And Long-Chain Dicarboxylic Aciduria in Patients with Zellweger Syndrome and Neonatal Adrenoleukodystrophy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Altered Metabolome of Lipids and Amino Acids Species: a Source of Early Signature Biomarkers of T2DM
Journal of Clinical Medicine Review Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM Ahsan Hameed 1 , Patrycja Mojsak 1, Angelika Buczynska 2 , Hafiz Ansar Rasul Suleria 3 , Adam Kretowski 1,2 and Michal Ciborowski 1,* 1 Clinical Research Center, Medical University of Bialystok, Jana Kili´nskiegoStreet 1, 15-089 Bialystok, Poland; [email protected] (A.H.); [email protected] (P.M.); [email protected] (A.K.) 2 Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] 3 School of Agriculture and Food System, The University of Melbourne, Parkville, VIC 3010, Australia; hafi[email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Diabetes mellitus, a disease of modern civilization, is considered the major mainstay of mortalities around the globe. A great number of biochemical changes have been proposed to occur at metabolic levels between perturbed glucose, amino acid, and lipid metabolism to finally diagnoe diabetes mellitus. This window period, which varies from person to person, provides us with a unique opportunity for early detection, delaying, deferral and even prevention of diabetes. The early detection of hyperglycemia and dyslipidemia is based upon the detection and identification of biomarkers originating from perturbed glucose, amino acid, and lipid metabolism. The emerging “OMICS” technologies, such as metabolomics coupled with statistical and bioinformatics tools, proved to be quite useful to study changes in physiological and biochemical processes at the metabolic level prior to an eventual diagnosis of DM. -
Dibasic Acids for Nylon Manufacture
- e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene -
Microwave-Assisted Low-Temperature Dehydration Polycondensation of Dicarboxylic Acids and Diols
Polymer Journal (2011) 43, 1003–1007 & The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/11 $32.00 www.nature.com/pj RAPID COMMUNICATION Microwave-assisted low-temperature dehydration polycondensation of dicarboxylic acids and diols Polymer Journal (2011) 43, 1003–1007; doi:10.1038/pj.2011.107; published online 26 October 2011 INTRODUCTION time (4100 h). Therefore, we next focused on has been no report concerning a Currently, because of increasing concerns identifying more active catalysts and found that non-thermal effect in microwave-assisted about damage to the environment, the devel- scandium and thulium bis(nonafluorobutane- polycondensation reactions,33,34 although opment of new, eco-friendly (industrially sulfonyl)imide ((Sc(NNf2)3) and (Tm(NNf2)3)) there has been a report that non-thermal relevant) chemical reactions and materials is were more efficient catalysts and allowed us microwaves have a role in the chain polymer- crucial. Aliphatic polyesters have attracted to obtain high-molecular-weight polyesters ization of a lactone.32 Therefore, we studied 4 much interest as environmentally benign, (Mn42.0Â10 ) from adipic acid (AdA) and microwave-assisted syntheses of polyesters at biodegradable polymers.1,2 In general, alipha- 3-methyl-1,5-pentanediol (MPD) at 60 1Cina a relatively low temperature (80 1C) using a tic polyesters are commercially produced by shortperiodoftime(24h)andwithasmaller microwave chamber equipped with a tem- polycondensation of a dicarboxylic acid and a amount of catalyst (0.1 mol%) than had pre- perature control, and the results are reported 1.1–1.5 mol excess of a diol at a temperature viously been possible.26 herein. -
8342 RA Rosin Flux Paste
8342 RA Rosin Flux Paste MG Chemicals UK Limited Version No: A-1.0 2 Issue Date: 12/08/2019 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Revision Date: 14/01/2021 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 8342 Synonyms SDS Code: 8342; 8342-50G | UFI: MKH0-J0US-C00M-20WV Other means of identification RA Rosin Flux Paste 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses flux paste Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone numbers +(44) 20 35147487 Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to regulation (EC) No 1272/2008 H334 - Respiratory Sensitizer Category 1, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1 [CLP] [1] Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI 2.2. Label elements Hazard pictogram(s) SIGNAL WORD DANGER Hazard statement(s) H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled. -
Pharmacokinetics of Sebacic Acid in Rats
