( PACF 41.33 -79.21 74 2 0.700 0.040 6 XY( PARC 40.50 -80.42 50 1 1.640 0.240 3 XY( PACH 41.76 -79.17 64 1 1.040 0.050 10 XY( PALR 41.73 -77.76 -50 2 1.340 0.120 7 XY( PASW 40.50 -76.50 87 1 1.420 0.040 10 XY( PAHR 41.36 -77.63 -83 5 0.400 0.060 4 XY( PAPG 40.03 -77.31 73 2 1.060 0.090 5 XY( PACW 40.00 -77.92 76 2 0.800 0.050 6 XY( PAPL 41.32 -75.21 87 1 0.580 0.180 3 XY( PALW 41.56 -75.70 -72 4 0.680 0.060 5 XY( PALB 40.45 -77.19 -75 2 1.300 0.080 5 XY( PAMG 41.43 -80.15 43 9 1.200 0.260 4 XY( PSAL 40.54 -78.41 55 2 2.160 0.210 2 XY( PATY 40.23 -74.95 -85 2 0.780 0.090 6 US( ERPA 42.12 -79.99 62 1 1.150 0.038 9 LD( MVL 40.00 -76.35 89 2 0.800 0.030 17 LD( ALLY 41.65 -80.14 65 1 0.825 0.038 11 PE( PSDB 41.13 -78.75 74 2 0.680 0.040 8 PE( PAGS 40.23 -76.72 -81 2 1.340 0.100 10 PE( PSUB 39.93 -75.45 -89 3 0.740 0.040 6 PE( PSWB 41.31 -76.02 -60 5 1.220 0.130 4 PE( UPAO 40.48 -80.02 54 4 0.580 0.060 7 PE( WRPS 40.79 -77.87 85 3 0.740 0.050 5 IU( SSPA 40.64 -77.89 77 1 0.650 0.025 48 & 34 is 0.87 seconds, which is within the normal t range for continental settings (0.0 - 3.0 s) [Savage, 1999] and is also consistent with other regional investigations [Vinnik et al.,

1992; Eaton et al., 2004; Levin et al., 1999; Wagner et al., 2012; Fouch et al., 2000].

Delay times are consistent across the entire region with a small decrease in t in close proximity to the Allegheny Front (Figure 3.1). While there is no significant E-W trend in

t, there is a strong trend in from E-W directions in the southeastern part of the region smoothly transitioning to NE-SW directions in the southwestern part of the region and into Ohio. This smooth lateral transition can be seen in Figures 3.3 and 3.4.

3.2 Discussion

As stated in the introduction, the purpose of this investigation is to provide higher lateral resolution of shear-wave splitting observations in the central Appalachian region in order to better understand first-order lithospheric fabric of the northern and southern segments of the orogenic system, as well as the transition between the two.

The first order result from this study is a pronounced transition of from roughly

E-W in the southeastern part of the study region rotating to NE-SW in eastern Ohio and southwestern New York and West Virginia (Figure 20). This smooth transition of

across the southern part of the study area is highlighted in Figure 3.3 and is even more apparent when is plotted against the distance of a station from the Allegheny

Front (Figure 3.5). One might expect a jump in or t across the Allegheny Front, where deformation is present at the surface to the east and absent to the west of this boundary. However, this is not the case; while the NE-SW orientations align well with the surface features of the mountains, the E-W directions are oblique to the strike of the 35

140

120 °) ( a) 100

80

60

40

20 Fast Azimuth Direction Fast

0 -84 -82 -80 -78 -76 -74 -72 Longitude (°)

140

120

°) ( 100 b)

80

60

40

20 Fast Azimuth Direction Fast

0 38.5 39 39.5 40 40.5 41 41.5 42 42.5 43 Latitude (°)

Fig. 3.3. Fast Azimuth Direction () vs longitude (a) and latitude (b) for all high-quality results. vs. longitude shows a systematic increase East to West. 36

Fig. 3.4. Map showing all shear-wave splitting results in eastern North America with plotted by color. The central Appalachians are dominated by red colors close to the coast and blue colors in the western areas. New York does not include a trend towards blue colors. Figure contains results from this study and all published results for this area [Barruol et al., 1997b; Barruol and Ho↵mann, 1999; Barruol et al., 1997c; Eaton et al., 2004; Fouch et al., 2000; Silver and Chan, 1991; Vinnik et al., 1992; Wagner et al., 2012; Frederiksen et al., 2013; Levin et al., 2000; Russo and Silver, 1994] 37 mountains in the eastern part of the study area. Within New York, does not show this longitudinal rotation but instead remains aligned roughly E-W. Therefore the central

Appalachian Mountains do not contain two laterally distinct upper mantle fabrics, but instead there lies a smooth gradient of upper mantle anisotropy East to West south of

New York.

Previous investigations in the region, specifically Levin et al. [1999], examined shear-wave splitting parameters at Harvard’s broadband station HRV. The purpose of the investigation was to identify any indication of two horizontal, anisotropic layers lo- cated in the upper mantle. Two overlying horizontal layers of anisotropic fabric will result in multiple split shear-waves and can be identified by 90 periodicity in the splitting pa- rameters across 360 of back-azimuth, as opposed to 180 periodicity is seen with less variation between for a single layer (see Appendix D) [Silver and Savage, 1994]. Further- more, these complexities can be shown by di↵erences in parameters along back-azimuth and incidence angle. Figure 3.6 shows the best one-layer and two-layer orthorhombic inversions for observations recorded at HRV [Levin et al., 1999]. The best-fit inversion was a two-layer case (roughly three times less variance than the single-layer inversion) where the top layer of anisotropy had a of 53 underlain by an anisotropic layer with of -60. Levin et al. [1999] interpreted the top layer as ’frozen-in’ anisotropy residing in the lithospheric mantle caused by orogenic development or possibly Paleozoic delamina- tion [Levin et al., 2000]. The bottom layer, roughly parallel to Apparent Plate Motion

(APM), was interpreted as LPO of olivine in the asthenosphere, a result of drag forces.

It is important to note that these results assumed horizontal layers. While vertical man- tle flow has been suggested from the numerous null results in the southern Appalachian 38

160

140

120

100 ection (°) r

80 uth Di m 60 Aziu

Fast 40

20

0 -4 -3 -2 -1 0 1 2 Distance from Allegheny Front (°)

Fig. 3.5. Fast Azimuth Direction () vs. Distance from the Allegheny Front for all stations. 39

Mountains [Wagner et al., 2012; Long et al., 2010], the absence of these null results in the central Appalachians supports the assumption of roughly horizontal layers.

Using the SplitLab modeling code [W¨ustefeld et al., 2008], I have investigated whether a 2-layer model of anisotropy can explain the pattern shown in Figure 3.7.

Using this code, it is possible to examine similarities between results at permanent stations within the study area compared to inversion models from Levin et al. [1999].

MVL, the first station investigated, is located in the eastern part of the study area in a lithotectonic terrain similar to station HRV. Using roughly the same model from Levin et al. [1999], Figure 3.7 shows a comparison between the observations for MVL and the

2-layer model for HRV.

As the stereoplots show (Figure 3.7), there is a strong correlation between the 90 complex periodicity shown in the predictions and those seen in the data. It can therefore be concluded that there are likely two significant upper-mantle anisotropic layers below station MVL. Similar to the interpretations of Levin et al. [1999], we conclude that the top layer with of 60 (roughly normal to the plate boundary) is ’frozen-in’ anisotropy persisting since, or from before, continental break-up in the Triassic Period. Because in the bottom layer is roughly parallel with APM, I attribute this anisotropic layer to modern strain in the asthenosphere.

Figure 3.8 shows similar plots for station ALLY located in western Pennsylvania.

Here a di↵erent pattern of splitting parameters is seen. Instead of the 90 periodicity of stations HRV and MVL, a 180 periodicity with complexities in the direction normal to the average . Between these directions there is less variation in and t. 40

Fig. 3.6. Results of one and two horizontal, orthorhombic anisotropic layer inversions from Levin et al. [1999]. Individual and t values for HRV are plotted according to each event back-azimuth from north and incidence angle (as a distance from the center of the circle). 41

N MVL ! ! ! ! !

! ! ! ! ! ! ! ! Fig. 3.7. Synthetic results (left) from two-layer Levin et al. [1999] model with top layer having of -60 and a t of 0.7 seconds and a bottom layer with of 60 and t of 1 second. Observed results (right) at station MVL show correlation with the modeled results. 42

ALLY N

Fig. 3.8. Synthetic results (left) from one-layer model having of 60 and a t of 1 second. Observed results (right) at station ALLY show correlation with the modeled results.

In order to replicate these observations with forward modeling, I removed the contribution of the top layer and found strong similarities of the single bottom layer to the observations. This would suggest that between stations MVL and ALLY the amount of anisotropy in the top layer decreases roughly to zero.

For station SSPA, roughly half way between stations ALLY and MVL and only

40 km east of the Allegheny Front, the observations show similarities to the Levin et al.

[1999] model with the magnitude of the top layer decreased by a factor of two (0.3 seconds delay time) (Figure 3.9).

Given these modeling results and because we see a smooth transition in east- to-west south of New York (Figure 3.1), it is possible that the anisotropy in the top layer diminishes from MVL to ALLY. If the top layer is assumed to be lithosphere, then 43

SSPA

! !

Fig. 3.9. Synthetic results (left) from two-layer model with top layer having of -60 and a t of 0.4 seconds and a bottom layer with of 60 and t of 1 second. Observed results (right) at station SSPA show correlation with the modeled results. lithospheric anisotropy present in the southeastern part of the study region ”pinches out” towards the southwestern part of the study region to roughly no shear-wave splitting contribution. Figure 3.10 shows this interpretation in cartoon form.

Furthermore, given that the anisotropy in the lithosphere in the southeastern part of the study area is roughly normal to the plate boundary, we can conclude that the fossil anisotropy is a result of the rifting of Pangea during the Triassic Period where LPO of olivine formed in the direction of extension [Walker et al., 2005; Moschetti et al., 2010].

The westward extent of this anisotropy from the margin might also be a result of similar

LPO formed during the rifting of Rodinia c. 750 Ma along the eastern extent of the

Grenville Province (Figure 1.3). 44

Allegheny Front Fossil Anisotropy

Asthenospheric drag

Fig. 3.10. Schematic cross-section of the location and magnitude of the two anisotropic layers. Cartoon cross-section cuts west-to-east across the Appalachian Mountains through Pennsylvania.

However, if we look in more detail at the models it is apparent that while the poles of the splitting complexities are well aligned with the observations, the rotating of between these axes directions can be quite dissimilar. Again, using the forward modeling approach, the orientations of the two layers can be adjusted to best match the observations. Figure 3.11 shows a two-layer model that fits the data better. In this new model, the top layer has a t of 0.7 s and of 51. The bottom layer of the new model has a t of 1 second with a of -80. The new model fits the observations at station

ALLY if we remove the bottom layer completely (Figure 3.13) and at station SSPA if we reduce t of the bottom layer to 0.4 seconds (Figure 3.12).

Based on these modeling results, we can conclude that two layers of anisotropy are likely present at station MVL and SSPA and only a single layer is present at ALLY with the amount of anisotropy in the bottom layer at SSPA reduced compared to MVL. 45

MVL

a) b) c) ! !

! ! !

Fig. 3.11. Synthetic results (a) from two-layer Levin et al. [1999] model. (b) Two-layer model with top layer having of 51 with a t of 0.7 seconds and a bottom layer with of -80 and t of 1 second. (c) Observed results at station MVL show correlation with both of the modeled results.

SSPA ! a) b) c)! N

Fig. 3.12. Synthetic results (a) from two-layer Levin et al. [1999] (top layer t reduced to 0.4 seconds). (b) Two-layer model with top layer having of 51 with a t of 1 second and a bottom layer with of -80 and t of 0.4 seconds. (c) Observed results at station SSPA show correlation with both of the modeled results. 46

ALLY

a) b) c)

Fig. 3.13. Synthetic results (a) from previous one-layer model. (b) One-layer model having of 51 with a t of 1 second. (c) Observed results at station ALLY show correlation with both of the modeled results.

At stations south of New York, the two modeling cases suggest two layers present in the eastern and central stations and only a single layer in the western stations. Within New

York, does not show this gradational change and remains oriented roughly E-W. This is also the location of significant previous E-W shearing [Hatcher and Odom, 1980] and the Cornwell-Kelvin Fault. It is possible that the increase in distance from the Atlantic margin of the E-W oriented anisotropy in New York is a result of this previous shearing.

It is also of interest to note that there is similarity between these results and patterns of fault plane solutions in the central Appalachian region. Herrmann et al.

[2011] show a change of the style of faulting from normal in the eastern part of the study region and in central and western New York to transform in the western part of the study area (Figure 3.14). While it is dicult to speculate on the relationship between faulting mechanisms and anisotropy in the lithosphere, both show changes in patterns in about the same locations. 47

Fig. 3.14. Moment Tensor solutions 1999-2006 for magnitude greater than 3.0 earth- quakes. Solid black line segments show schematically SKS results from this study. The dashed red line separates both normal faulting and roughly E-W anisotropy from trans- form faulting and NE-SW anisotropy. Figure taken from Herrmann et al. [2011]. 48

3.3 Summary and Conclusions

Shear-wave splitting measurements have been made on data recorded on a large number of seismographs located throughout the central Appalachian Mountains in order to better constrain first-order lithospheric fabric of the northern and southern segments of the orogenic system, as well as the transition between the two. The results show a significant gradational change of from E-W in the eastern and northern parts of the study area to NE-SW in the southwestern part of the study area. This gradational change in can be attributed to fossil anisotropy in the lithosphere oriented E-W in the eastern part of the study area close to the plate margin, possibly a result of Triassic rifting of Pangea and even Neoproterozoic rifting of Rodinia. The NE-SW pattern in

in the southwestern part of the region is aligned with apparent plate motion and the lithospheric contribution of anisotropy from rifting can no longer be seen. The western extent of the E-W oriented anisotropy in New York along the New York Promontory and

Pennsylvania Embayment boundary could represent a first-order lithospheric boundary between the northern and southern segments of the Appalachian Mountains. However, the rotating of can be seen further north in New England where the margin experienced similar Triassic rifting (Figure 3.4). Only two stations within the study area provided null results as opposed to the many null results reported by Wagner et al. [2012] in and south of South Carolina. This is also a first-order distinction between consistent and rotating in the central Appalachian Mountains and sporadic and nulls in the southern Appalachian Mountains (Figure 3.4). 49 Bibliography

Aleiniko↵, J. N., Zartman, R. E., Walter, M., Rankin, D. W., Lyttle, P. T., and Burton,

W. C. (1995). U-pb ages of metarhyolites of the catoctin and mount rogers formations,

central and southern appalachians; evidence for two pulses of iapetan rifting. American

Journal of Science, 295(4):428–454.

