Molecular Electronics Based on Self-Assembled Monolayers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biomedical Nanotechnology.Pdf
BIOMEDICAL NANOTECHNOLOGY BIOMEDICAL NANOTECHNOLOGY Edited by Neelina H. Malsch Boca Raton London New York Singapore CRC PRESS, a Taylor & Francis title, part of the Taylor and Francis Group. Published in 2005 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2005 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 0-8247-2579-4 (Hardcover) International Standard Book Number-13: 978-0-8247-2579-2 (Hardcover) Library of Congress Card Number 2005045702 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. -
PDF Downloads
Engineering Advances, 2021, 1(1), 26-30 http://www.hillpublisher.com/journals/ea/ ISSN Online: ****-**** ISSN Print: ****-**** Nanofabrics—The Smart Textile Nida Tabassum Khan1,*, Muhammad Jibran Khan2 1Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology En- gineering and Management Sciences, (BUITEMS), Quetta, Pakistan. 2Department of Electrical Engineering, Faculty of Information and Communication Technology, Balochistan University of Infor- mation Technology Engineering and Management Sciences, (BUITEMS), Quetta, Pakistan. How to cite this paper: Nida Tabassum Khan, Muhammad Jibran Khan. (2021) Abstract Nanofabrics—The Smart Textile. Engi- Nanotechnology is tied in with improving and carrying the up and coming bril- neering Advances, 1(1), 26-30. DOI: 10.26855/ea.2021.06.005 liant answers for nanoscale-level merchandise. It is tied in with organizing the particles to change measurements and improvement attributes, for example, bril- Received: April 28, 2021 liant texture. These textures can help makers with the additional significance of Accepted: May 25, 2021 expectations for everyday comforts, visual intrigue, and framework needed inno- Published: June 18, 2021 vative creations. Particles of nano size may uncover unexpected qualities unlike *Corresponding author: Nida Tabas- the mass material. Nanotechnology has multifunctional highlights in the produc- sum Khan, Department of Biotechnol- tion of textures in the advancement of resistance stain and wrinkles, fire resistant, ogy, Faculty of Life Sciences and In- antimicrobial and antistatic properties, dampness guideline, bright security and formatics, Balochistan University of Information Technology Engineering discharge attributes. Inside the texture the nanomaterials could impact various and Management Sciences, characteristics, including decrease electrical conductivity, combustibility and (BUITEMS), Quetta, Pakistan. -
The Views of Experts and the Public Regarding Societal Preferences for Innovation in Nanotechnology
The views of experts and the public regarding societal preferences for innovation in nanotechnology Nidhi Gupta Thesis committee Promoter Prof. Dr L.J. Frewer Professor emeritus, Food Safety and Consumer Behaviour Wageningen University Professor of Food & Society Newcastle University, UK Co-promotors Dr A.R.H. Fischer Assistant Professor, Marketing and Consumer Behaviour Group Wageningen University Dr F.W.H. Kampers Director, Biotechnology Center for Food and Health Innovation Wageningen University Other members Prof. Dr G. Antonides, Wageningen University Dr H.J.P Marvin, RIKILT, Wageningen University and Research Center Prof. Dr H. van Lente, Utrecht University Dr Q. Chaudhry, Food & Environment Research Agency (FERA), North Yorkshire,UK This research was conducted under the auspices of the Graduate School of Wageningen Social Sciences (WASS) The views of experts and the public regarding societal preferences for innovation in nanotechnology Nidhi Gupta Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 9 December 2013 at 1.30 p.m. in the Aula. Nidhi Gupta The views of experts and the public regarding societal preferences for innovation in nanotechnology, 188 pages PhD thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in English and Dutch ISBN: 978-94-6173-762-5 To Ma, Pa, Mannu and Mannat Contents A Abstract iii 1 General Introduction 1 1.1 Nanotechnology: exploring the future with key stakeholders . 3 1.2 Scope and outline of the thesis . -
Molecular and Nano Electronics/Molecular Electronics
NANOSCIENCES AND NANOTECHNOLOGIES - Molecular And Nano-Electronics - Weiping Wu, Yunqi Liu, Daoben Zhu MOLECULAR AND NANO-ELECTRONICS Weiping Wu, Yunqi Liu, Daoben Zhu Institute of Chemistry, Chinese Academy of Sciences, China Keywords: nano-electronics, nanofabrication, molecular electronics, molecular conductive wires, molecular switches, molecular rectifier, molecular memories, molecular transistors and circuits, molecular logic and molecular computers, bioelectronics. Contents 1. Introduction 2. Molecular and nano-electronics in general 2.1. The Electrodes 2.2. The Molecules and Nano-Structures as Active Components 2.3. The Molecule–Electrode Interface 3. Approaches to nano-electronics 3.1. Nanofabrication 3.2. Nanomaterial Electronics 3.3. Molecular Electronics 4. Molecular and Nano-devices 4.1. Definition, Development and Challenge of Molecular Devices 4.2. Molecular Conductive Wires 4.3. Molecular Switches 4.4. Molecular Rectifiers 4.5. Molecular Memories 4.6. Molecular Transistors and Circuits 4.7. Molecular Logic and Molecular Computers 4.8. Nano-Structures in Nano-Electronics 4.9. Other Applications, Such as Energy Production and Medical Diagnostics 4.10. Molecularly-Resolved Bioelectronics 5. Summary and perspective Glossary BibliographyUNESCO – EOLSS Biographical Sketches Summary SAMPLE CHAPTERS Molecular and nano-electronics using single molecules or nano-structures as active components are promising technological concepts with fast growing interest. It is the science and technology related to the understanding, design, and -
