Upper Mantle Seismic Anisotropy Beneath the West Antarctic Rift System and Surrounding Region from Shear Wave Splitting Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ferraccioli Etal2008.Pdf
Tectonophysics 478 (2009) 43–61 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging F. Ferraccioli a,⁎, E. Armadillo b, A. Zunino b, E. Bozzo b, S. Rocchi c, P. Armienti c a British Antarctic Survey, Cambridge, UK b Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, Genova, Italy c Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy article info abstract Article history: New aeromagnetic data image the extent and spatial distribution of Cenozoic magmatism and older Received 30 January 2008 basement features over the Admiralty Block of the Transantarctic Mountains. Digital enhancement Received in revised form 12 November 2008 techniques image magmatic and tectonic features spanning in age from the Cambrian to the Neogene. Accepted 25 November 2008 Magnetic lineaments trace major fault zones, including NNW to NNE trending transtensional fault systems Available online 6 December 2008 that appear to control the emplacement of Neogene age McMurdo volcanics. These faults represent splays from a major NW–SE oriented Cenozoic strike-slip fault belt, which reactivated the inherited early Paleozoic Keywords: – Aeromagnetic anomalies structural architecture. NE SW oriented magnetic lineaments are also typical of the Admiralty Block and fl Transantarctic Mountains re ect post-Miocene age extensional faults. To re-investigate controversial relationships between strike-slip Inheritance faulting, rifting, and Cenozoic magmatism, we combined the new aeromagnetic data with previous datasets Cenozoic magmatism over the Transantarctic Mountains and Ross Sea Rift. -
Postspreading Rifting in the Adare Basin, Antarctica: Regional Tectonic Consequences
Article Volume 11, Number 8 4 August 2010 Q08005, doi:10.1029/2010GC003105 ISSN: 1525‐2027 Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences R. Granot Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA Now at Institut de Physique du Globe de Paris, 4 Place Jussieu, F‐75005 Paris, France ([email protected]) S. C. Cande Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA J. M. Stock Seismological Laboratory, California Institute of Technology, 1200 East California Boulevard, 252‐21, Pasadena, California 91125, USA F. J. Davey Institute of Geological and Nuclear Sciences, PO Box 30368, Lower Hutt, New Zealand R. W. Clayton Seismological Laboratory, California Institute of Technology, 1200 East California Boulevard, 252‐21, Pasadena, California 91125, USA [1] Extension during the middle Cenozoic (43–26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deforma- tional event took place close to the cessation of seafloor spreading in the Adare Basin (∼24 Ma). -
Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata. -
2013-2014 National Scar Committe
National Report to SCAR for year: 2013-2014 MEMBER COUNTRY: USA Activity Contact Name Address Telephone Fax Email web site NATIONAL SCAR COMMITTEE Senior Program Officer, Staff to Delegation U.S. Polar Research Board The National National Academy of Academies Polar Laurie Geller 202 334 1518 202 334 3825 [email protected] Sciences Research Board 500 Fifth Street NW (K-633) Washington DC 20001 SCAR DELEGATES Ohio State University 1) Delegate/ Department of Geological President, Executive Terry Wilson (614) 292-0723 (614) 292-7688 [email protected] Sciences 155 South Oval Committee Mall Columbus, OH 43210 Departments of Biology and Environmental Science HR 347 2) Alternate Delegate Deneb Karentz (415) 422-2831 (415) 422-6363 [email protected] University of San Francisco 2130 Fulton Street San Francisco, CA 94117- STANDING SCIENTIFIC GROUPS LIFE SCIENCES Associate Research Professor, Division of Earth and Ecosystem Sciences 1) Voting Member Alison Murray Desert Research Institute 775 673 7361 775 673 7485 [email protected] 2215 Raggio Parkway Reno, NV 89512 Departments of Biology and Environmental Science HR 347 2) Deneb Karentz University of San Francisco (415) 422-2831 (415) 422-6363 [email protected] 2130 Fulton Street San Francisco, CA 94117- 1080 1 Activity Contact Name Address Telephone Fax Email web site Deputy Chief of Medicine of Extreme Environments NASA 3) Marc Shepanek 202 358 2201 [email protected] 300 E Street Southwest Washington, DC 20024-3210 Professor and Director Natural Resource Ecology 4) Diana Wall -
Deep Crustal Structure of the Adare and Northern Basins, Ross Sea, Antarctica, from Sonobuoy Data