Anderson, D. L. (1965). Recent evidence concerning the structure and composition of

the earth’s mantle. Physics and Chemistry of the Earth, 6:1–131.

Anderson, D. L. and Dziewonski, A. M. (1982). Upper mantle anisotropy: evidence from

free oscillations. Geophysical Journal International, 69(2):383–404.

Arthaud, F. and Matte, P. (1977). Late paleozoic strike-slip faulting in southern europe

and northern africa: Result of a right-lateral shear zone between the appalachians and

the urals. Geological Society of America Bulletin, 88(9):1305–1320.

Babuska, V. and Cara, M. (1991). Seismic anisotropy in the Earth, volume 10. Springer

Science & Business Media.

Bamford, D. (1977). Pn velocity anisotropy in a continental upper mantle. Geophysical

Journal International, 49(1):29–48.

Barruol, G., Hel↵rich, G., and Vauchez, A. (1997a). Shear wave splitting around

the northern atlantic: frozen pangaean lithospheric anisotropy? Tectonophysics,

279(1):135–148. 50

Barruol, G. and Ho↵mann, R. (1999). Upper mantle anisotropy beneath the geoscope

stations. Journal of Geophysical Research: Solid Earth (1978–2012), 104(B5):10757–

10773.

Barruol, G., Silver, P. G., and Vauchez, A. (1997b). Seismic anisotropy in the eastern

united states: Deep structure of a complex continental plate. Journal of Geophysical

Research: Solid Earth (1978–2012), 102(B4):8329–8348.

Barruol, G., Silver, P. G., and Vauchez, A. (1997c). Seismic anisotropy in the eastern

united states: Deep structure of a complex continental plate. Journal of Geophysical

Research: Solid Earth (1978–2012), 102(B4):8329–8348.

Butler, J. R. and Fullagar, P. D. (1978). Petrochemical and geochronological studies of

plutonic rocks in the southern appalachians: Iii. leucocratic adamellites of the charlotte

belt near salisbury, north carolina. Geological Society of America Bulletin, 89(3):460–

466.

Christensen, N. and Crosson, R. (1968). Seismic anisotropy in the upper mantle. Tectono-

physics, 6(2):93–107.

Christensen, N. I. (1984). The magnitude, symmetry and origin of upper mantle

anisotropy based on fabric analyses of ultramafic tectonites. Geophysical Journal In-

ternational, 76(1):89–111.

Christensen, N. I. and Lundquist, S. M. (1982). Pyroxene orientation within the upper

mantle. Geological Society of America Bulletin, 93(4):279–288. 51

Crampin, S. and Booth, D. C. (1985). Shear-wave polarizations near the north anato-

lian fault–ii. interpretation in terms of crack-induced anisotropy. Geophysical Journal

International, 83(1):75–92.

Dziewonski, A. M. and Anderson, D. L. (1981). Preliminary reference earth model.

Physics of the earth and planetary interiors, 25(4):297–356.

Eaton, D., Frederiksen, A., and Miong, S.-K. (2004). Shear-wave splitting observations

in the lower great lakes region: Evidence for regional anisotropic domains and keel-

modified asthenospheric flow. Geophysical research letters, 31(7).

Forsyth, D. W. (1975). The early structural evolution and anisotropy of the oceanic

upper mantle. Geophysical Journal International, 43(1):103–162.

Fouch, M. J., Fischer, K. M., Parmentier, E., Wysession, M. E., and Clarke, T. J.

(2000). Shear wave splitting, continental keels, and patterns of mantle flow. Journal

of Geophysical Research: Solid Earth (1978–2012), 105(B3):6255–6275.

Frederiksen, A., Deniset, I., Ola, O., and Toni, D. (2013). Lithospheric fabric variations

in central north america: Influence of rifting and archean tectonic styles. Geophysical

Research Letters, 40(17):4583–4587.

Hatcher, R. and Odom, A. (1980). Timing of thrusting in the southern appalachians,

usa: model for orogeny? Journal of the Geological Society, 137(3):321–327.

Hatcher, R. D. (2010). The appalachian orogen: A brief summary. Geological Society of

America Memoirs, 206:1–19. 52

Hatcher Jr, R. D. (1987). Tectonics of the southern and central appalachian internides.

Annual Review of Earth and Planetary Sciences, 15:337.

Herrmann, R., Benz, H., and Ammon, C. (2011). Monitoring the earthquake source pro-

cess in north america. Bulletin of the Seismological Society of America, 101(6):2609–

2625.

Hess, H. (1964). The oceanic crust, the upper mantle and the mayaguez serpentinized

peridotite. In A study of serpentinite, volume 1188, pages 169–175. Publ.

Hibbard, J. P., Van Staal, C. R., and Rankin, D. W. (2007). A comparative analysis

of pre-silurian crustal building blocks of the northern and the southern appalachian

orogen. American Journal of Science, 307(1):23–45.

Hibbard, J. P., van Staal, C. R., and Rankin, D. W. (2010). Comparative analysis

of the geological evolution of the northern and southern appalachian orogen: Late

ordovician-permian. Geological Society of America Memoirs, 206:51–69.

Holt, W. (2000). Correlated crust and mantle strain fields in tibet. Geology, 28(1):67–70.

Kumazawa, M. and Anderson, O. L. (1969). Elastic moduli, pressure derivatives, and

temperature derivatives of single-crystal olivine and single-crystal forsterite. Journal

of Geophysical Research, 74(25):5961–5972.

Lefort, J.-P. and Van der Voo, R. (1981). A kinematic model for the collision and

complete suturing between gondwanaland and laurussia in the carboniferous. The

Journal of Geology, pages 537–550. 53

Levin, V., Menke, W., and Park, J. (1999). Shear wave splitting in the appalachians and

the urals: a case for multilayered anisotropy. Journal of Geophysical Research: Solid

Earth (1978–2012), 104(B8):17975–17993.

Levin, V., Menke, W., and Park, J. (2000). No regional anisotropic domains in the

northeastern us appalachians. Journal of Geophysical Research: Solid Earth (1978–

2012), 105(B8):19029–19042.

Long, M. D., Benoit, M. H., Chapman, M. C., and King, S. D. (2010). Upper man-

tle anisotropy and transition zone thickness beneath southeastern north america and

implications for mantle dynamics. , Geophysics, Geosystems, 11(10).

Long, M. D. and Silver, P. G. (2009). Shear wave splitting and mantle anisotropy: mea-

surements, interpretations, and new directions. Surveys in Geophysics, 30(4-5):407–

461.

Mainprice, D. and Silver, P. G. (1993). Interpretation of sks-waves using samples from the

subcontinental lithosphere. Physics of the Earth and Planetary Interiors, 78(3):257–

280.

Manspeizer, W. (2013). Triassic-Jurassic rifting: continental breakup and the origin of

the Atlantic Ocean and passive margins.Elsevier.

McNamara, D. E. and Owens, T. J. (1993). Azimuthal shear wave velocity anisotropy in

the basin and range province using moho ps converted phases. Journal of Geophysical

Research: Solid Earth (1978–2012), 98(B7):12003–12017. 54

MILEV, A. and Vinnik, L. (1991). Strain in the continental mantle from the data

of global digital seismograph network. DOKLADY AKADEMII NAUK SSSR,

318(6):1345–1349.

Montagner, J.-P. and Tanimoto, T. (1991). Global upper mantle tomography of seismic

velocities and anisotropies. Journal of Geophysical Research: Solid Earth (1978–2012),

96(B12):20337–20351.

Moschetti, M., Ritzwoller, M., Lin, F., and Yang, Y. (2010). Seismic evidence

for widespread western-us deep-crustal deformation caused by extension. Nature,

464(7290):885–889.

Nicolas, A. and Christensen, N. I. (1987). Formation of anisotropy in upper man-

tle peridotites-a review. Composition, structure and dynamics of the lithosphere-

asthenosphere system, pages 111–123.

Phinney, R. A. (1986). A seismic cross section of the new england appalachians: The

orogen exposed. Reflection : The continental crust, pages 157–172.

Raitt, R., Shor, G., Francis, T., and Morris, G. (1969). Anisotropy of the pacific upper

mantle. Journal of Geophysical Research, 74(12):3095–3109.

Rast, N. (1984). The alleghenian orogeny in eastern north america. Geological Society,

London, Special Publications, 14(1):197–217.

Restivo, A. and Hel↵rich, G. (1999). Teleseismic shear wave splitting measurements in

noisyenvironments. Geophysical journal international, 137(3):821–830. 55

Ribe, N. M. (1989). Seismic anisotropy and mantle flow. Journal of Geophysical Research:

Solid Earth (1978–2012), 94(B4):4213–4223.

Ribe, N. M. and Yu, Y. (1991). A theory for plastic deformation and textural evolution

of olivine polycrystals. Journal of Geophysical Research: Solid Earth (1978–2012),

96(B5):8325–8335.

Rivers, T. (1997). Lithotectonic elements of the grenville province: review and tectonic

implications. Precambrian Research, 86(3):117–154.

Rodgers, J. (1971). The taconic orogeny. Geological Society of America Bulletin,

82(5):1141–1178.

Russo, R. and Silver, P. (1994). Trench-parallel flow beneath the from seismic

anisotropy. Science, 263(5150):1105–1111.

Savage, M. (1999). Seismic anisotropy and mantle deformation: what have we learned

from shear wave splitting? Reviews of Geophysics, 37(1):65–106.

Shearer, P. and Orcutt, J. (1986). Compressional and shear wave anisotropy in the

oceanic lithosphere-the ngendei seismic refraction experiment. Geophysical Journal

International, 87(3):967–1003.

Shearer, P. M. and Toy, K. M. (1991). Pkp (bc) versus pkp (df) di↵erential travel times

and aspherical structure in the earth’s inner core. Journal of Geophysical Research:

Solid Earth (1978–2012), 96(B2):2233–2247.

Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of

geology. Annual Review of Earth and Planetary Sciences, 24:385–432. 56

Silver, P. G. and Chan, W. W. (1991). Shear wave splitting and subcontinental mantle de-

formation. Journal of Geophysical Research: Solid Earth (1978–2012), 96(B10):16429–

16454.

Silver, P. G. and Savage, M. K. (1994). The interpretation of shear-wave splitting pa-

rameters in the presence of two anisotropic layers. Geophysical Journal International,

119(3):949–963.

Stanley, R. S. and Ratcli↵e, N. M. (1985). Tectonic synthesis of the taconian orogeny in

western new england. Geological Society of America Bulletin, 96(10):1227–1250.

Stein, S. and Wysession, M. (2009). An introduction to seismology, earthquakes, and

earth structure. John Wiley & Sons.

Tanimoto, T. and Anderson, D. L. (1985). Lateral heterogeneity and azimuthal

anisotropy of the upper mantle: Love and rayleigh waves 100–250 s. Journal of Geo-

physical Research: Solid Earth (1978–2012), 90(B2):1842–1858.

Van Staal, C., Dewey, J., Mac Niocaill, C., and McKerrow, W. (1998). The cambrian-

silurian tectonic evolution of the northern appalachians and british caledonides: his-

tory of a complex, west and southwest pacific-type segment of iapetus. Geological

Society, London, Special Publications, 143(1):197–242.

Vecsey, L., Plomerov´a, J., and Babuˇska, V. (2008). Shear-wave splitting measure-

mentsproblems and solutions. Tectonophysics, 462(1):178–196. 57

Vinnik, L., Makeyeva, L., Milev, A., and Usenko, A. Y. (1992). Global patterns of

azimuthal anisotropy and deformations in the continental mantle. Geophysical Journal

International, 111(3):433–447.

Vinnik, L. P., Farra, V., and Romanowicz, B. (1989). Azimuthal anisotropy in the earth

from observations of sks at geoscope and nars broadband stations. Bulletin of the

Seismological Society of America, 79(5):1542–1558.

Wagner, L. S., Long, M. D., Johnston, M. D., and Benoit, M. H. (2012). Lithospheric and

asthenospheric contributions to shear-wave splitting observations in the southeastern

united states. Earth and Planetary Science Letters, 341:128–138.

Walker, K., Bokelmann, G., Klemperer, S., and Bock, G. (2005). Shear-wave split-

ting around the eifel : evidence for a mantle upwelling. Geophysical Journal

International, 163(3):962–980.

Wenk, H.-R., Bennett, K., Canova, G., and Molinari, A. (1991). Modelling plastic defor-

mation of peridotite with the self-consistent theory. Journal of Geophysical Research:

Solid Earth (1978–2012), 96(B5):8337–8349.

Wilson, J. R. (2001). U/pb zircon ages of plutons from the central appalachians and

gis-based assessment of plutons with comments on their regional tectonic significance.

Wolfe, C. J. and Silver, P. G. (1998). Seismic anisotropy of oceanic upper mantle: Shear

wave splitting methodologies and observations. Journal of Geophysical Research: Solid

Earth (1978–2012), 103(B1):749–771. 58

Wuestefeld, A. and Bokelmann, G. (2007). Shear-wave splitting beneath thick litho-

spheric keels: a case study of the east european craton. In Geophysical Research

Abstracts, volume 9, page 02869.

W¨ustefeld, A., Bokelmann, G., Zaroli, C., and Barruol, G. (2008). Splitlab: A shear-wave

splitting environment in matlab. Computers & Geosciences, 34(5):515–528.