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Supporting Information For RSC Adv. “Green” Nano-Filters: Fine Nanofibers of Natural Protein for High Efficiency Filtration of Particulate Pollutants and Toxic Gases Hamid Souzandeh, Yu Wang*and Wei-Hong Zhong * School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164 (USA) E-mail: [email protected] [email protected] S0 Gelatin solution and nanofiber mat preparation. Gelatin was dissolved in mixed solvent (volume ratio, acetic acid : DI water = 80 : 20) with a concentration of 18 wt% at 65 °C. The mixed solvent was used to achieve a good electrospinning of the gelatin solution. With that ratio between water and acetic acid, it was found that a homogenous yellow solution and stable electrospinning of the solution can be achieved. The electrospinning of gelatin solution is a well- known process and the effect of viscosity on electrospinning of gelatin has been studied before.1 After the homogenous gelatin solution (18 wt%) is prepared, the nanofibers were spun at room temperature on an aluminum mesh substrate. The areal density of the nanofabrics was controlled by controlling the volume of the solution that was electrospun on the substrate. The gelatin nanofabrics possessed a thickness within the range of 8 – 20 μm. In particular, the sample with the best air filtration properties (areal density = 3.43 g/m2) possesses a thickness of about 16 μm. The gelatin nanofabrics can be handled manually even though they are not crosslinked, but it is challenging due to very high electrostatic charge of the nanofibers. -
A New Family of Optically Controlled Logic Gates Using Naphthopyran Molecule
International Journal on Organic Electronics (IJOE) Vol.1, No.1, April 2012 A NEW FAMILY OF OPTICALLY CONTROLLED LOGIC GATES USING NAPHTHOPYRAN MOLECULE V.Mugundhan 1 1Department of Electronics and Instrumentation Engineering, SRM University, Kattankulathur, Tamil Nadu [email protected] ABSTRACT Microelectronics is predicted to reach its limit in another five to six years. As an alternative substitute, molecular electronics is analysed as an option, owing to its low power consumption and also very less area occupied by it(typically nm2). Conventional molecular electronic structures for molecular computational structures have been presented in the past. Naphthopyran in one potential candidate in creating optically controllable switches due to its bi-stability. It switches between the open ring and closed ring structures effectively when illuminated with light. In this paper, we will theoretically present a family of logic gates which are controlled optically, using Naphthopyran and associated architectures for basic structures such as AND, OR, XOR, Controlled NOT, Half adder and full adders, which are controlled optically. We see this as a step towards achieving the integration of molecular electronics and photonics, and thus, fabrication of IC like circuits employing the above. KEYWORDS Naphthopyran, Azobenzene, Self assembled Monolayers(SAM), Photo-isomerisation, Molecular electronic logic gates(MELG). 1. INTRODUCTION AND BACKGROUND STUDY Molecular electronics has been investigated as a potential candidate for achieving bottom up fabrication and low power electronics. The attractive feature of this type of materials is that they can self assemble on a substrate. As we go deeper into the subject of molecular electronics, we see a very wide difference from conventional inorganic materials based electronics that is being used in present day electronics. -
A Fine-Grained 3D IC Technology with NP-Dynamic Logic
Received 13 June 2016; revised 24 February 2017; accepted 8 March 2017. Date of publication 20 March 2017; date of current version 7 June 2017. Digital Object Identifier 10.1109/TETC.2017.2684781 NP-Dynamic Skybridge: A Fine-Grained 3D IC Technology with NP-Dynamic Logic JIAJUN SHI, MINGYU LI, MOSTAFIZUR RAHMAN, SANTOSH KHASANVIS, AND CSABA ANDRAS MORITZ J. Shi, M. Li, and C.A. Moritz are with the Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003 M. Rahman is with the School of Computing and Engineering, University of Missouri, Kansas City, MO 65211 S. Khasanvis is with BlueRISC Inc., Amherst, MA 01002 CORRESPONDING AUTHOR: J. SHI ([email protected]) ABSTRACT A new 3D IC fabric named NP-Dynamic Skybridge is proposed that provides fine-grained vertical 3D integration for future technology scaling. Relying on a template of vertical nanowires, it expands our prior work to incorporate and utilize both n- and p-type transistors in a novel NP-Dynamic circuit-style compatible with true 3D integration. This enables a wide range of elementary logics leading to more compact circuits, simple clocking schemes for cascading logic stages and low buffer requirement. We detail new design concepts for larger-scale circuits, and evaluate our approach using a 4-bit nanoprocessor implemented in 16 nm technology node. A new pipelining scheme specifically designed for our 3D NP-Dynamic circuits is employed in the nanoprocessor. We compare our approach with 2D CMOS as well as state-of-the-art tran- sistor-level monolithic 3D IC (T-MI) approach. Benchmarking results for the 4-bit nanoprocessor show bene- fits of up to 56.7x density, 3.8x power and 1.7x throughput over 2D CMOS. -