Earth and Planetary Science Letters 405 (2014) 220–230 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Deep crustal structure of the Adare and Northern Basins, Ross Sea, Antarctica, from sonobuoy data a,b, a a c d M.M. Selvans ∗, J.M. Stock , R.W. Clayton , S. Cande , R. Granot a Seismological Laboratory, California Institute of Technology, 1200 E. California Blvd., MC 252-21, Pasadena, CA 91125, United States b Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, 4th St. SW and Independence Ave., MRC 315, Washington, DC 20013, United States c Scripps Institution of Oceanography, MC 0220, La Jolla, CA 92093, United States d Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel a r t i c l e i n f o a b s t r a c t Article history: Extension associated with ultraslow seafloor spreading within the Adare Basin, in oceanic crust just north Received 8 March 2014 of the continental shelf in the Ross Sea, Antarctica, extended south into the Northern Basin. Magnetic Received in revised form 21 August 2014 and gravity anomaly data suggest continuity of crustal structure across the continental shelf break that Accepted 25 August 2014 separates the Adare and Northern Basins. We use sonobuoy refraction data and multi-channel seismic Available online xxxx (MCS) reflection data collected during research cruise NBP0701, including 71 new sonobuoy records, to Editor: P. Shearer provide constraints on crustal structure in the Adare and Northern Basins. -
Upper Mantle Flow Beneath and Around the Hangay Dome, Central Mongolia Guilhem Barruol, Anne Deschamps, Jacques Déverchère, Valentina V
Upper mantle flow beneath and around the Hangay Dome, central Mongolia Guilhem Barruol, Anne Deschamps, Jacques Déverchère, Valentina V. Mordvinova, Ulziibat Munkhuu, Julie Perrot, A. Artemiev, T. Dugarmaa, Götz H.R. Bokelmann To cite this version: Guilhem Barruol, Anne Deschamps, Jacques Déverchère, Valentina V. Mordvinova, Ulziibat Munkhuu, et al.. Upper mantle flow beneath and around the Hangay Dome, central Mongolia. Earth and Planetary Science Letters, Elsevier, 2008, 274 (1-2), pp.221-233. 10.1016/j.epsl.2008.07.027. hal- 00407853 HAL Id: hal-00407853 https://hal.archives-ouvertes.fr/hal-00407853 Submitted on 24 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Upper mantle flow beneath and around the Hangay dome, Central Mongolia Guilhem Barruol a,⁎, Anne Deschamps b, Jacques Déverchère c,d, Valentina V. Mordvinova e, Munkhuu Ulziibat f, Julie Perrot c,d, Alexandre A. Artemiev e, Tundev Dugarmaa f, Götz H.R. Bokelmann a a Université Montpellier II, CNRS, Géosciences Montpellier, F-34095 Montpellier cedex 5, France b Université Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Géosciences Azur, 250, Rue Albert Einstein, F-06560 Valbonne, France c Université Européenne de Bretagne, France d Université de Brest; CNRS, UMR 6538 Domaines Océaniques; Institut Universitaire Européen de la Mer, Place Copernic, 29280 Plouzané, France e Institute of the Earth's Crust SB RAS, Lermontov st. -
USGS Open-File Report 2007-1047 Extended Abstract
U.S. Geological Survey and The National Academics, USGS OF-2007-1047, Extended Abstract 103 Crustal velocity structure in the northern Ross Sea: From the Adare Basin onto the continental shelf 1 1 1 2 3 M. M. Selvans, J. M. Stock, R. W. Clayton, S. C. Cande, and F. J. Davey 1California Institute of Technology, Mail Stop 252-21, Pasadena, CA 91125, USA ([email protected]) 2Scripps Institution of Oceanography, Mail Code 0220, La Jolla, CA 92093-0220, USA 3Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand Summary Two episodes of extension in the West Antarctic Rift System produced the Transantarctic Mountains, deep sedimentary basins in the Ross Sea, and the Adare Trough spreading center. The Adare Basin and Northern Basin are located at the northwesternmost extent of this region of deformation, and are formed in oceanic and continental crust respectively. Their boundary therefore provides an ideal study area for determining the style of extension in these two types of crust, and for understanding the continuity of deformation between portions of crust in the Ross Sea. Sonobuoy data collected during research cruise NBP0701 are processed to provide a crustal velocity structure along seismic lines trending southeast from the Adare Basin to the Northern Basin. Shallow velocities are determined using reflection data. An apparent velocity of 8100 m/s is observed in the southern Adare Basin, indicative of the mantle. This implies a crustal thickness at that location of 5.0 km, which is anomalously thin for oceanic crust. Processing of all nineteen seismic lines will provide a 3D velocity structure for the Adare Basin. -