Zhang, S. and Karato, S.-i. (1995). Lattice preferred orientation of olivine aggregates

deformed in simple shear. Nature, 375(6534):774–777. 59 Appendix A: Individual events per station. Depth Number Network Station Year Julday Time Lat Lon (km) Magnitude

1 TA K52A 2012 356 22:37:39 -14.34 167.29 200.7 6.7 2 TA K52A 2013 99 12:01:19 28.50 51.59 10.0 6.4 3 TA K52A 2013 106 10:53:02 28.11 62.05 82.0 7.7 4 TA K52A 2013 106 23:06:02 -3.22 142.54 13.0 6.6 5 TA K52A 2013 134 0:40:31 18.73 145.29 602.3 6.8 6 TA K52A 2013 271 7:43:07 27.18 65.51 12.0 6.8 7 TA K52A 2013 327 7:57:00 -17.12 -176.54 371.0 6.5 8 TA K52A 2014 1 16:13:00 -13.86 167.25 187.0 6.5 9 TA K52A 2014 43 9:28:35 35.82 82.47 10.0 6.9 10 TA K52A 2014 94 11:50:27 -10.54 161.70 57.0 6.0 11 TA K52A 2014 103 12:46:17 -11.13 162.05 10.0 6.6 12 TA K52A 2014 121 6:46:27 -21.45 170.35 106.0 6.6

1 TA K54A 2013 137 6:53:14 -11.07 165.08 7.0 5.7 2 TA K54A 2013 146 6:16:23 39.96 67.31 15.8 5.7 3 TA K54A 2013 185 17:26:07 -7.03 155.73 29.0 6.6 4 TA K54A 2013 271 7:43:04 27.18 65.51 12.0 6.8 5 TA K54A 2014 10 2:32:35 -31.31 -179.57 211.0 5.6 6 TA K54A 2014 43 9:28:33 35.82 82.47 10.0 6.9 7 TA K54A 2014 61 20:20:22 27.41 127.34 111.2 6.5

1 TA K55A 2013 38 19:09:14 -11.00 165.66 11.0 6.0 2 TA K55A 2013 106 10:52:58 28.03 62.05 82.0 7.7 3 TA K55A 2013 134 0:40:37 18.73 145.29 602.2 6.8 4 TA K55A 2013 202 23:54:55 34.51 104.26 8.0 5.9 5 TA K55A 2013 327 7:57:08 -17.12 -176.54 371.0 6.5 6 TA K55A 2014 33 9:36:37 -32.91 -177.88 44.3 6.5 7 TA K55A 2014 39 19:59:46 -60.43 -45.19 23.9 5.7 8 TA K55A 2014 43 9:28:33 35.82 82.47 10.0 6.9 9 TA K55A 2014 64 10:05:46 -14.74 169.82 638.0 6.3 10 TA K55A 2014 109 1:14:18 -6.67 155.10 23.3 6.6 11 TA K55A 2014 124 9:24:49 -25.80 178.21 610.6 6.3

1 TA K56A 2013 271 7:43:01 27.18 65.51 12.0 6.8 2 TA K56A 2013 338 0:09:28 6.62 126.17 30.0 5.8 3 TA K56A 2014 32 4:07:47 -56.83 -27.34 130.0 6.1 4 TA K56A 2014 39 19:59:45 -60.43 -45.19 23.9 5.7 5 TA K56A 2014 124 9:24:50 -25.81 178.24 634.2 6.3

60

1 TA K57A 2013 240 3:03:53 -27.78 179.63 478.0 6.2 2 TA K57A 2013 271 7:43:00 27.18 65.51 12.0 6.8 3 TA K57A 2013 289 10:41:17 -6.45 154.93 35.0 6.8 4 TA K57A 2014 1 16:13:14 -13.86 167.25 187.0 6.5 5 TA K57A 2014 124 9:24:53 -25.81 178.24 634.2 6.3 6 TA K57A 2014 180 6:05:28 24.38 142.61 47.8 6.2 7 TA K57A 2014 180 8:02:06 -55.52 -28.38 7.2 6.9 8 TA K57A 2014 181 20:03:31 28.34 138.84 511.0 6.2

1 TA K58A 2013 271 7:42:58 27.18 65.51 12.0 6.8 2 TA K58A 2014 32 4:07:44 -56.83 -27.34 130.0 6.1 3 TA K58A 2014 33 9:36:44 -32.91 -177.88 44.3 6.5 4 TA K58A 2014 43 9:28:30 35.82 82.47 10.0 6.9 5 TA K58A 2014 138 1:07:43 4.25 92.76 35.0 6.0 6 TA K58A 2014 166 18:27:31 36.60 141.72 15.9 5.5 7 TA K58A 2014 180 6:05:30 24.39 142.63 48.0 6.2 8 TA K58A 2014 215 0:32:27 0.99 146.26 14.9 5.7

1 TA L53A 2013 134 0:40:34 18.73 145.29 602.2 6.8 2 TA L53A 2013 137 6:53:09 -11.07 165.08 7.0 5.7 3 TA L53A 2013 146 6:08:15 39.96 67.31 15.8 5.7 4 TA L53A 2013 240 3:03:40 -27.75 179.62 480.3 6.2 5 TA L53A 2013 271 7:43:09 27.18 65.51 12.0 6.8 6 TA L53A 2014 1 16:13:02 -13.87 167.20 196.1 6.5 7 TA L53A 2014 64 10:05:40 -14.73 169.82 636.8 6.3

1 TA L54A 2013 99 12:01:17 28.43 51.59 12.0 6.4 2 TA L54A 2013 134 0:40:36 18.73 145.29 602.2 6.8 3 TA L54A 2013 207 21:42:27 -57.92 -23.84 13.0 6.2 4 TA L54A 2013 213 20:10:38 -15.24 -173.50 31.7 6.0 5 TA L54A 2013 271 7:43:07 27.18 65.51 12.0 6.8 6 TA L54A 2014 1 16:13:05 -13.87 167.20 196.1 6.5 7 TA L54A 2014 43 9:28:35 35.82 82.47 10.0 6.9 8 TA L54A 2014 64 10:05:43 -14.73 169.82 636.8 6.3

1 TA L55A 2013 106 10:53:01 28.03 62.00 80.0 7.7 2 TA L55A 2013 134 0:40:38 18.73 145.29 602.2 6.8 3 TA L55A 2013 207 21:42:26 -57.92 -23.84 13.0 6.2 4 TA L55A 2013 271 7:43:05 27.18 65.51 12.0 6.8 5 TA L55A 2014 1 16:13:08 -13.86 167.25 187.0 6.5 6 TA L55A 2014 43 9:28:35 35.82 82.47 10.0 6.9 7 TA L55A 2014 64 10:05:45 -14.74 169.82 638.0 6.3 8 TA L55A 2014 127 4:30:54 -7.01 154.82 10.0 6.0 61

1 TA L56A 2013 245 2:58:30 42.20 133.67 445.0 5.7 2 TA L56A 2013 271 7:43:04 27.18 65.51 12.0 6.8 3 TA L56A 2013 273 6:05:52 -30.93 -178.32 41.5 6.5 4 TA L56A 2014 32 4:07:45 -56.83 -27.34 130.0 6.1 5 TA L56A 2014 39 19:59:43 -60.43 -45.19 23.9 5.7 6 TA L56A 2014 72 17:15:25 33.68 131.82 79.0 6.3 7 TA L56A 2014 114 20:01:30 -23.99 -176.70 63.5 5.9 8 TA L56A 2014 181 20:03:31 28.34 138.84 511.0 6.2 9 TA L56A 2014 202 15:03:09 -19.80 -178.40 615.4 6.9

1 TA L57A 2013 271 7:43:03 27.18 65.51 12.0 6.8 2 TA L57A 2013 296 8:32:51 -23.01 -177.14 160.0 6.0 3 TA L57A 2014 32 4:07:43 -56.83 -27.34 130.0 6.1 4 TA L57A 2014 66 10:14:33 -28.15 -176.64 27.0 5.7 5 TA L57A 2014 79 18:54:37 -5.25 152.79 26.2 5.6 6 TA L57A 2014 121 6:46:39 -21.45 170.35 106.0 6.6 7 TA L57A 2014 180 8:02:04 -55.47 -28.37 8.0 6.9 8 TA L57A 2014 180 14:29:46 -55.36 -28.11 10.0 5.7 9 TA L57A 2014 202 15:03:11 -19.83 -178.46 616.4 6.9 10 TA L57A 2014 214 14:11:28 -55.41 -28.36 10.0 5.6

1 TA L59A 2013 271 7:42:59 27.18 65.51 12.0 6.8 2 TA L59A 2014 32 4:07:41 -56.83 -27.34 130.0 6.1 3 TA L59A 2014 102 20:24:58 -11.37 162.24 31.7 5.8 4 TA L59A 2014 127 4:31:03 -6.96 154.90 10.0 6.0 5 TA L59A 2014 180 6:05:33 24.38 142.61 47.8 6.2 6 TA L59A 2014 180 8:02:02 -55.52 -28.38 7.2 6.9 7 TA L59A 2014 215 0:32:31 1.03 146.26 14.0 5.7

1 TA L60A 2013 271 7:42:58 27.18 65.51 12.0 6.8 2 TA L60A 2013 289 10:41:25 -6.45 154.93 35.0 6.8 3 TA L60A 2014 1 16:13:22 -13.86 167.25 187.0 6.5 4 TA L60A 2014 32 4:07:39 -56.83 -27.34 130.0 6.1 5 TA L60A 2014 116 6:11:50 -20.75 -174.71 45.0 6.1 6 TA L60A 2014 122 9:23:33 37.85 144.23 16.0 5.6 7 TA L60A 2014 123 11:06:18 22.28 144.01 89.6 5.6 8 TA L60A 2014 129 10:41:32 -18.96 -175.54 192.3 5.5 9 TA L60A 2014 166 20:23:07 37.10 141.11 45.0 5.6 10 TA L60A 2014 180 6:05:35 24.39 142.63 48.0 6.2 11 TA L60A 2014 180 8:02:00 -55.47 -28.37 8.0 6.9 12 TA L60A 2014 193 17:58:23 -55.34 -27.92 10.0 5.6

62

1 TA M52A 2013 106 10:53:08 28.03 62.00 80.0 7.7 2 TA M52A 2013 111 3:30:13 29.93 138.89 421.9 6.1 3 TA M52A 2013 134 0:40:33 18.73 145.29 602.2 6.8 4 TA M52A 2013 271 7:43:13 27.18 65.51 12.0 6.8 5 TA M52A 2013 289 10:41:04 -6.45 154.93 35.0 6.8 6 TA M52A 2013 327 7:56:57 -17.12 -176.54 371.0 6.5 7 TA M52A 2014 1 16:12:59 -13.87 167.20 196.1 6.5 8 TA M52A 2014 64 10:05:36 -14.73 169.82 636.8 6.3

1 TA M53A 2013 38 0:40:05 -11.66 164.94 8.0 6.0 2 TA M53A 2013 44 10:18:43 -10.79 164.26 10.0 5.5 3 TA M53A 2013 59 3:19:47 -17.72 167.34 18.0 5.9 4 TA M53A 2013 116 7:02:36 -28.68 -178.92 351.0 6.2 5 TA M53A 2013 131 20:55:39 -17.97 -175.11 212.9 6.4 6 TA M53A 2013 213 20:10:33 -15.24 -173.50 31.6 6.0 7 TA M53A 2013 224 1:04:58 -7.15 129.81 95.0 6.0 8 TA M53A 2013 236 8:49:48 -22.52 -175.25 5.0 5.8 9 TA M53A 2013 271 7:43:12 27.26 65.59 14.7 5.6 10 TA M53A 2014 1 16:13:01 -13.87 167.20 196.1 6.5 11 TA M53A 2014 43 9:28:40 35.92 82.56 12.4 6.9

1 TA M54A 2011 18 20:32:11 28.68 63.99 79.9 7.2 2 TA M54A 2011 141 0:25:35 -56.15 -27.18 64.2 5.9 3 TA M54A 2011 246 23:05:26 -20.67 169.72 136.6 7.0 4 TA M54A 2012 207 11:30:35 -9.69 159.73 20.0 6.4 5 TA M54A 2013 99 12:01:20 28.43 51.59 10.0 6.4 6 TA M54A 2013 106 10:53:05 28.03 62.00 80.0 7.7 7 TA M54A 2013 134 0:40:37 18.73 145.29 602.2 6.8 8 TA M54A 2013 146 6:16:29 39.96 67.31 18.0 5.7 9 TA M54A 2013 218 16:56:23 -16.91 167.37 13.5 5.7 10 TA M54A 2013 271 7:43:10 27.18 65.51 12.0 6.8

1 TA M55A 2013 111 3:30:18 29.93 138.89 421.9 6.1 2 TA M55A 2013 134 0:40:39 18.73 145.29 602.2 6.8 3 TA M55A 2013 207 21:42:24 -57.92 -23.84 13.0 6.2 4 TA M55A 2013 218 10:51:32 -22.50 173.81 10.0 5.6 5 TA M55A 2013 271 7:43:08 27.18 65.51 12.0 6.8 6 TA M55A 2014 64 10:05:45 -14.73 169.82 636.7 6.3

1 TA M56A 2013 289 10:41:14 -6.45 154.93 35.0 6.8 2 TA M56A 2014 180 6:05:29 24.39 142.63 48.0 6.2 3 TA M56A 2014 181 20:03:32 28.34 138.84 511.0 6.2 4 TA M56A 2014 214 14:11:28 -55.41 -28.36 10.0 5.6 63

1 TA M57A 2014 134 21:06:21 6.45 144.92 10.0 6.1 2 TA M57A 2014 180 8:02:02 -55.47 -28.37 8.0 6.9 3 TA M57A 2014 180 14:29:44 -55.36 -28.11 10.0 5.7 4 TA M57A 2014 230 2:40:06 32.74 47.67 10.0 6.2 5 TA M57A 2014 232 10:22:17 32.64 47.81 10.0 5.6

1 TA M58A 2013 216 3:36:59 38.21 141.86 56.0 5.8 2 TA M58A 2013 228 2:41:57 -41.74 174.05 8.5 5.9 3 TA M58A 2013 289 10:41:19 -6.45 154.93 35.0 6.8 4 TA M58A 2013 296 8:32:52 -23.01 -177.14 160.0 6.0 5 TA M58A 2014 166 20:23:06 37.10 141.11 45.0 5.6 6 TA M58A 2014 180 6:05:33 24.39 142.63 48.0 6.1 7 TA M58A 2014 192 19:30:17 37.02 142.48 13.4 6.5 8 TA M58A 2014 230 18:16:23 32.55 47.70 10.0 6.0

1 TA M59A 2013 207 21:42:19 -57.92 -23.84 13.0 6.2 2 TA M59A 2013 224 4:26:20 -30.63 -179.68 340.6 6.1 3 TA M59A 2014 32 4:07:39 -56.83 -27.34 130.0 6.1 4 TA M59A 2014 180 6:05:35 24.39 142.63 48.0 6.2 5 TA M59A 2014 181 20:03:37 28.34 138.84 511.0 6.2

1 TA M60A 2013 245 2:58:37 42.20 133.67 445.0 5.7 2 TA M60A 2014 72 17:15:32 33.68 131.82 79.0 6.3 3 TA M60A 2014 94 11:50:48 -10.54 161.70 57.0 6.0