Array-Based Architecture for Molecular Electronics
Array-Based Architecture for Molecular Electronics Andre´ DeHon Department of Computer Science, 256-80 California Institute of Technology Pasadena, CA 91125 [email protected] Microscale NT/NW Abstract Wiring Wiring Advances in our basic scientific understanding at the molecular and atomic level place us on the verge engi- neering designer structures at the molecular scale. This introduces exciting opportunities to design computing sys- Decode tems at what may be the ultimate limits on device size. At this scale, we are faced with new challenges and a new cost OR NOR structure which motivate different computing architectures Decode than we found efficient and appropriate in conventional Decode VLSI. We sketch a basic architecture for molecular elec- Decode tronics based on carbon nanotubes and silicon nanowires which can provide universal logic functionality with all logic and signal restoration operating at the molecular scale. The key properties of this architecture are its mini- Decode malism, defect tolerance, and compatibility with emerging, bottom-up, nanoscale fabrication techniques. The archi- NOR OR Decode tecture further supports micro-to-nanoscale interfacing for Decode communication with conventional integrated circuits and Decode bootstrap loading. Figure 1: Overall Assembly of Functional Nanoarrays 1 Overview 2 Technology We show how to organize the carbon nanotube, sil- icon nanowires, and molecular scale devices which are Wires We can synthesize carbon nanotubes (NT) which now being developed into an operational computing sys- are nanometers in diameter and microns long [6]. We can tem. The molecular-scale wires can be arranged into inter- control the growth and alignment of these nanotubes such connected, crossed arrays with non-volatile switching de- that they can be assembled into parallel rows of conductors vices at their crosspoints; these crossed arrays can func- and layered into arrays [9]. -
Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties
P. Yang et al. 1260 ¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002 0947-6539/02/0806-1260 $ 17.50+.50/0 Chem. Eur. J. 2002, 8,No.6 CONCEPTS Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties Yiying Wu, Haoquan Yan, Michael Huang, Benjamin Messer, Jae Hee Song, and Peidong Yang*[a] into one-dimensional nanostructures in an effective and Abstract: Rationally controlled growth of inorganic controllable way. A number of nanolithographic techniques, semiconductor nanowires is important for their applica- such as electron-beam lithography[16] and proximal probe tions in nanoscale electronics and photonics. In this patterning,[17, 18] have been developed. These processes, how- article, we discuss the rational growth, physical proper- ever, generally are slow and the cost is high. Chemical ties, and integration of nanowires based on the results synthesis represents another important approach to one- from the authors× laboratory. The composition, diameter, dimensional structures.[19±26] It is much more promising in growth position, and orientation of the nanowires are terms of cost and potential for high volume production. A controlled based on the vapor ± solid ± liquid (VLS) significant challenge of the chemical synthesis is how to crystal growth mechanism. The thermal stability and rationally control the nanostructures so that their interfaces optical properties of these semiconductor nanowires are and ultimately their two-dimensional and three-dimensional investigated. Particularly, ZnO nanowires with well- superstructures can be tailor-made towards desired function- defined end surfaces can function as room-temperature ality. Below, we present the investigation results from our ultraviolet nanolasers. In addition, a novel microfluidic- laboratory directed toward controlled growth of inorganic assisted nanowire integration (MANI) process was de- nanowires. -
33. B.Tech. in Nanotechnology