European Review for Medical and Pharmacological Sciences 1999; 3: 119-125 Pharmacokinetics of sebacic acid in rats A.M.R. FAVUZZI, G. MINGRONE, A. BERTUZZI*, S. SALINARI**, A. GANDOLFI*, A.V. GRECO Istituto di Medicina Interna e Geriatria, Catholic University - Rome (Italy) *Istituto di Analisi dei Sistemi ed Informatica, CNR - Rome (Italy) **Dipartimento di Informatica e Sistemistica, Facoltà di Ingegneria, “La Sapienza” University - Rome (Italy) Abstract. – The pharmacokinetics of disodi- enteral nutrition (TPN) as an alternate ener- um sebacate (Sb) was studied in Wistar rats of gy source1-3. The advantage of these diacids both sexes. Sebacate was administered either as over conventional lipid substrates (both long intra-peritoneal (i.p.) bolus (six doses ranging from 10 mg to 320 mg) or as oral bolus (two doses: 80 and medium chain triglycerides) is related to and 160 mg). Plasma and urinary concentrations the immediate availability of their com- of Sb and urinary concentrations of Sb and its pounds. The salts of dicarboxylic acids are products of β-oxidation (suberic and adipic acids) highly water soluble and thus can be directly were measured by an improved method using administered through a peripheral venous gas-liquid chromatography/mass-spectrometry. route. Unlike long chain triglycerides (LCT), A single compartment with two linear elimi- or medium chain triglycerides (MCT), which nation routes was selected after no increase in significance was shown by an additional com- are available under emulsion form for clinical partment and after a saturable mechanism was use, they do not require complex and expen- found to be unsuitable. Both renal and non-re- sive production procedures. -
D 2.1 Background Information and Biorefinery Status, Potential and Sustainability
Project no.: 241535 – FP7 Project acronym: Star-COLIBRI Project title: Strategic Targets for 2020 – Collaboration Initiative on Biorefineries Instrument: Specific Support Action Thematic Priority: Coordination and support actions D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – Due date of deliverable: March 31, 2010 Start date of project: 01.11.2009 Duration: 24 months Organisation name of lead contractor for this deliverable: UoY Version: 1.0 Project co-funded by the European Commission within the Seventh Framework Programme (2007-2011) Dissemination level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Star-COLIBRI - Deliverable 2.1 D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – H.L. Bos, P.F.H. Harmsen & E. Annevelink Wageningen UR – Food & Biobased Research Version 18/03/10 Task 2.1.2 Market and Consumers; Carbohydrates 2 Star-COLIBRI - Deliverable 2.1 Content Management summary ............................................................................................................... 4 1 Introduction ........................................................................................................................ 5 1.1 Task description -
United States Patent Office Patented
2,826,604 United States Patent Office Patented. Mar. 11, 1958 2 (130-140 C.), the decalyl acetate being recoverable from the reaction mixture by distillation of the neutralized re 2,826,604 action liquid. The recovered product was a straw-colored PREPARATION OF DECAHYDRONAPHTHYL fragrant oil, which was established to be 1-decallyl acetate. ACETATE 5 The position of the acetoxy group was determined by William E. Erner, Wilmington, Del, assignor to Houdry hydrolysis of the ester to the alcohol and subsequent Process Corporation, Wilmington, Del, a corporation conversion to decalone-1 by chromic acid-acetic acid oxi of Delaware dation. - The aceto-oxidation of Decalin can be carried out No Drawing. Application June 2, 1955 10 in the presence of oxidation catalysts of the type em Serial No. 512,853 bodied in the metal salts of the lower fatty acids. Cobalt 2 Claims. (C. 260-488) acetate proved outstanding among the metallic-soap oxi dation catalysts studied. The use of benzoyl peroxide at the start of the process has been found advantageous The present invention relates to the preparation of 1 5 in decreasing the induction period and in giving uni decahydronaphthyl alcohols and the corresponding acetic formly high yields. acid ester and ketone derivatives of Said alcohols. The ratios of Decalin - to acetic anhydride in the oper More particularly the invention is concerned with the ation of the process are not critical, but practical con production of saturated polynuclear carbocyclic com siderations favor the use of at least one-half mol of pounds of the type 20 acetic anhydride per mol of Decalin. -
Chemo-Enzymatic Cascades to Produce Cycloalkenes from Bio-Based Resources
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by edoc ARTICLE https://doi.org/10.1038/s41467-019-13071-y OPEN Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources Shuke Wu 1,3*, Yi Zhou 1, Daniel Gerngross 2, Markus Jeschek 2 & Thomas R. Ward 1* Engineered enzyme cascades offer powerful tools to convert renewable resources into value- added products. Man-made catalysts give access to new-to-nature reactivities that may complement the enzyme’s repertoire. Their mutual incompatibility, however, challenges their 1234567890():,; integration into concurrent chemo-enzymatic cascades. Herein we show that compartmen- talization of complex enzyme cascades within E. coli whole cells enables the simultaneous use of a metathesis catalyst, thus allowing the sustainable one-pot production of cycloalkenes from oleic acid. Cycloheptene is produced from oleic acid via a concurrent enzymatic oxi- dative decarboxylation and ring-closing metathesis. Cyclohexene and cyclopentene are produced from oleic acid via either a six- or eight-step enzyme cascade involving hydration, oxidation, hydrolysis and decarboxylation, followed by ring-closing metathesis. Integration of an upstream hydrolase enables the usage of olive oil as the substrate for the production of cycloalkenes. This work highlights the potential of integrating organometallic catalysis with whole-cell enzyme cascades of high complexity to enable sustainable chemistry. 1 Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland. 2 Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland. 3Present address: Institute of Biochemistry, University of Greifswald, Felix- Hausdorff-Str. -