Synchronous Oceanic Spreading and Continental Rifting in West
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Synchronous oceanic spreading and continental 10.1002/2016GL069087 rifting in West Antarctica Key Points: F. J. Davey1, R Granot2, S. C. Cande3, J. M. Stock4, M. Selvans5, and F. Ferraccioli6 • Onset of seafloor spreading is temporally coincident with rupture of the 1Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand, 2Department of Geological and Environmental adjacent continental crust 3 • Rifted continental crust has a very Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel, Scripps Institution of Oceanography, La Jolla, California, 4 5 sharp continental-oceanic crustal USA, Seismological Laboratory, California Institute of Technology, Pasadena, California, USA, The Learning Design Group, boundary Lawrence Hall of Science, University of California, Berkeley, CaliforniaUSA, 6British Antarctic Survey, Cambridge, UK • Continuity of seafloor spreading anomalies across the morphological continental shelf edge Abstract Magnetic anomalies associated with new ocean crust formation in the Adare Basin off north-western Ross Sea (43–26 Ma) can be traced directly into the Northern Basin that underlies the adjacent morphological Supporting Information: continental shelf, implying a continuity in the emplacement of oceanic crust. Steep gravity gradients along the • Supporting Information S1 margins of the Northern Basin, particularly in the east, suggest that little extension and thinning of continental crust occurred before it ruptured and the new oceanic crust formed, unlike most other continental rifts and the Correspondence to: F. J. Davey, Victoria Land Basin further south. A preexisting weak crust and localization of strain by strike-slip faulting are [email protected] proposed as the factors allowing the rapid rupture of continental crust. -
Aula 4 – Tipos Crustais Tipos Crustais Continentais E Oceânicos
14/09/2020 Aula 4 – Tipos Crustais Introdução Crosta e Litosfera, Astenosfera Crosta Oceânica e Tipos crustais oceânicos Crosta Continental e Tipos crustais continentais Tipos crustais Continentais e Oceânicos A interação divergente é o berço fundamental da litosfera oceânica: não forma cadeias de montanhas, mas forma a cadeia desenhada pela crista meso- oceânica por mais de 60.000km lineares do interior dos oceanos. A interação convergente leva inicialmente à formação dos arcos vulcânicos e magmáticos (que é praticamente o berço da litosfera continental) e posteriormente à colisão (que é praticamente o fechamento do Ciclo de Wilson, o desparecimento da litosfera oceânica). 1 14/09/2020 Curva hipsométrica da terra A área de superfície total da terra (A) é de 510 × 106 km2. Mostra a elevação em função da área cumulativa: 29% da superfície terrestre encontra-se acima do nível do mar; os mais profundos oceanos e montanhas mais altas uma pequena fração da A. A > parte das regiões de plataforma continental coincide com margens passivas, constituídas por crosta continental estirada. Brito Neves, 1995. Tipos crustais circunstâncias geométrico-estruturais da face da Terra (continentais ou oceânicos); Característica: transitoriedade passar do Tempo Geológico e como forma de dissipar o calor do interior da Terra. Todo tipo crustal adveio de um outro ou de dois outros, e será transformado em outro ou outros com o tempo, toda esta dança expressando a perda de calor do interior para o exterior da Terra. Nenhum tipo crustal é eterno; mais "duráveis" (e.g. velhos Crátons de de "ultra-longa duração"); tipos de curta duração, muitas modificações e rápida evolução potencial (como as bacias de antearco). -
The Antarctic Sun, December 19, 1999