SRM INSTITUTE OF SCIENCE AND TECHNOLOGY Kattankulathur, Kancheepuram District 603203, Tamil Nadu, India 33. B.Tech. in Nanotechnology 33. (a) Mission of the Department Mission Stmt - 1 Actively contribute for the development of nanoscience, engineering and technology through world-class infrastructure, teaching & research Mission Stmt - 2 Establish collaborative research with the institutions of national and international repute Mission Stmt - 3 Encourage industry-academia interactions to translate scientific findings into technological development to meet the societal needs Mission Stmt - 4 Organize and actively participate in workshops, conferences and seminars on advancements in nanoscience and nanotechnology Mission Stmt - 5 Focus on developing skills of students to enhance the employability in various organizations 33. (b) Program Educational Objectives (PEO) PEO - 1 Provide understanding of physical, chemical and biological principles in the multi-disciplinary field of nanoscience and nanotechnology PEO - 2 Develop skills on the synthesis of nanomaterials and fabrication of micro- and nano-structures PEO - 3 Familiarize the graduates with the advanced nanoscale characterization techniques and develop the analytical ability PEO - 4 Enable graduates with professional, scientific research, and computational skills for employment in industries, R & D centres and higher education PEO - 5 Prepare the graduates to take individual and team work responsibilities in a multidisciplinary environment 33. (c) Mission of the Department to Program Educational Objectives (PEO) Mapping Mission Stmt - 1 Mission Stmt - 2 Mission Stmt - 3 Mission Stmt - 4 Mission Stmt - 5 PEO - 1 H M L H L PEO - 2 H H M H H PEO - 3 H H M H M PEO - 4 H M H M H PEO - 5 M H H H M H – High Correlation, M – Medium Correlation, L – Low Correlation 33. -
Photonics Meets Excitonics: Natural and Artificial Molecular Aggregates
© 2013 Science Wise Publishing & DOI 10.1515/nanoph-2012-0025 Nanophotonics 2013; 2(1): 21–38 Review article Semion K. Saikin* , Alexander Eisfeld *, St é phanie Valleau and Al á n Aspuru-Guzik* Photonics meets excitonics: natural and artificial molecular aggregates Abstract: Organic molecules store the energy of absorbed 1 Introduction light in the form of charge-neutral molecular excitations – Frenkel excitons. Usually, in amorphous organic materials, Advances in nanotechnology supported by our under- excitons are viewed as quasiparticles, localized on single standing of material properties on the microscopic level molecules, which diffuse randomly through the structure. persistently drive the field of photonics to the nanometer However, the picture of incoherent hopping is not applica- scale. With the development of photonic crystals [ 1 , 2 ] and ble to some classes of molecular aggregates – assemblies of semiconductor optical cavities [ 3 , 4 ] the size of optical molecules that have strong near-field interaction between devices, usually limited by light diffraction in free space, electronic excitations in the individual subunits. Molecular can been scaled down to hundreds of nanometers just by aggregates can be found in nature, in photosynthetic com- exploiting the material ’ s dielectric constant. Advances in plexes of plants and bacteria, and they can also be produced the design of plasmonic metamaterials [ 5 – 7 ] permitted artificially in various forms including quasi-one dimen- this limit to be pushed even further down to the order of sional chains, two-dimensional films, tubes, etc. In these tens of nanometers. The natural question which arises is: structures light is absorbed collectively by many mole cules what will be the next limit and how can it be approached? and the following dynamics of molecular excitation pos- In this review we consider one of possible pathways sesses coherent properties. -
Molecular Nanoelectronics
Proceedings of the IEEE, 2010 1 Molecular Nanoelectronics Dominique Vuillaume photo-, electro-, iono-, magneto-, thermo-, mechanico or Abstract—Molecular electronics is envisioned as a promising chemio-active effects at the scale of structurally and candidate for the nanoelectronics of the future. More than a functionally organized molecular architectures" (adapted from possible answer to ultimate miniaturization problem in [3]). In the following, we will review recent results about nanoelectronics, molecular electronics is foreseen as a possible nano-scale devices based on organic molecules with size way to assemble a large numbers of nanoscale objects (molecules, nanoparticules, nanotubes and nanowires) to form new devices ranging from a single molecule to a monolayer. However, and circuit architectures. It is also an interesting approach to problems and limitations remains whose are also discussed. significantly reduce the fabrication costs, as well as the The structure of the paper is as follows. Section II briefly energetical costs of computation, compared to usual describes the chemical approaches used to manufacture semiconductor technologies. Moreover, molecular electronics is a molecular devices. Section III discusses technological tools field with a large spectrum of investigations: from quantum used to electrically contact the molecule from the level of a objects for testing new paradigms, to hybrid molecular-silicon CMOS devices. However, problems remain to be solved (e.g. a single molecule to a monolayer. Serious challenges for better control of the molecule-electrode interfaces, improvements molecular devices remain due to the extreme sensitivity of the of the reproducibility and reliability, etc…). device characteristics to parameters such as the molecule/electrode contacts, the strong molecule length Index Terms—molecular electronics, monolayer, organic attenuation of the electron transport, for instance.