1 TA N52A 2013 137 6:53:05 -11.07 165.08 7.0 5.7 2 TA N52A 2013 146 6:16:35 39.93 67.35 15.8 5.7 3 TA N52A 2013 273 6:05:37 -30.93 -178.32 41.5 6.5 4 TA N52A 2013 284 21:34:29 -30.66 -178.48 151.0 6.2 5 TA N52A 2013 289 10:41:04 -6.45 154.93 35.0 6.8 6 TA N52A 2014 43 9:28:44 35.82 82.47 10.0 6.9 7 TA N52A 2014 64 10:05:34 -14.74 169.82 638.0 6.3 8 TA N52A 2014 121 6:46:23 -21.45 170.35 106.0 6.6 9 TA N52A 2014 127 4:30:44 -6.96 154.90 10.0 6.0 10 TA N52A 2014 184 19:59:43 -30.46 -176.45 35.0 6.3

1 TA N53A 2013 99 12:01:25 28.43 51.59 10.0 6.4 2 TA N53A 2013 134 0:40:36 18.73 145.29 602.2 6.8 3 TA N53A 2013 137 6:53:08 -11.07 165.08 7.0 5.7 4 TA N53A 2013 146 6:16:34 39.96 67.31 15.8 5.7 5 TA N53A 2014 127 4:30:47 -6.96 154.90 10.0 6.0 6 TA N53A 2014 129 10:41:09 -18.96 -175.54 192.3 5.9 64

1 TA N54A 2011 13 16:26:51 -20.67 168.47 29.7 6.0 2 TA N54A 2011 18 20:32:14 28.68 63.99 79.9 7.2 3 TA N54A 2011 167 0:13:59 -5.88 151.20 26.9 6.3 4 TA N54A 2011 200 19:44:04 40.16 71.50 19.5 6.2 5 TA N54A 2012 33 13:44:45 -17.83 167.13 23.0 5.5 6 TA N54A 2012 133 23:37:11 38.61 70.35 10.0 5.9 7 TA N54A 2012 207 11:30:35 -9.69 159.73 20.0 6.4 8 TA N54A 2013 106 10:53:08 28.03 62.00 80.0 7.7 9 TA N54A 2013 111 3:30:17 29.93 138.89 421.9 6.1 10 TA N54A 2013 146 6:16:32 39.96 67.31 15.8 5.7 11 TA N54A 2014 64 10:05:41 -14.73 169.82 636.8 6.3

1 TA N55A 2013 106 10:53:07 28.03 62.00 82.0 7.7 2 TA N55A 2013 146 6:16:31 39.96 67.31 15.8 5.7 3 TA N55A 2013 202 23:55:03 34.51 104.26 8.0 5.8 4 TA N55A 2013 245 2:58:34 42.20 133.67 445.0 5.7 5 TA N55A 2013 271 7:43:11 27.18 65.51 12.0 6.8 6 TA N55A 2014 43 9:28:42 35.82 82.47 10.0 6.9 7 TA N55A 2014 103 12:46:25 -11.13 162.05 10.0 6.6

1 TA N56A 2013 207 21:42:21 -57.92 -23.84 13.0 6.2 2 TA N56A 2014 1 16:13:09 -13.86 167.25 187.0 6.5 3 TA N56A 2014 32 4:07:41 -56.83 -27.34 130.0 6.1 4 TA N56A 2014 64 10:05:46 -14.74 169.82 638.0 6.3 5 TA N56A 2014 180 6:05:31 24.39 142.63 48.0 6.2 6 TA N56A 2014 230 5:33:56 32.65 47.75 10.0 6.2

1 TA N58A 2013 207 21:42:18 -57.92 -23.84 13.0 6.2 2 TA N58A 2013 271 7:43:07 27.18 65.51 12.0 6.8 3 TA N58A 2013 296 8:32:51 -23.01 -177.14 160.0 6.0 4 TA N58A 2013 322 19:18:48 34.33 137.05 328.0 5.6 5 TA N58A 2014 135 8:26:45 6.43 144.94 11.0 6.3 6 TA N58A 2014 180 6:05:35 24.39 142.63 48.0 6.2 7 TA N58A 2014 180 8:01:59 -55.47 -28.37 8.0 6.9 8 TA N58A 2014 181 20:03:37 28.34 138.84 511.0 6.2 9 TA N58A 2014 211 16:11:26 -7.19 154.84 10.0 5.9 10 TA N58A 2014 230 2:40:07 32.74 47.67 10.0 6.2 11 TA N58A 2014 230 11:59:36 32.71 47.55 10.0 6.2 12 TA N58A 2014 230 18:16:26 32.57 47.68 10.0 6.0

1 TA N59A 2010 334 3:32:49 28.39 139.24 485.0 6.8 2 TA N59A 2010 355 17:28:39 26.90 143.70 13.8 6.0 65

3 TA N59A 2012 74 9:16:37 40.89 144.94 12.0 5.6 4 TA N59A 2012 239 15:16:35 2.19 126.84 91.1 6.6 5 TA N59A 2013 106 10:52:59 28.11 62.05 82.0 7.7 6 TA N59A 2013 134 0:40:48 18.73 145.29 602.3 6.8 7 TA N59A 2013 143 17:28:26 -23.03 -177.11 171.4 7.4 8 TA N59A 2013 271 7:43:05 27.18 65.51 12.0 6.8 9 TA N59A 2013 289 10:41:22 -6.45 154.93 35.0 6.8 10 TA N59A 2014 124 9:24:54 -24.61 179.09 527.0 6.3

1 TA N60A 2013 240 3:03:56 -27.78 179.63 478.0 6.2 2 TA N60A 2014 85 3:38:45 -27.64 -170.60 15.3 6.0 3 TA N60A 2014 121 6:46:45 -21.45 170.35 106.0 6.6 4 TA N60A 2014 123 11:06:20 22.28 144.01 89.6 5.6 5 TA N60A 2014 180 6:05:38 24.39 142.63 48.0 6.2 6 TA N60A 2014 181 20:03:40 28.34 138.84 511.0 6.2 7 TA N60A 2014 211 16:11:31 -7.19 154.84 10.0 5.9 8 TA N60A 2014 214 14:11:20 -55.41 -28.28 6.1 5.6

1 TA O51A 2013 107 3:24:51 28.11 62.35 56.3 5.6 2 TA O51A 2013 134 0:40:34 18.73 145.29 602.3 6.8 3 TA O51A 2013 271 7:43:20 27.18 65.51 12.0 6.8 4 TA O51A 2014 39 19:59:40 -60.43 -45.19 23.9 5.7 5 TA O51A 2014 43 9:28:47 35.82 82.47 10.0 6.9 6 TA O51A 2014 64 10:05:31 -14.74 169.82 638.0 6.3 7 TA O51A 2014 202 15:02:51 -19.80 -178.40 615.4 6.9 8 TA O51A 2014 215 0:32:15 0.99 146.26 14.9 5.7 9 TA O51A 2014 230 2:40:23 32.70 47.70 10.2 6.2 10 TA O51A 2014 230 18:16:42 32.58 47.70 5.0 6.0

1 TA O52A 2013 131 20:55:34 -17.95 -175.10 212.2 6.4 2 TA O52A 2013 146 6:16:39 39.93 67.35 15.8 5.7 3 TA O52A 2013 205 3:41:37 -23.13 -177.22 155.5 5.9 4 TA O52A 2013 213 20:10:28 -15.24 -173.50 31.7 6.0 5 TA O52A 2013 228 2:41:38 -41.74 174.05 8.5 5.9 6 TA O52A 2014 64 10:05:34 -14.74 169.82 638.0 6.3 7 TA O52A 2014 121 6:46:22 -21.45 170.35 106.0 6.6 8 TA O52A 2014 166 20:23:01 37.10 141.11 45.0 5.6 9 TA O52A 2014 200 12:35:37 -15.82 -174.45 227.3 6.2

1 TA O53A 2012 356 22:37:38 -14.34 167.29 200.7 6.7 2 TA O53A 2013 200 11:50:20 -30.47 -176.29 15.6 5.7 3 TA O53A 2013 224 4:26:00 -30.63 -179.68 340.6 6.1 4 TA O53A 2013 236 8:49:45 -22.52 -175.24 5.0 5.8 66

5 TA O53A 2013 284 21:34:30 -30.66 -178.48 151.0 6.2 6 TA O53A 2014 64 10:05:37 -14.73 169.82 636.8 6.3 7 TA O53A 2014 82 4:39:21 -20.66 -178.83 607.3 6.3

1 TA O55A 2014 43 9:28:44 35.82 82.47 10.0 6.9 2 TA O55A 2014 103 12:46:24 -11.13 162.05 10.0 6.6 3 TA O55A 2014 180 6:05:31 24.39 142.63 48.0 6.2

1 TA O56A 2011 312 3:08:07 27.25 125.72 228.2 6.9 2 TA O56A 2012 1 5:36:03 31.47 138.18 359.7 6.8 3 TA O56A 2012 210 20:14:12 -4.65 153.17 41.0 6.5 4 TA O56A 2013 134 0:40:44 18.73 145.29 602.3 6.8 5 TA O56A 2013 271 7:43:13 27.18 65.51 12.0 6.8 6 TA O56A 2014 33 9:36:32 -32.91 -177.88 44.3 6.5 7 TA O56A 2014 109 1:14:21 -6.66 155.09 29.0 6.6

1 TA O60A 2013 134 0:40:51 18.73 145.29 602.3 6.8 2 TA O60A 2013 134 19:29:46 0.77 92.40 17.0 5.6 3 TA O60A 2013 216 3:37:05 38.21 141.86 56.0 5.8 4 TA O60A 2013 224 4:26:19 -30.63 -179.68 340.6 6.1 5 TA O60A 2013 306 19:03:04 -19.21 -172.40 10.0 6.2 6 TA O60A 2014 34 4:36:16 -4.90 153.74 109.0 5.6 7 TA O60A 2014 72 17:15:35 33.68 131.82 79.0 6.3 8 TA O60A 2014 94 11:50:46 -10.54 161.70 57.0 6.0 9 TA O60A 2014 124 9:24:55 -25.81 178.24 634.2 6.3 10 TA O60A 2014 150 1:30:05 25.00 97.85 10.0 5.9 11 TA O60A 2014 180 6:05:39 24.39 142.63 48.0 6.2 12 TA O60A 2014 211 16:11:31 -7.19 154.84 10.0 5.9

1 TA P51A 2012 207 11:30:26 -9.69 159.73 20.0 6.4 2 TA P51A 2013 95 13:07:13 42.71 131.11 561.9 6.3 3 TA P51A 2013 99 12:01:36 28.50 51.59 10.0 6.4 4 TA P51A 2013 107 12:11:36 38.48 141.46 69.3 5.9 5 TA P51A 2013 143 21:16:35 -20.56 -175.77 149.1 6.3 6 TA P51A 2013 146 6:16:43 39.93 67.35 15.8 5.7 7 TA P51A 2013 202 23:55:08 34.50 104.24 9.8 5.9 8 TA P51A 2013 271 7:43:23 27.18 65.51 12.0 6.8 9 TA P51A 2013 327 7:56:50 -17.12 -176.54 371.0 6.5 10 TA P51A 2014 43 9:28:51 35.82 82.47 10.0 6.9 11 TA P51A 2014 64 10:05:29 -14.74 169.82 638.0 6.3 12 TA P51A 2014 85 3:38:18 -27.64 -170.60 15.3 6.0 13 TA P51A 2014 103 12:46:12 -11.13 162.05 10.0 6.6 14 TA P51A 2014 121 6:46:18 -21.45 170.35 106.0 6.6 67

1 TA P52A 2012 207 11:30:29 -9.69 159.73 20.0 6.4 2 TA P52A 2012 208 10:29:11 -21.10 169.51 32.8 5.6 3 TA P52A 2012 316 1:22:40 23.01 95.89 13.7 6.8 4 TA P52A 2013 137 6:53:04 -11.07 165.08 7.0 5.7 5 TA P52A 2013 146 6:16:41 39.93 67.35 15.8 5.7 6 TA P52A 2013 271 7:43:21 27.18 65.51 12.0 6.8 7 TA P52A 2013 327 7:56:53 -17.12 -176.54 371.0 6.5 8 TA P52A 2014 43 9:28:49 35.82 82.47 10.0 6.9 9 TA P52A 2014 127 4:30:44 -6.96 154.90 10.0 6.0 10 TA P52A 2014 170 10:27:41 -13.56 166.83 36.0 6.2 11 TA P52A 2014 215 0:32:17 0.99 146.26 14.9 5.7

1 TA P54A 2013 99 12:01:28 28.43 51.59 12.0 6.4 2 TA P54A 2013 111 3:30:21 29.93 138.89 421.9 6.1 3 TA P54A 2013 137 6:53:10 -11.07 165.08 7.0 5.7 4 TA P54A 2013 191 14:35:23 -30.24 -177.54 10.3 5.5 5 TA P54A 2013 207 21:42:19 -57.92 -23.84 13.0 6.2 6 TA P54A 2013 271 7:43:19 27.18 65.51 12.0 6.8

1 TA P55A 2013 99 12:01:27 28.43 51.59 12.0 6.4 2 TA P55A 2013 134 0:40:43 18.73 145.29 602.2 6.8 3 TA P55A 2013 271 7:43:18 27.18 65.51 12.0 6.8 4 TA P55A 2014 103 12:46:23 -11.13 162.05 10.0 6.6 5 TA P55A 2014 114 20:01:19 -23.99 -176.70 63.5 5.9 6 TA P55A 2014 121 6:46:29 -21.50 170.35 105.3 6.6 7 TA P55A 2014 127 4:30:54 -7.01 154.82 10.0 6.0 8 TA P55A 2014 129 10:41:12 -18.92 -175.60 153.4 5.9

1 TA P56A 2013 146 6:16:37 39.93 67.35 15.8 5.7 2 TA P56A 2013 202 23:55:09 34.50 104.24 9.8 5.9 3 TA P56A 2014 32 4:07:36 -56.83 -27.34 130.0 6.1 4 TA P56A 2014 64 10:05:44 -14.74 169.82 638.0 6.3 5 TA P56A 2014 66 10:14:23 -28.15 -176.64 27.0 5.7 6 TA P56A 2014 127 4:30:55 -6.96 154.90 10.0 6.0 7 TA P56A 2014 246 11:43:35 -14.92 -172.90 10.0 5.7

1 TA P59A 2013 134 0:40:51 18.73 145.29 602.3 6.8 2 TA P59A 2013 271 7:43:11 27.18 65.51 12.0 6.8 3 TA P59A 2014 127 4:31:03 -6.96 154.90 10.0 6.0 4 TA P59A 2014 230 18:16:29 32.58 47.70 5.0 6.0 5 TA P59A 2014 232 10:22:20 32.64 47.74 17.7 5.6