On the Web at http://www.asa.org December 19, 1999 Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program Ski-plane crashes at AGO-6 By Aaron Spitzer The Antarctic Sun Two pilots escaped injury Sunday when their Twin Otter aircraft crashed during takeoff from an isolated landing site in East Antarctica. The plane, a deHavilland Twin Otter turboprop owned by Kenn Borek Air Ltd. and chartered to the U.S. Antarc- tic Program, was taking off around 3:15 p.m. Sunday when it caught a ski in the snow and tipped sideways. A wing hit the ground and the plane suffered Congratulations, it’s a helicopter! extensive damage. A New Zealand C-130 delivers a Bell 212 helicopter to the ice runway last week. The new The accident occurred on a tempo- arrival took the place of the Royal New Zealand Air Force helo used in the first part of the rary skiway at Automated Geophysical season. Photo by Ed Bowen. Observatory 6, located in Wilkes Land, about 800 miles northwest of McMurdo. The pilots had flown to the site earlier in the day from McMurdo Station to drop Testing tainted waters off two runway groomers, who were preparing the strip for the arrival of an By Josh Landis LC-130 Hercules ski-plane. The Antarctic Sun On Monday afternoon, another Kenn Borek Twin Otter, chartered to the Most scientists come to Antarctica because it gives them a chance to do their Italian Antarctic Program at Terra Nova work in the most pristine conditions on Earth. -
Observational Test of the Global Moving Hot Spot Reference Frame
RESEARCH LETTER Observational Test of the Global Moving Hot Spot 10.1029/2019GL083663 Reference Frame Key Points: Chengzu Wang1 , Richard G. Gordon1 , Tuo Zhang1 , and Lin Zheng1 • The fit of the Global Moving Hotspot Reference Frame (GMHRF) to 1Department of Earth, Environmental, and Planetary Sciences, William Marsh Rice University, Houston, TX, USA observed geologically young trends of hot spot tracks is evaluated • The data are fit significantly worse (p = 0.005) by the GMHRF than by Abstract The Global Moving Hotspot Reference Frame (GMHRF) has been claimed to fit hot spot tracks fixed hot spots better than the fixed hot spot approximation mainly because the GMHRF predicts ≈1,000 km southward • Either plume conduits do not advect motion through the mantle of the Hawaiian mantle plume over the past 80 Ma. As the GMHRF is passively with mantle flow or the GMHRF mantle velocity field is determined by starting at present and calculating backward in time, it should be most accurate and incorrect reliable for the recent geologic past. Here we compare the fit of the GMHRF and of fixed hot spots to the observed trends of young tracks of hot spots. Surprisingly, we find that the GMHRF fits the data significantly Supporting Information: worse (p = 0.005) than does the fixed hot spot approximation. Thus, either plume conduits are not passively • Supporting Information S1 advected with the mantle flow calculated for the GMHRF or Earth's actual mantle velocity field differs substantially from that calculated for the GMHRF. Correspondence to: Hot spots are the surface manifestations of plumes of hot rock that R. -
Determining the Architecture of the Terror Rift from Stratal Dips in Reflection Seismology Profiles
Determining the Architecture of the Terror Rift from Stratal Dips in Reflection Seismology Profiles Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in Geological Sciences in the undergraduate colleges of The Ohio State University By Will Blocher The Ohio State University December 2013 Project Advisor: Professor Terry Wilson, School of Earth Sciences Abstract - - - - - - - - - 1 Geologic Setting and Background to the Research Problem - 2 Study Approach, Data and Methodology Approach - - - - - - - - 4 Seismic Reflection Profiles - - - - - 7 Methods - - - - - - - - 9 Selecting Fold-Outs - - - - - - 17 Results and Research Significance - - - - - 19 Possibilities for Future Research - - - - - 23 Acknowledgements - - - - - - - 23 References - - - - - - - - - 24 Appendix - - - - - - - - - A1-A9 Abstract The Terror Rift is the youngest part of the West Antarctic rift system in the Antarctic interior. The Terror rift basin lies beneath the western Ross Sea near the Transantarctic Mountains. The rift has undergone multiple episodes of rifting, as evidenced by superimposed tilts of basin strata in fault blocks that define the rift. A younger tilt pattern has been superimposed on the rift around Ross Island, where the crust has flexed downward under the weight of young volcanoes. Mapping tilt directions provides a means to reconstruct the orientation of faults that produced tilt, and discriminate fault-induced tilt from younger flexure. This study is using seismic reflection profiles, imaging subsurface structure, to reconstruct tilts. Where two seismic lines cross, the true direction of tilt and the magnitude of tilt can be measured at multiple levels downward through the sequence of strata, such that changes in attitudes of bedding with depth can be determined. Maps of tilt directions from multiple crossing profiles for the time period marked by each seismic reflector will allow us to infer the orientations of these surfaces in 3D space.