The Human Urine Metabolome
The Human Urine Metabolome Souhaila Bouatra1, Farid Aziat1, Rupasri Mandal1, An Chi Guo2, Michael R. Wilson2, Craig Knox2, Trent C. Bjorndahl1, Ramanarayan Krishnamurthy1, Fozia Saleem1, Philip Liu1, Zerihun T. Dame1, Jenna Poelzer1, Jessica Huynh1, Faizath S. Yallou1, Nick Psychogios3, Edison Dong1, Ralf Bogumil4, Cornelia Roehring4, David S. Wishart1,2,5* 1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, 2 Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada, 3 Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 4 BIOCRATES Life Sciences AG, Innsbruck, Austria, 5 National Institute for Nanotechnology, Edmonton, Alberta, Canada Abstract Urine has long been a ‘‘favored’’ biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. -
(12) United States Patent (10) Patent No.: US 6,406,708 B1 Kairnerud Et Al
USOO6406708B1 (12) United States Patent (10) Patent No.: US 6,406,708 B1 Kairnerud et al. (45) Date of Patent: Jun. 18, 2002 (54) THERAPEUTIC COMPOSITIONS WO WO 96/11572 A1 4/1996 WO WO 96/21422 A1 7/1996 (75) Inventors: Lars Kärnerud, Tenhult; Stellan WO WO 98/22083 A1 5/1998 Olmeskog, Aneby, both of (SE) OTHER PUBLICATIONS (73) Assignee: Interhealth AB, Huskvarna (SE) Patent Abstracts of Japan, “JP 61-227517 A, Lion Corp., published Oct. 9, 1986”, vol. 11, No. 69 C-407. (*) Notice: Subject to any disclaimer, the term of this Patent Abstracts of Japan “10-087458 A., Lion Corp., pub patent is extended or adjusted under 35 lished Apr. 7, 1998”. U.S.C. 154(b) by 0 days. Patent Abstracts of Japan, “JP 07-138125A,” Shiseido Co. Ltd., published May 30, 1995, vol. 95, No. 5. (21) Appl. No.: 09/700,215 Hoffmann SL et al., “Safety, Immunogenicity, And Efficacy (22) PCT Filed: May 12, 1999 Of A Malaria Sporozoite Vaccine Administered With Mono phosphoryl Lipid A, Cell Wall Skeleton Of Mycobacteria, (86) PCT No.: PCT/SE99/00819 And Squalane AS Adjuvent” Am J Trop Med Hyg, 51(5), pp. S371 (c)(1), 603–612, Nov. 1994. Abstract. (2), (4) Date: Nov. 13, 2000 Allison AC, “Adjuvants and Immune Enhancement' Int. J. Technol. Assess Health Care, 10(1), pp., 107-120, Winter (87) PCT Pub. No.: WO99/58104 1994. Abstract. Stone HD et al., “Efficacy of Experimental Newcastle Dis PCT Pub. Date: Nov. 18, 1999 ease Water-In-Oil Oil-Emulsion Vaccines Formulated from (30) Foreign Application Priority Data Squalane and Squalane. -
Effect of Oral Sebacic Acid on Postprandial Glycemia, Insulinemia, and Glucose Rate of Appearance in Type 2 Diabetes
Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Effect of Oral Sebacic Acid on Postprandial Glycemia, Insulinemia, and Glucose Rate of Appearance in Type 2 Diabetes 1 1 AMERIGO IACONELLI, MD ANGELA FAVUZZI, MD beneficial in terms of reduction of circu- 2 3 AMALIA GASTALDELLI, PHD CHRISTOPHE BINNERT, PHD lating levels of glucose, insulin, and free 1 3 CHIARA CHIELLINI, PHD KATHERINE MACE´, PHD 1 1 fatty acids in type 2 diabetes. Thus, the DONATELLA GNIULI, MD GELTRUDE MINGRONE, MD, PHD availability of snacks poor in fat and that do not induce hyperglycemia and/or overstimulate insulin secretion would be OBJECTIVE — Dicarboxylic acids are natural products with the potential of being an alter- a good tool in the diet of insulin-resistant, nate dietary source of energy. We aimed to evaluate the effect of sebacic acid (a 10-carbon type 2 diabetic subjects. dicarboxylic acid; C10) ingestion on postprandial glycemia and glucose rate of appearance (Ra) in healthy and type 2 diabetic subjects. Furthermore, the effect of C10 on insulin-mediated Dicarboxylic acids are naturally oc- glucose uptake and on GLUT4 expression was assessed in L6 muscle cells in vitro. curring substances produced by both higher plants and animals via -oxidation RESEARCH DESIGN AND METHODS — Subjects ingested a mixed meal (50% car- of fatty acids (6,7). In plants, long-chain bohydrates, 15% proteins, and 35% lipids) containing 0 g (control) or 10 g C10 in addition to dicarboxylic acids are components of nat- the meal or 23 g C10 as a substitute of fats. ural protective polymers, cutin and RESULTS — In type 2 diabetic subjects, the incremental glucose area under the curve (AUC) suberin, which support biopolyesters in- decreased by 42% (P Ͻ 0.05) and 70% (P Ͻ 0.05) in the 10 g C10 and 23 g C10 groups, volved in waterproofing the leaves and respectively. -
Dissociation Constants of Organic Acids and Bases
DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.