68

1 TA Q51A 2012 207 11:30:25 -9.69 159.73 20.0 6.4 2 TA Q51A 2012 231 17:53:43 -15.60 -173.04 15.0 5.7 3 TA Q51A 2012 237 10:11:38 -33.44 -179.53 38.0 5.6 4 TA Q51A 2012 342 18:29:01 -38.43 176.07 163.0 6.3 5 TA Q51A 2014 20 3:03:00 -40.66 175.81 28.0 6.1 6 TA Q51A 2014 39 19:59:36 -60.43 -45.19 23.9 5.7 7 TA Q51A 2014 72 17:15:28 33.68 131.82 79.0 6.3 8 TA Q51A 2014 102 20:24:33 -11.37 162.24 31.7 5.8

1 TA Q52A 2013 134 0:40:39 18.73 145.29 602.3 6.8 2 TA Q52A 2013 166 11:30:10 -33.85 179.40 195.0 6.0 3 TA Q52A 2014 39 19:59:34 -60.43 -45.19 23.9 5.7 4 TA Q52A 2014 43 9:28:52 35.82 82.47 10.0 6.9 5 TA Q52A 2014 64 10:05:32 -14.74 169.82 638.0 6.3 6 TA Q52A 2014 114 20:01:11 -24.01 -176.67 63.1 5.9 7 TA Q52A 2014 127 4:30:45 -6.96 154.90 10.0 6.0 8 TA Q52A 2014 150 1:30:12 25.00 97.85 10.0 5.9

1 TA Q53A 2013 99 12:01:33 28.43 51.59 12.0 6.4 2 TA Q53A 2013 111 3:30:22 29.93 138.89 421.9 6.1 3 TA Q53A 2013 132 23:14:19 21.94 143.74 166.9 5.6 4 TA Q53A 2013 134 0:40:41 18.73 145.29 602.2 6.8 5 TA Q53A 2013 143 21:16:39 -20.58 -175.76 150.0 6.3 6 TA Q53A 2013 146 6:16:43 39.96 67.31 18.0 5.7 7 TA Q53A 2013 271 7:43:23 27.18 65.51 12.0 6.8 8 TA Q53A 2013 296 8:32:33 -23.01 -177.14 160.0 6.0

1 TA Q54A 2013 99 12:01:31 28.43 51.59 12.0 6.4 2 TA Q54A 2013 106 10:53:17 28.03 62.00 80.0 7.7 3 TA Q54A 2013 131 20:55:36 -17.97 -175.11 212.9 6.4 4 TA Q54A 2013 134 0:40:42 18.73 145.29 602.2 6.8 5 TA Q54A 2013 146 6:16:41 39.96 67.31 18.0 5.7 6 TA Q54A 2013 188 18:44:57 -3.92 153.93 385.5 7.3 7 TA Q54A 2013 271 7:43:22 27.18 65.51 12.0 6.8 8 TA Q54A 2014 64 10:05:38 -14.73 169.82 636.8 6.3

1 TA Q55A 2013 99 12:01:30 28.43 51.59 12.0 6.4 2 TA Q55A 2013 106 10:53:15 28.03 62.00 80.0 7.7 3 TA Q55A 2013 111 3:30:24 29.93 138.89 421.9 6.1 4 TA Q55A 2013 131 20:55:39 -17.97 -175.11 212.9 6.4 5 TA Q55A 2013 134 0:40:44 18.73 145.29 602.2 6.8 6 TA Q55A 2013 213 20:10:33 -15.24 -173.50 31.7 6.0 7 TA Q55A 2014 1 16:13:04 -13.87 167.20 196.1 6.5 69

8 TA Q55A 2014 43 9:28:50 35.82 82.47 10.0 6.9 9 TA Q55A 2014 64 10:05:41 -14.73 169.82 636.8 6.3

1 TA Q57A 2013 134 0:40:48 18.728 145.28799 602.2 2 TA Q57A 2013 146 6:16:37 39.956 67.314 18.0 5.7 3 TA Q57A 2013 167 3:00:28 -56.28 -27.443 91.2 4 TA Q57A 2013 205 3:41:47 -23.132 -177.222 155.5 5 TA Q57A 2013 207 21:42:13 -57.915 -23.841 13.0 6 TA Q57A 2013 271 7:43:17 27.1825 65.5052 12.0 7 TA Q57A 2013 289 10:41:17 -6.4456 154.931 35.0 - 8 TA Q57A 2014 32 4:07:34 56.8269 -27.3391 130.0 6.1 - 9 TA Q57A 2014 64 10:05:45 14.7378 169.82339 638.0 6.3 - 10 TA Q57A 2014 193 17:58:18 55.3411 -27.9186 10.0 11 TA Q57A 2014 230 2:40:17 32.7392 47.6696 10.0 6.2 12 TA Q57A 2014 230 5:34:03 32.6525 47.753 10.0 13 TA Q57A 2014 230 11:59:46 32.7054 47.5471 10.0 14 TA Q57A 2014 230 18:16:36 32.5748 47.6807 10.0 6 15 TA Q57A 2014 232 10:22:28 32.6405 47.8051 10.0

1 TA Q61A 2013 166 11:30:32 -33.85 179.40 195.0 6.0 2 TA Q61A 2013 271 7:43:11 27.18 65.51 12.0 6.8 3 TA Q61A 2014 64 10:05:56 -14.74 169.82 638.0 6.3 4 TA Q61A 2014 127 4:31:08 -6.96 154.90 10.0 6.0 5 TA Q61A 2014 202 15:03:15 -19.83 -178.46 616.4 6.9 6 TA Q61A 2014 211 16:11:34 -7.19 154.84 10.0 5.9

1 PASEIS PACF 2013 99 12:01:20 28.43 51.59 12.0 6.4 2 PASEIS PACF 2013 106 10:53:05 28.03 62.00 80.0 7.7 3 PASEIS PACF 2013 134 0:40:39 18.73 145.29 602.2 6.8 4 PASEIS PACF 2013 146 6:16:29 39.96 67.31 18.0 5.7 5 PASEIS PACF 2013 202 23:55:01 34.51 104.26 8.0 5.9 6 PASEIS PACF 2013 271 7:43:10 27.26 65.59 14.7 6.8

1 PASEIS PACH 2013 99 12:01:18 28.43 51.59 12.0 6.4 2 PASEIS PACH 2013 134 0:40:37 18.73 145.29 602.2 6.8 3 PASEIS PACH 2013 137 6:53:13 -11.07 165.08 7.0 5.7 4 PASEIS PACH 2013 207 21:42:25 -57.92 -23.84 13.0 6.2 5 PASEIS PACH 2013 271 7:43:08 27.26 65.59 14.7 5.6 6 PASEIS PACH 2013 289 10:41:11 -6.49 154.92 35.0 6.8 70

7 PASEIS PACH 2014 1 16:13:06 -13.86 167.25 187.0 6.5 8 PASEIS PACH 2014 43 9:28:38 35.82 82.47 10.0 6.9 9 PASEIS PACH 2014 127 4:30:51 -6.96 154.90 10.0 6.0 10 PASEIS PACH 2014 215 0:32:21 0.99 146.26 14.9 5.7

1 PASEIS PACW 2013 99 12:01:21 28.43 51.59 12.0 6.4 2 PASEIS PACW 2013 106 10:53:07 28.03 62.00 80.0 7.7 3 PASEIS PACW 2013 134 0:40:46 18.73 145.29 602.2 6.8 4 PASEIS PACW 2014 103 12:46:29 -11.21 161.93 10.0 6.6 5 PASEIS PACW 2014 181 20:03:38 28.34 138.84 511.0 6.2 6 PASEIS PACW 2014 230 2:40:13 32.70 47.70 10.2 6.2 7 PASEIS PACW 2014 230 18:16:31 32.58 47.70 5.0 6.0

1 PASEIS PAHR 2013 106 10:53:02 28.03 62.00 80.0 7.7 2 PASEIS PAHR 2013 134 0:40:42 18.73 145.29 602.2 6.8 3 PASEIS PAHR 2013 240 3:03:48 -27.75 179.62 480.3 6.2 4 PASEIS PAHR 2013 271 7:43:07 27.26 65.59 14.7 5.6

1 PASEIS PALB 2013 134 0:40:46 18.73 145.29 602.2 6.8 2 PASEIS PALB 2013 207 21:42:17 -57.92 -23.84 13.0 6.2 3 PASEIS PALB 2013 271 7:43:10 27.26 65.59 14.7 5.6 4 PASEIS PALB 2014 180 6:05:35 24.39 142.63 48.0 6.2 5 PASEIS PALB 2014 180 8:01:59 -55.47 -28.37 8.0 6.9 6 PASEIS PALB 2014 230 2:40:10 32.70 47.70 10.2 6.2 7 PASEIS PALB 2014 230 18:16:28 32.58 47.70 5.0 6.0

1 PASEIS PALR 2013 111 3:30:18 29.93 138.89 421.9 6.1 2 PASEIS PALR 2013 134 0:40:41 18.73 145.29 602.2 6.8 3 PASEIS PALR 2013 166 11:30:29 -33.85 179.40 195.0 6.0 4 PASEIS PALR 2013 199 21:17:25 -41.55 174.41 17.5 6.0 5 PASEIS PALR 2013 207 21:42:23 -57.92 -23.84 13.0 6.2 6 PASEIS PALR 2014 1 16:13:11 -13.86 167.25 187.0 6.5 7 PASEIS PALR 2014 32 4:07:43 -56.83 -27.34 130.0 6.1 8 PASEIS PALR 2014 180 6:05:29 24.39 142.63 48.0 6.2

1 PASEIS PALW 2013 127 10:20:48 -19.62 175.05 70.1 6.0 2 PASEIS PALW 2013 134 0:40:46 18.73 145.29 602.2 6.8 3 PASEIS PALW 2013 143 17:28:27 -25.36 -175.64 200.6 5.7 4 PASEIS PALW 2013 207 21:42:19 -57.92 -23.84 13.0 6.2 5 PASEIS PALW 2014 222 3:51:15 41.16 142.18 41.0 6.1

1 PASEIS PAMG 2013 289 10:41:08 -6.49 154.92 35.0 6.8 2 PASEIS PAMG 2014 64 10:05:39 -14.74 169.82 638.0 6.3 71

3 PASEIS PAMG 2014 103 12:46:20 -11.21 161.92 35.0 7.4 4 PASEIS PAMG 2014 341 1:32:15 -6.51 154.46 23.0 6.6

1 PASEIS PAPG 2013 99 12:01:20 28.43 51.59 12.0 6.4 2 PASEIS PAPG 2013 106 10:53:06 28.03 62.00 80.0 7.7 3 PASEIS PAPG 2014 180 6:05:36 24.39 142.63 48.0 6.2 4 PASEIS PAPG 2014 230 2:40:11 32.70 47.70 10.2 6.2 5 PASEIS PAPG 2014 230 18:16:30 32.58 47.70 5.0 6.0

1 PASEIS PAPL 2013 207 21:42:18 -57.92 -23.84 13.0 6.2 2 PASEIS PAPL 2014 102 20:24:58 -11.37 162.24 31.7 5.8 3 PASEIS PAPL 2014 180 6:05:36 24.39 142.63 48.0 6.2

1 PASEIS PARB 2013 106 10:53:02 28.03 62.00 80.0 7.7 2 PASEIS PARB 2013 137 6:53:20 -11.07 165.08 7.0 5.7 3 PASEIS PARB 2013 146 6:16:28 39.96 67.31 18.0 5.7 4 PASEIS PARB 2013 271 7:43:07 27.18 65.51 12.0 6.8 5 PASEIS PARB 2014 64 10:05:49 -14.74 169.82 638.0 6.3 6 PASEIS PARB 2014 103 12:46:30 -11.21 161.92 35.0 7.4 7 PASEIS PARB 2014 109 1:14:24 -6.66 155.09 29.0 6.6 8 PASEIS PARB 2014 180 6:05:33 24.39 142.63 48.0 6.2 9 PASEIS PARB 2014 215 0:32:28 0.99 146.26 14.9 5.7

1 PASEIS PARC 2013 99 12:01:25 28.43 51.59 12.0 6.4 2 PASEIS PARC 2013 289 10:41:09 -6.49 154.92 35.0 6.8 3 PASEIS PARC 2014 43 9:28:44 35.82 82.47 10.0 6.9

1 PASEIS PASW 2013 131 20:55:52 -17.97 -175.11 212.9 6.4 2 PASEIS PASW 2013 134 0:40:48 18.73 145.29 602.2 6.8 3 PASEIS PASW 2013 289 10:41:21 -6.49 154.92 35.0 6.8 4 PASEIS PASW 2014 20 3:03:24 -40.66 175.81 28.0 6.1 5 PASEIS PASW 2014 32 4:07:37 -56.83 -27.34 130.0 6.1 6 PASEIS PASW 2014 33 9:36:38 -32.91 -177.88 44.3 6.5 7 PASEIS PASW 2014 180 6:05:36 24.39 142.63 48.0 6.2 8 PASEIS PASW 2014 181 20:03:39 28.34 138.84 511.0 6.2 9 PASEIS PASW 2014 215 0:32:31 0.99 146.26 14.9 5.7 10 PASEIS PASW 2014 222 3:51:18 41.16 142.13 41.0 6.1

1 PASEIS PATY 2013 245 2:58:41 42.20 133.66 445.0 5.7 2 PASEIS PATY 2014 43 9:28:40 35.82 82.47 10.0 6.9 3 PASEIS PATY 2014 102 20:25:00 -11.37 162.24 31.7 5.8 4 PASEIS PATY 2014 103 12:46:39 -11.21 161.92 35.0 7.4 5 PASEIS PATY 2014 124 9:24:56 -25.81 178.24 634.2 6.3 72

6 PASEIS PATY 2014 215 0:32:36 0.99 146.26 14.9 5.7

1 PASEIS PSAL 2013 134 0:40:43 18.73 145.29 602.2 6.8 2 PASEIS PSAL 2013 224 1:05:07 -7.15 129.81 95.0 6.1

1 LD ALLY 2011 18 20:32:12 28.68 63.99 79.9 7.2 2 LD ALLY 2011 167 0:13:57 -5.88 151.20 26.9 6.3 3 LD ALLY 2011 172 2:14:09 -11.48 165.50 18.7 6.0 4 LD ALLY 2011 200 19:44:02 40.16 71.50 19.5 6.3 5 LD ALLY 2012 188 2:38:01 -14.66 167.34 160.1 6.3 6 LD ALLY 2013 99 12:01:21 28.43 51.59 12.0 6.4 7 LD ALLY 2013 106 10:53:06 28.03 62.00 80.0 7.7 8 LD ALLY 2013 134 0:40:35 18.73 145.29 602.2 6.8 9 LD ALLY 2013 202 23:54:59 34.51 104.26 8.0 5.9 10 LD ALLY 2014 1 16:13:03 -13.87 167.20 196.1 6.5 11 LD ALLY 2014 64 10:05:40 -14.73 169.82 636.8 6.3

1 US ERPA 2011 210 7:51:07 -23.73 179.83 522.8 6.7 2 US ERPA 2011 246 23:05:25 -20.63 169.78 136.6 7.0 3 US ERPA 2011 258 19:39:30 -21.59 -179.32 629.0 7.3 4 US ERPA 2012 33 13:44:45 -17.83 167.13 23.0 5.5 5 US ERPA 2013 106 10:53:03 28.11 62.05 82.0 7.7 6 US ERPA 2013 134 0:40:34 18.73 145.29 602.3 6.8 7 US ERPA 2014 1 16:13:03 -13.86 167.25 187.0 6.5 8 US ERPA 2014 43 9:28:37 35.91 82.59 10.0 6.9 9 US ERPA 2014 103 12:46:20 -11.46 162.05 39.0 7.4

1 PE PAGS 2011 108 13:13:08 -34.29 179.94 98.1 6.5 2 PE PAGS 2011 200 19:44:03 40.16 71.50 19.5 6.2 3 PE PAGS 2012 24 1:01:01 -24.98 178.52 580.3 6.3 4 PE PAGS 2012 33 13:44:56 -17.83 167.13 23.0 5.5 5 PE PAGS 2012 356 22:37:53 -14.34 167.29 200.7 6.7 6 PE PAGS 2013 99 12:01:18 28.43 51.59 12.0 6.4 7 PE PAGS 2013 134 0:40:48 18.73 145.29 602.2 6.8 8 PE PAGS 2013 271 7:43:09 27.18 65.51 12.0 6.8 9 PE PAGS 2014 180 8:01:57 -55.51 -28.45 16.5 6.9 10 PE PAGS 2014 181 20:03:40 28.35 138.86 512.4 6.2

1 PE PSDB 2011 167 0:14:03 -5.88 151.20 26.9 6.3 2 PE PSDB 2011 200 19:44:02 40.16 71.50 19.5 6.3 3 PE PSDB 2012 207 11:30:38 -9.69 159.73 20.0 6.4 4 PE PSDB 2013 111 3:30:19 29.93 138.89 421.9 6.1 5 PE PSDB 2013 134 0:40:40 18.73 145.29 602.2 6.8 73

6 PE PSDB 2013 271 7:43:10 27.18 65.51 12.0 6.8 7 PE PSDB 2014 1 16:13:07 -13.86 167.25 187.0 6.5 8 PE PSDB 2014 43 9:28:40 35.82 82.47 10.0 6.9

1 PE PSUB 2011 167 0:14:15 -5.88 151.20 26.9 6.3 2 PE PSUB 2011 200 19:44:03 40.16 71.50 19.5 6.2 3 PE PSUB 2012 33 13:45:01 -17.83 167.13 23.0 5.5 4 PE PSUB 2013 137 6:53:27 -11.07 165.08 7.0 5.7 5 PE PSUB 2013 271 7:43:08 27.18 65.51 12.0 6.8 6 PE PSUB 2014 103 12:46:37 -11.21 161.92 35.0 7.4

1 PE PSWB 2012 87 11:08:52 39.86 142.02 15.0 5.7 2 PE PSWB 2012 342 8:26:33 37.83 143.61 20.2 6.3 3 PE PSWB 2013 143 21:17:00 -20.58 -175.76 150.0 6.3 4 PE PSWB 2014 180 6:05:35 24.40 142.59 43.2 6.2

1 IU SSPA 1997 113 19:53:57 13.93 144.94 114.3 6.5 2 IU SSPA 1997 123 16:55:53 -31.64 -179.34 47.8 6.9 3 IU SSPA 1998 73 19:49:03 30.16 57.61 43.5 6.6 4 IU SSPA 2000 127 13:54:15 -11.32 165.42 17.0 6.2 5 IU SSPA 2000 133 23:18:55 35.91 70.68 77.3 6.3 6 IU SSPA 2000 155 9:03:11 35.51 140.44 61.3 6.1 7 IU SSPA 2000 166 2:24:19 -25.63 178.06 631.2 6.4 8 IU SSPA 2000 199 23:02:08 36.27 70.96 114.3 6.3 9 IU SSPA 2000 234 9:24:57 -52.96 -46.15 10.0 6.1 10 IU SSPA 2001 104 23:36:13 30.12 141.77 10.0 6.0 11 IU SSPA 2001 166 6:27:00 18.82 146.96 33.0 6.0 12 IU SSPA 2001 184 13:19:26 21.64 142.99 325.3 6.5 13 IU SSPA 2003 133 21:31:21 -17.29 167.69 33.3 6.5 14 IU SSPA 2003 163 9:09:20 -6.00 154.80 184.4 6.3 15 IU SSPA 2003 273 14:18:32 -30.66 -177.37 32.7 6.4 16 IU SSPA 2003 316 8:34:43 33.24 137.05 381.8 6.4 17 IU SSPA 2004 25 11:52:04 -16.85 -174.17 129.6 6.7 18 IU SSPA 2004 96 21:32:16 36.56 71.00 168.5 6.6 19 IU SSPA 2004 154 9:00:38 -32.82 -179.41 42.7 6.2 20 IU SSPA 2005 39 14:58:01 -14.32 167.26 214.9 6.7 21 IU SSPA 2005 97 20:13:56 30.52 83.66 14.7 6.2 22 IU SSPA 2006 219 22:28:45 -15.84 167.82 148.5 6.8 23 IU SSPA 2007 111 7:22:26 -3.55 151.35 407.8 6.1 24 IU SSPA 2007 115 13:44:14 -14.32 166.85 67.8 6.4 25 IU SSPA 2007 271 13:47:44 22.01 142.71 253.5 7.5 26 IU SSPA 2008 146 8:31:04 32.60 105.38 14.0 6.1 27 IU SSPA 2008 201 22:48:29 -17.40 -177.28 389.2 6.3 74

28 IU SSPA 2008 279 16:01:14 39.56 73.79 29.0 6.6 29 IU SSPA 2008 355 10:37:43 36.55 142.50 0.1 6.2 30 IU SSPA 2009 59 14:42:33 -60.57 -24.92 15.0 6.3 31 IU SSPA 2009 240 2:00:58 37.67 95.76 12.1 6.3 32 IU SSPA 2009 246 13:35:01 31.18 130.18 167.2 6.2 33 IU SSPA 2009 264 9:02:41 27.37 91.46 16.1 6.1 34 IU SSPA 2009 281 8:38:49 -13.32 166.03 40.1 6.7 35 IU SSPA 2009 313 10:53:26 -17.27 178.45 591.3 7.3 36 IU SSPA 2009 326 7:56:50 -17.82 -178.37 526.8 6.3 37 IU SSPA 2010 107 23:26:02 -6.70 147.30 65.9 6.2 38 IU SSPA 2010 123 10:36:25 29.67 141.01 89.6 6.1 39 IU SSPA 2010 227 15:19:48 -5.78 148.38 180.8 6.3 40 IU SSPA 2010 260 19:29:26 36.54 70.97 215.4 6.2 41 IU SSPA 2011 12 21:41:00 26.97 140.02 524.5 6.5 42 IU SSPA 2011 18 20:32:11 28.68 63.99 79.9 7.2 43 IU SSPA 2011 113 4:26:58 -10.36 161.25 85.6 6.8 44 IU SSPA 2012 210 20:14:13 -4.65 153.17 41.0 6.5 45 IU SSPA 2013 106 10:53:05 28.11 62.05 82.0 7.7 46 IU SSPA 2013 271 7:43:10 27.18 65.51 12.0 6.8 47 IU SSPA 2013 289 10:41:16 -6.45 154.93 35.0 6.8 48 IU SSPA 2014 43 9:28:41 35.91 82.59 10.0 6.9

1 PE UPAO 2011 18 20:32:16 28.68 63.99 79.9 7.2 2 PE UPAO 2011 200 19:44:07 40.16 71.50 19.5 6.2 3 PE UPAO 2011 211 19:02:04 36.96 141.08 48.1 6.4 4 PE UPAO 2011 248 18:06:27 3.03 98.00 106.6 6.7 5 PE UPAO 2012 33 13:44:45 -17.83 167.13 23.0 5.5 6 PE UPAO 2012 133 23:37:13 38.61 70.35 10.0 5.9 7 PE UPAO 2013 107 3:24:45 28.11 62.35 56.2 5.6

1 PE WRPS 2011 18 20:32:11 28.68 63.99 79.9 7.2 2 PE WRPS 2011 200 19:44:02 40.16 71.50 19.5 6.2 3 PE WRPS 2013 134 0:40:43 18.73 145.29 602.3 6.8 4 PE WRPS 2013 271 7:43:09 27.18 65.51 12.0 6.8 5 PE WRPS 2014 43 9:28:41 35.91 82.59 10.0 6.9

1 LD MVL 2011 113 10:20:57 39.17 142.94 31.7 6.0 2 LD MVL 2011 173 21:59:00 39.98 142.46 32.1 6.7 3 LD MVL 2011 191 1:05:26 38.06 143.30 24.7 7.0 4 LD MVL 2011 200 19:44:04 40.16 71.50 19.5 6.2 5 LD MVL 2011 261 12:50:19 27.80 88.15 29.6 6.9 6 LD MVL 2011 345 10:03:43 -56.05 -28.21 130.6 6.3 7 LD MVL 2012 24 1:01:01 -24.90 178.60 579.0 6.3 75

8 LD MVL 2012 74 9:16:39 40.89 144.94 12.0 5.6 9 LD MVL 2012 144 15:10:27 41.34 142.08 46.0 5.5 10 LD MVL 2012 238 14:24:13 42.42 142.91 54.5 5.9 11 LD MVL 2012 239 15:16:37 2.19 126.84 91.1 6.6 12 LD MVL 2013 111 3:30:27 29.93 138.89 421.9 6.1 13 LD MVL 2013 146 6:16:31 39.93 67.35 15.8 5.7 14 LD MVL 2013 207 21:42:14 -57.91 -23.84 13.0 6.2 15 LD MVL 2014 180 6:05:38 24.39 142.63 48.0 6.2 16 LD MVL 2014 181 20:03:41 28.34 138.84 511.0 6.2 17 LD MVL 2014 230 2:40:09 32.70 47.70 10.2 6.2

76

Appendix B: Stacked Transverse Component Energy Grid for each station. 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

Appendix(C:(Individual(results(per(station.( ( Phi uncertainty Delay Delay time Number Network Station Phi (degrees) (degrees) time (s) uncertainty (s)

1 TA K52A 68 14 1.15 0.43 2 TA K52A 81 7 1.08 0.13 3 TA K52A 81 5 1.18 0.08 4 TA K52A 54 5 1.85 0.28 5 TA K52A 63 4 1.63 0.28 6 TA K52A 83 7 0.98 0.10 7 TA K52A 65 23 1.45 1.27 8 TA K52A 79 6 1.77 0.45 9 TA K52A 64 12 1.13 0.25 10 TA K52A 55 10 1.05 0.17 11 TA K52A 49 23 0.78 1.75 12 TA K52A 50 17 1.02 0.38

1 TA K54A 24 13 1.27 0.47 2 TA K54A -82 6 0.95 0.20 3 TA K54A 71 3 1.83 0.13 4 TA K54A 81 4 0.85 0.05 5 TA K54A 41 23 0.63 2.30 6 TA K54A 53 22 0.68 0.60 7 TA K54A -68 6 1.85 0.25

1 TA K55A 60 22 1.10 1.00 2 TA K55A 43 2 1.65 0.35 3 TA K55A 61 23 0.80 0.70 4 TA K55A 80 23 0.95 0.68 5 TA K55A -63 19 1.25 0.65 6 TA K55A 81 23 0.80 2.40 7 TA K55A 81 6 1.10 0.47 8 TA K55A 35 23 0.53 1.25 9 TA K55A 77 23 0.82 0.75 10 TA K55A 58 23 1.38 2.08 11 TA K55A -2 23 1.27 2.65

1 TA K56A -80 22 1.00 0.57 2 TA K56A -75 22 0.45 2.23 3 TA K56A -68 15 1.20 0.38 4 TA K56A -89 23 1.30 1.38 150

5 TA K56A -31 11 1.45 0.45

1 TA K57A -35 23 0.65 1.10 2 TA K57A 70 11 0.78 0.17 3 TA K57A 85 20 0.80 0.40 4 TA K57A 34 7 1.48 0.28 5 TA K57A -67 9 0.98 0.17 6 TA K57A -47 3 1.58 0.33 7 TA K57A -59 22 0.80 0.47 8 TA K57A -51 6 1.10 0.20

1 TA K58A 83 14 0.73 0.25 2 TA K58A 74 23 1.43 1.30 3 TA K58A -77 23 0.73 2.38 4 TA K58A 74 18 1.38 0.57 5 TA K58A 50 18 0.98 0.40 6 TA K58A -89 13 1.85 0.60 7 TA K58A 72 9 1.00 0.35 8 TA K58A 69 20 0.73 0.38

1 TA L53A 56 4 1.43 0.35 2 TA L53A 51 8 1.38 0.23 3 TA L53A 65 11 1.30 0.30 4 TA L53A 13 14 0.88 0.30 5 TA L53A 45 4 1.65 0.30 6 TA L53A 28 10 1.43 0.40 7 TA L53A 58 6 1.08 0.13

1 TA L54A -65 4 1.55 0.25 2 TA L54A 89 13 0.75 0.20 3 TA L54A 70 2 2.28 0.50 4 TA L54A 49 22 0.65 0.35 5 TA L54A 89 5 1.02 0.13 6 TA L54A 54 16 0.57 0.25 7 TA L54A -86 11 1.75 0.73 8 TA L54A 48 15 0.70 0.28

1 TA L55A -76 18 0.93 0.40 2 TA L55A -87 14 0.90 0.25 3 TA L55A 77 9 1.25 0.38 4 TA L55A 83 12 0.78 0.17 5 TA L55A 39 6 1.35 0.20 6 TA L55A 61 20 0.57 0.57 151

7 TA L55A 20 2 1.85 0.15 8 TA L55A 80 7 0.98 0.15

1 TA L56A 53 6 1.15 0.30 2 TA L56A -69 10 1.00 0.35 3 TA L56A 88 17 1.48 0.57 4 TA L56A -84 19 0.88 0.45 5 TA L56A -73 9 0.98 0.17 6 TA L56A -55 23 0.80 1.30 7 TA L56A -29 5 1.40 0.30 8 TA L56A -62 23 0.43 0.80 9 TA L56A -46 21 0.38 0.35

1 TA L57A -66 23 2.03 3.00 2 TA L57A -68 23 0.50 1.15 3 TA L57A -71 13 1.13 0.28 4 TA L57A -54 9 1.18 0.23 5 TA L57A 50 21 1.00 0.53 6 TA L57A -35 19 0.90 0.30 7 TA L57A 79 5 1.73 0.33 8 TA L57A -53 22 1.25 0.75 9 TA L57A -42 17 0.63 0.28 10 TA L57A -53 23 1.15 1.13

1 TA L59A -80 22 0.80 0.47 2 TA L59A 76 23 4.00 4.00 3 TA L59A 87 23 1.00 0.93 4 TA L59A 52 23 0.73 0.95 5 TA L59A 70 16 1.10 0.47 6 TA L59A 84 13 1.10 0.40 7 TA L59A 73 23 0.68 1.15

1 TA L60A 57 13 0.85 0.30 2 TA L60A 77 17 0.75 0.30 3 TA L60A 40 22 1.18 0.70 4 TA L60A -80 23 0.95 2.48 5 TA L60A 39 12 0.85 0.20 6 TA L60A -61 6 1.63 0.28 7 TA L60A -6 18 0.88 0.38 8 TA L60A -45 17 0.95 0.38 9 TA L60A -65 6 0.98 0.13 10 TA L60A -90 12 0.73 0.17 11 TA L60A 81 4 2.33 0.40 152

12 TA L60A -71 18 0.80 0.47

1 TA M52A 54 19 1.18 0.53 2 TA M52A 65 8 1.43 0.60 3 TA M52A 65 12 1.45 0.53 4 TA M52A 53 12 1.05 0.33 5 TA M52A 85 6 1.77 0.33 6 TA M52A 49 21 0.82 0.50 7 TA M52A 52 22 0.47 0.60 8 TA M52A 38 15 0.50 0.17

1 TA M53A 42 6 1.68 0.28 2 TA M53A 69 11 1.45 0.40 3 TA M53A 42 4 1.30 0.13 4 TA M53A 55 5 1.68 0.33 5 TA M53A 20 13 0.82 0.28 6 TA M53A 55 23 1.23 1.68 7 TA M53A 20 2 1.95 0.15 8 TA M53A 19 8 1.15 0.23 9 TA M53A 51 8 1.35 0.33 10 TA M53A 42 4 1.18 0.10 11 TA M53A 45 8 1.23 0.23

1 TA M54A 70 3 0.75 0.03 2 TA M54A 84 8 1.20 0.28 3 TA M54A 21 17 0.70 0.28 4 TA M54A 72 13 0.60 0.17 5 TA M54A -63 7 1.00 0.30 6 TA M54A 53 18 0.98 0.40 7 TA M54A 66 7 0.98 0.20 8 TA M54A 71 9 0.82 0.13 9 TA M54A 20 15 1.30 0.50 10 TA M54A 63 12 0.63 0.15

1 TA M55A 87 21 0.40 0.28 2 TA M55A 85 7 0.95 0.13 3 TA M55A 74 23 1.40 1.20 4 TA M55A 46 15 0.68 0.23 5 TA M55A 66 5 0.78 0.08 6 TA M55A 70 15 0.70 0.25

1 TA M56A 63 10 0.80 0.15 2 TA M56A 89 19 0.57 0.35 153

3 TA M56A 75 23 0.75 0.65 4 TA M56A -78 10 1.15 0.25

1 TA M57A 82 19 0.90 0.53 2 TA M57A -81 23 1.10 1.98 3 TA M57A -84 16 0.57 0.23 4 TA M57A -76 23 0.43 0.65 5 TA M57A -59 5 1.63 0.43

1 TA M58A 79 13 1.58 0.60 2 TA M58A 86 23 1.15 1.43 3 TA M58A 62 12 1.08 0.25 4 TA M58A -68 13 1.38 0.40 5 TA M58A 79 23 0.95 1.13 6 TA M58A 79 12 1.25 0.40 7 TA M58A 84 23 1.20 1.55 8 TA M58A 78 23 0.55 0.82

1 TA M59A -62 10 0.80 0.15 2 TA M59A 87 9 0.82 0.35 3 TA M59A -59 22 0.98 0.53 4 TA M59A 82 13 0.95 0.30 5 TA M59A 81 17 1.13 0.45

1 TA M60A -60 8 1.10 0.20 2 TA M60A -67 22 0.60 2.30 3 TA M60A 59 16 0.75 0.30

1 TA N52A 44 17 0.73 0.30 2 TA N52A 46 4 1.30 0.20 3 TA N52A 39 23 0.88 2.42 4 TA N52A -8 13 1.45 0.55 5 TA N52A 43 9 1.02 0.23 6 TA N52A 61 6 1.05 0.10 7 TA N52A 62 10 1.02 0.25 8 TA N52A 10 23 1.75 2.88 9 TA N52A -87 23 1.35 1.40 10 TA N52A 26 11 0.80 0.17

1 TA N53A 53 4 1.15 0.23 2 TA N53A 48 2 2.83 3.33 3 TA N53A 18 2 2.38 0.38 4 TA N53A 32 3 1.90 0.47 154

5 TA N53A 39 14 1.18 0.43 6 TA N53A 50 23 0.88 1.25

1 TA N54A 17 15 1.15 0.47 2 TA N54A 71 13 0.57 0.15 3 TA N54A 36 4 1.75 0.33 4 TA N54A 49 17 0.65 0.25 5 TA N54A 41 8 0.88 0.13 6 TA N54A -87 4 1.73 0.25 7 TA N54A 24 4 1.18 0.25 8 TA N54A 66 19 0.53 0.30 9 TA N54A -60 23 0.30 0.60 10 TA N54A 70 9 0.98 0.15 11 TA N54A 22 6 0.85 0.20

1 TA N55A -89 21 0.57 0.35 2 TA N55A 56 14 0.73 0.25 3 TA N55A 58 13 0.50 0.13 4 TA N55A 41 15 0.78 0.25 5 TA N55A 82 9 0.85 0.13 6 TA N55A 41 15 0.82 0.28 7 TA N55A 35 16 1.05 0.43

1 TA N56A 81 4 0.95 0.15 2 TA N56A 45 10 1.10 0.20 3 TA N56A 87 16 1.23 0.50 4 TA N56A 18 22 1.10 0.55 5 TA N56A -53 7 1.55 0.38 6 TA N56A -64 23 1.15 1.27

1 TA N58A -86 5 1.38 0.17 2 TA N58A -72 5 1.25 0.25 3 TA N58A -57 17 0.70 0.33 4 TA N58A -82 8 1.25 0.25 5 TA N58A 71 23 0.82 1.45 6 TA N58A 75 8 1.33 0.30 7 TA N58A 88 8 1.63 0.33 8 TA N58A 90 14 0.93 0.28 9 TA N58A 82 11 1.25 0.30 10 TA N58A -72 14 0.75 0.25 11 TA N58A -89 8 0.78 0.08 12 TA N58A -65 16 1.02 0.45

155

1 TA N59A 90 13 1.08 0.30 2 TA N59A -61 23 0.93 1.18 3 TA N59A 89 23 0.70 1.20 4 TA N59A -47 5 1.52 0.38 5 TA N59A 53 21 0.98 0.45 6 TA N59A -76 17 0.80 0.33 7 TA N59A -59 20 0.57 0.63 8 TA N59A 59 23 0.70 0.70 9 TA N59A 58 16 1.05 0.38 10 TA N59A -53 18 1.08 0.45

1 TA N60A -38 23 0.73 0.78 2 TA N60A 16 14 1.05 0.33 3 TA N60A 22 22 0.93 0.53 4 TA N60A 69 2 1.60 0.15 5 TA N60A 67 6 1.18 0.33 6 TA N60A 78 20 0.95 0.50 7 TA N60A 45 17 1.15 0.57 8 TA N60A -65 11 0.85 0.17

1 TA O51A 76 14 1.05 0.30 2 TA O51A 57 8 1.33 0.43 3 TA O51A 51 7 1.30 0.25 4 TA O51A 46 8 0.93 0.20 5 TA O51A 56 8 0.95 0.13 6 TA O51A 56 19 0.93 0.40 7 TA O51A 46 19 0.88 0.43 8 TA O51A 57 20 0.90 0.43 9 TA O51A 66 18 1.00 0.43 10 TA O51A 72 13 0.88 0.25

1 TA O52A 7 21 1.00 0.55 2 TA O52A 44 3 1.50 0.15 3 TA O52A 16 5 1.63 0.20 4 TA O52A 9 23 1.43 2.70 5 TA O52A -5 9 0.88 0.23 6 TA O52A 32 10 1.18 0.30 7 TA O52A 23 3 1.55 0.15 8 TA O52A 18 8 1.05 0.15 9 TA O52A 19 18 0.70 0.35

1 TA O53A 21 23 0.82 0.93 2 TA O53A 42 9 1.35 0.33 156

3 TA O53A 15 23 0.55 0.95 4 TA O53A 56 23 0.85 1.55 5 TA O53A 57 23 0.82 0.75 6 TA O53A 19 8 1.18 0.28 7 TA O53A 27 11 1.73 2.85

1 TA O55A 39 19 0.80 0.40 2 TA O55A 78 18 1.10 0.47 3 TA O55A 64 3 1.68 0.28

1 TA O56A 78 13 2.08 0.82 2 TA O56A -86 12 0.73 0.20 3 TA O56A -89 23 1.18 1.27 4 TA O56A 69 23 0.75 0.85 5 TA O56A 53 23 0.82 0.90 6 TA O56A 41 19 0.93 0.40 7 TA O56A 41 23 0.82 0.98

1 TA O60A -64 4 1.30 0.17 2 TA O60A -18 23 0.98 2.48 3 TA O60A -67 19 1.10 0.43 4 TA O60A -68 16 0.73 0.25 5 TA O60A 39 12 1.43 2.70 6 TA O60A 57 21 0.93 0.47 7 TA O60A -83 23 1.18 1.27 8 TA O60A 75 14 1.23 0.43 9 TA O60A -87 23 1.25 0.98 10 TA O60A -8 23 1.15 2.58 11 TA O60A -69 10 0.88 0.20 12 TA O60A -85 19 1.05 0.50

1 TA P51A 43 13 0.82 0.25 2 TA P51A 39 19 0.85 0.38 3 TA P51A -82 17 0.88 0.35 4 TA P51A 79 23 1.45 2.75 5 TA P51A 9 23 1.23 1.27 6 TA P51A 75 7 1.25 0.20 7 TA P51A 7 17 1.50 0.65 8 TA P51A 50 11 1.15 0.38 9 TA P51A 51 23 0.68 1.50 10 TA P51A 67 17 0.95 0.40 11 TA P51A 59 10 1.05 0.23 12 TA P51A 13 11 1.10 0.25 157

13 TA P51A 52 8 1.08 0.13 14 TA P51A 12 10 1.50 0.45

1 TA P52A 44 13 0.70 0.23 2 TA P52A 60 8 1.52 0.38 3 TA P52A 55 18 1.18 0.47 4 TA P52A 73 14 1.00 0.38 5 TA P52A 40 4 1.95 0.35 6 TA P52A 45 6 1.50 0.40 7 TA P52A 61 23 1.02 0.90 8 TA P52A 56 16 0.80 0.35 9 TA P52A 40 20 1.10 0.57 10 TA P52A 45 16 1.35 0.45 11 TA P52A 52 17 0.85 0.30

1 TA P54A 57 18 1.20 0.50 2 TA P54A -53 16 0.63 0.28 3 TA P54A 22 8 1.25 0.33 4 TA P54A 16 13 1.43 0.47 5 TA P54A 77 23 0.60 0.57 6 TA P54A 76 19 0.50 0.50

1 TA P55A -78 22 0.60 0.40 2 TA P55A -68 23 0.50 1.02 3 TA P55A 76 15 0.60 0.20 4 TA P55A 42 11 0.93 0.23 5 TA P55A -58 15 0.75 0.25 6 TA P55A 50 21 1.23 0.57 7 TA P55A -89 23 1.27 1.00 8 TA P55A 49 23 0.88 1.13

1 TA P56A 58 9 1.13 0.20 2 TA P56A 73 3 1.33 0.23 3 TA P56A 74 23 1.38 2.70 4 TA P56A 42 9 1.33 0.23 5 TA P56A 88 11 1.52 2.75 6 TA P56A -83 23 1.13 1.25 7 TA P56A 25 23 0.82 1.83

1 TA P59A 72 6 1.50 0.28 2 TA P59A 89 15 1.02 0.38 3 TA P59A 68 9 0.93 0.15 4 TA P59A 82 16 0.80 0.33 158

5 TA P59A 86 9 0.82 0.15

1 TA Q51A 66 4 1.15 0.10 2 TA Q51A 12 23 1.10 1.50 3 TA Q51A -40 23 1.27 2.65 4 TA Q51A -76 11 0.98 0.20 5 TA Q51A -66 20 0.73 0.38 6 TA Q51A -35 21 1.58 0.78 7 TA Q51A -14 23 1.85 2.95 8 TA Q51A 66 18 1.40 0.60

1 TA Q52A 59 10 1.27 0.43 2 TA Q52A 90 23 0.75 1.15 3 TA Q52A 50 6 1.45 0.30 4 TA Q52A 55 16 0.73 0.33 5 TA Q52A 81 19 1.93 2.98 6 TA Q52A -44 19 1.18 0.60 7 TA Q52A 78 12 1.40 0.38 8 TA Q52A 16 23 1.18 0.95

1 TA Q53A -71 19 0.70 0.35 2 TA Q53A 69 22 1.08 0.55 3 TA Q53A 63 4 1.35 0.25 4 TA Q53A 67 7 1.05 0.17 5 TA Q53A -53 22 0.45 0.63 6 TA Q53A 47 14 0.88 0.30 7 TA Q53A 70 13 0.57 0.17 8 TA Q53A -44 10 1.30 0.33

1 TA Q54A -80 16 1.00 0.38 2 TA Q54A -81 12 1.05 0.28 3 TA Q54A 69 4 1.20 0.30 4 TA Q54A 68 8 1.20 0.28 5 TA Q54A 55 5 1.40 0.15 6 TA Q54A 69 9 1.18 0.20 7 TA Q54A 64 13 0.98 0.25 8 TA Q54A 47 5 1.35 0.13

1 TA Q55A -60 2 2.08 0.35 2 TA Q55A -75 17 1.10 0.47 3 TA Q55A -65 15 0.70 0.25 4 TA Q55A 67 8 1.35 0.45 5 TA Q55A -90 18 0.70 0.45 159

6 TA Q55A 65 16 1.35 0.63 7 TA Q55A 21 6 1.52 0.35 8 TA Q55A 86 13 1.45 0.63 9 TA Q55A 60 12 0.85 0.20

1 TA Q57A -67 23 0.98 1.50 2 TA Q57A 87 10 1.02 0.25 3 TA Q57A -52 4 1.23 0.15 4 TA Q57A -45 22 0.85 0.53 5 TA Q57A 80 17 1.15 0.55 6 TA Q57A -85 19 0.98 0.45 7 TA Q57A 55 12 1.13 0.28 8 TA Q57A -63 15 1.02 0.30 9 TA Q57A 60 18 0.75 0.35 10 TA Q57A -89 13 0.78 0.23 11 TA Q57A 88 7 0.78 0.08 12 TA Q57A 87 13 0.70 0.20 13 TA Q57A 82 11 0.70 0.15 14 TA Q57A 87 6 0.78 0.08 15 TA Q57A 90 9 0.82 0.15

1 TA Q61A 9 11 1.33 0.38 2 TA Q61A -66 11 1.43 0.60 3 TA Q61A 67 12 1.40 0.38 4 TA Q61A 76 8 1.05 0.15 5 TA Q61A 59 9 0.85 0.20 6 TA Q61A 49 23 1.05 1.73

1 PASEIS PACF 77 6 0.84 0.10 2 PASEIS PACF -84 14 0.88 0.26 3 PASEIS PACF 70 23 0.66 0.80 4 PASEIS PACF 79 10 1.02 0.20 5 PASEIS PACF 29 23 0.38 0.64 6 PASEIS PACF -87 12 0.88 0.22

1 PASEIS PACH 67 20 1.12 0.56 2 PASEIS PACH 80 22 0.92 0.58 3 PASEIS PACH 26 10 1.64 0.50 4 PASEIS PACH 74 23 1.66 1.22 5 PASEIS PACH 62 6 1.08 0.16 6 PASEIS PACH 56 21 1.04 0.52 7 PASEIS PACH 53 5 1.56 0.16 8 PASEIS PACH 59 15 0.76 0.26 160

9 PASEIS PACH 65 19 0.92 0.72 10 PASEIS PACH 50 8 1.82 0.58

1 PASEIS PACW 86 12 0.92 0.22 2 PASEIS PACW -86 17 0.86 0.34 3 PASEIS PACW -54 17 1.00 0.46 4 PASEIS PACW 57 18 0.66 0.50 5 PASEIS PACW 85 23 0.82 1.00 6 PASEIS PACW 72 10 0.78 0.18 7 PASEIS PACW 78 10 0.82 0.18

1 PASEIS PAHR -61 3 1.56 0.48 2 PASEIS PAHR -53 15 1.52 0.80 3 PASEIS PAHR 83 17 1.14 0.50 4 PASEIS PAHR -68 23 1.06 0.74

1 PASEIS PALB -74 13 1.30 0.40 2 PASEIS PALB -60 19 0.90 0.52 3 PASEIS PALB -81 4 1.86 0.24 4 PASEIS PALB -69 7 1.38 0.22 5 PASEIS PALB -52 14 1.32 0.44 6 PASEIS PALB -70 8 1.62 0.40 7 PASEIS PALB -69 4 1.66 0.24

1 PASEIS PALR -51 7 1.34 0.36 2 PASEIS PALR -66 7 1.28 0.30 3 PASEIS PALR -37 17 1.56 2.78 4 PASEIS PALR -51 19 0.92 0.48 5 PASEIS PALR -53 22 0.94 0.54 6 PASEIS PALR -29 23 0.74 1.14 7 PASEIS PALR -40 3 1.86 0.26 8 PASEIS PALR -53 4 1.68 0.30

1 PASEIS PALW -68 23 0.94 1.06 2 PASEIS PALW -61 8 0.98 0.20 3 PASEIS PALW 89 23 1.00 1.62 4 PASEIS PALW -85 23 0.98 1.32 5 PASEIS PALW 88 23 0.90 0.92

1 PASEIS PAMG 49 3 1.76 0.14 2 PASEIS PAMG 19 7 1.38 0.34 3 PASEIS PAMG 25 18 2.24 0.88 4 PASEIS PAMG 39 9 1.64 0.50 161

1 PASEIS PAPG 89 9 0.88 0.12 2 PASEIS PAPG 72 23 0.76 1.16 3 PASEIS PAPG 68 5 1.44 0.28 4 PASEIS PAPG 74 12 0.98 0.30 5 PASEIS PAPG 78 10 0.94 0.20

1 PASEIS PAPL 84 23 1.26 1.54 2 PASEIS PAPL 81 23 0.46 1.78 3 PASEIS PAPL -59 23 0.68 1.00

1 PASEIS PARB -67 10 1.50 0.54 2 PASEIS PARB 84 7 1.54 0.44 3 PASEIS PARB -90 23 0.64 1.08 4 PASEIS PARB -68 8 1.42 0.44 5 PASEIS PARB 76 10 1.30 0.34 6 PASEIS PARB 80 23 0.86 0.88 7 PASEIS PARB -87 23 1.46 1.18 8 PASEIS PARB -88 20 0.80 0.56 9 PASEIS PARB 84 19 1.04 0.54

1 PASEIS PARC 50 3 1.78 0.36 2 PASEIS PARC 31 6 1.90 2.96 3 PASEIS PARC 44 23 0.78 0.92

1 PASEIS PASW 88 23 1.58 1.02 2 PASEIS PASW 81 2 1.54 0.08 3 PASEIS PASW 70 15 0.84 0.24 4 PASEIS PASW -73 13 1.62 2.80 5 PASEIS PASW 78 7 1.92 0.72 6 PASEIS PASW -62 15 1.58 0.50 7 PASEIS PASW -88 22 0.98 0.82 8 PASEIS PASW 85 23 1.56 1.46 9 PASEIS PASW 71 5 1.38 0.16 10 PASEIS PASW -81 19 1.08 0.48

1 PASEIS PATY 59 23 2.14 3.08 2 PASEIS PATY -85 23 1.88 1.44 3 PASEIS PATY 80 23 1.04 1.32 4 PASEIS PATY 29 23 1.74 1.40 5 PASEIS PATY -79 18 0.64 0.26 6 PASEIS PATY 70 22 0.72 0.48

162

1 PASEIS PSAL 57 4 1.78 0.50 2 PASEIS PSAL -27 14 1.28 2.64

1 LD ALLY 56 10 0.93 0.23 2 LD ALLY 56 14 1.15 0.33 3 LD ALLY 67 9 1.20 0.25 4 LD ALLY 62 13 0.93 0.20 5 LD ALLY 68 5 1.20 0.20 6 LD ALLY 88 7 0.85 0.10 7 LD ALLY 87 16 0.73 0.25 8 LD ALLY 89 17 0.47 0.30 9 LD ALLY 68 10 1.05 0.33 10 LD ALLY 47 7 0.98 0.13 11 LD ALLY 45 13 0.78 0.17

1 US ERPA 30 17 1.02 0.43 2 US ERPA 24 10 1.08 0.25 3 US ERPA 48 19 0.75 0.33 4 US ERPA 55 5 1.02 0.08 5 US ERPA 58 4 1.33 0.15 6 US ERPA 64 11 1.15 0.38 7 US ERPA 46 16 1.18 0.43 8 US ERPA 55 9 1.18 0.17 9 US ERPA 48 13 1.02 0.28

1 PE PAGS -40 9 1.72 0.44 2 PE PAGS -79 4 2.10 0.50 3 PE PAGS -68 23 0.98 1.58 4 PE PAGS 74 4 2.22 0.38 5 PE PAGS 18 2 2.38 0.42 6 PE PAGS -59 2 2.34 0.32 7 PE PAGS -90 10 1.38 0.26 8 PE PAGS -76 3 1.68 0.18 9 PE PAGS -84 21 1.16 0.74 10 PE PAGS 81 18 1.32 0.60

1 PE PSDB 43 7 1.50 0.40 2 PE PSDB 73 19 0.42 0.30 3 PE PSDB 38 11 1.20 0.36 4 PE PSDB 78 17 0.76 0.34 5 PE PSDB 62 14 1.08 0.40 6 PE PSDB 66 8 0.68 0.12 7 PE PSDB 55 8 1.12 0.16 163

8 PE PSDB 73 15 0.74 0.26

1 PE PSUB 62 23 0.74 1.26 2 PE PSUB -81 23 1.32 1.06 3 PE PSUB 26 23 0.86 0.88 4 PE PSUB 65 21 0.76 0.50 5 PE PSUB -79 4 0.88 0.12 6 PE PSUB 77 23 0.64 0.82

1 PE PSWB -51 8 1.48 0.34 2 PE PSWB -62 9 1.70 0.34 3 PE PSWB -38 13 1.16 0.36 4 PE PSWB -67 9 1.34 0.26

1 PE UPAO 66 9 0.58 0.10 2 PE UPAO 32 2 1.38 0.20 3 PE UPAO -75 16 0.60 0.26 4 PE UPAO 67 15 0.76 0.26 5 PE UPAO 27 23 0.72 0.80 6 PE UPAO 42 4 1.06 0.18 7 PE UPAO 83 15 1.20 0.42

1 PE WRPS 87 9 0.84 0.16 2 PE WRPS 75 16 0.56 0.22 3 PE WRPS -83 17 0.66 0.32 4 PE WRPS -84 12 1.06 0.28 5 PE WRPS 84 23 1.06 1.20

1 IU SSPA 51 1 3.05 0.50 2 IU SSPA 77 2 3.30 0.80 3 IU SSPA 50 16 1.50 0.75 4 IU SSPA 21 5 2.00 0.60 5 IU SSPA 80 23 0.60 1.15 6 IU SSPA 67 10 2.15 3.10 7 IU SSPA 83 3 2.45 3.25 8 IU SSPA 50 23 1.10 1.50 9 IU SSPA 79 3 3.30 3.65 10 IU SSPA -27 3 3.85 3.35 11 IU SSPA 60 4 1.90 0.40 12 IU SSPA 63 2 2.35 0.30 13 IU SSPA 8 1 3.20 0.60 14 IU SSPA 42 8 1.85 0.55 154

15 IU SSPA 74 23 4.00 4.00 16 IU SSPA 69 2 3.00 3.55 17 IU SSPA -2 3 3.65 1.10 18 IU SSPA 53 23 1.05 2.25 19 IU SSPA -66 10 1.50 0.35 20 IU SSPA 14 23 2.35 3.20 21 IU SSPA 27 5 2.60 0.75 22 IU SSPA 15 23 1.30 1.10 23 IU SSPA 52 20 0.90 0.45 24 IU SSPA 43 18 0.80 0.35 25 IU SSPA 62 23 1.85 1.25 26 IU SSPA 25 23 1.55 2.75 27 IU SSPA -52 22 0.65 0.90 28 IU SSPA 85 16 1.05 0.40 29 IU SSPA -38 23 1.65 1.60 30 IU SSPA 81 11 1.50 0.60 31 IU SSPA 71 18 1.15 0.50 32 IU SSPA 73 9 1.65 0.65 33 IU SSPA -89 23 1.80 1.35 34 IU SSPA 82 23 0.75 2.30 35 IU SSPA 72 23 0.60 2.30 36 IU SSPA 35 20 0.90 0.55 37 IU SSPA 74 12 1.25 0.35 38 IU SSPA 68 6 1.35 0.40 39 IU SSPA 53 21 1.20 0.60 40 IU SSPA 42 23 0.90 1.25 41 IU SSPA 83 23 1.35 1.40 42 IU SSPA 89 6 0.75 0.10 43 IU SSPA 32 16 1.05 0.40 44 IU SSPA 32 10 2.05 1.00 45 IU SSPA -83 20 0.70 0.30 46 IU SSPA -89 12 0.85 0.25 47 IU SSPA 49 13 0.90 0.35 48 IU SSPA 61 15 0.75 0.25

1 LD MVL 80 16 1.34 0.58 2 LD MVL 80 13 1.30 0.52 3 LD MVL 86 18 1.06 0.50 4 LD MVL -82 9 1.24 0.36 5 LD MVL 86 4 1.62 0.24 6 LD MVL -82 10 1.24 0.26 7 LD MVL -63 12 1.30 0.30 8 LD MVL 85 12 1.20 0.40 165

9 LD MVL -63 12 1.02 0.26 10 LD MVL -82 16 0.80 0.32 11 LD MVL 79 12 1.06 0.36 12 LD MVL -87 11 1.18 0.30 13 LD MVL -77 4 1.78 0.34 14 LD MVL 89 13 1.24 0.40 15 LD MVL 76 14 1.66 0.68 16 LD MVL 76 4 2.12 0.28 17 LD MVL 67 19 0.92 0.44 ( 166

Appendix(D:(Plots(of(individual(results(for(MVL,(SSPA(and(ALLY.( ( ( a)( ( 180 ( 160 ( 140 ( ( 120 ( 100 ( ( 80

( Phi (degrees) 60 ( 40 ( ( 20 ( 0 0 50 100 150 200 250 300 350 ( Backazimuth (degrees) ( ( ( ( b)( ( 5 ( 4.5

( 4 ( ( 3.5 ( 3 ( 2.5

( 2

( Delay Time (s) ( 1.5 ( 1 ( 0.5 ( 0 ( 0 50 100 150 200 250 300 350 Backazimuth (degrees) ( ( ( ( ( ( ( ( ( 167

( ( ( ( ( ( ( ( c)( 200 ( ( 150 ( ( 100 (

( Phi (degrees) 50 ( ( 0 0 50 100 150 200 250 300 350 ( Backazimuth (degrees) ( ( ( ( ( d)( 5 ( ( 4 ( 3 ( ( 2

( Delay Time (s) 1 ( ( 0 0 50 100 150 200 250 300 350 ( Backazimuth (degrees) ( ( ( ( 180 ( e)( 160 ( 140 ( 120 ( ( 100 ( 80 ( ( Phi (degrees) 60 40

20

0 0 50 100 150 200 250 300 350 Backazimuth 168

( ( ( ( f)( 5 ( 4.5 ( ( 4 ( 3.5 ( 3 ( 2.5 ( ( 2 Delay Time (s) ( 1.5

( 1 ( ( 0.5 0 ( 0 50 100 150 200 250 300 350 ( Backazimuth (degrees) ( ( ( Figure(1:(a)(Φ(vs.(backazimuth(for(station(MVL.(b)(δt(vs.(backazimuth(for(station(MVL.(c)( Φ(vs.(backazimuth(for(station(SSPA.(d)(δt(vs.(backazimuth(for(station(SSPA.(e)(Φ(vs.( backazimuth(for(station(ALLY.(f)(δt(vs.(backazimuth(for(station(ALLY.(