2020 Syllabus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry and Spectroscopy of the Transition Metals
Chemistry and Spectroscopy of the Transition Metals • Structure of metal complexes • Oxidation states of metals • Color/Spectroscopy • Magnetic Properties • Chelate Effects • Electron Transfer Chemistry Nobel Prize in Chemistry, 1913 Alfred Werner "in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier investigations and opened up new fields of research especially in inorganic chemistry” Zurich University Stereochemistry of Coordination Complexes Pt (NH3)2Cl2 Cl NH 3 NH3 Cl Pt Pt Cl NH Cl 3 NH3 Orange-Yellow Pale Yellow (dipole moment) No dipole (cis-platin) Inner Sphere vs Outer Sphere Coordination H3 H3 N N NH H N NH H3N 3 [Cl- ] 3 3 - Co 3 Co [Cl 2] H N NH3 H N NH3 [ 3 ] [ 3 ] N Cl H3 H3 H3 N N Cl H3N Cl H3N Co [Cl- ] Co [Cl-] H N Cl Cl NH3 [ 3 ] N [ N ] H3 H3 Transition Metal Chemistry • Multiple Oxidation States • Coordination Chemistry/Stereochemistry • Crystal Field Splitting: Optical and Magnetic Properties • Ligand Field Splitting: Spectrochemical Series • Distortion to Tetragonal, Square Planar • Ligand Field Stabilization Energy • Hard and Soft Acids and Bases • Chelate Effect • Stereochemical Control of Binding Affinity • Water Exchange • Electron Exchange Organization of Periodic Chart 1s 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 6p 7s 6d 4f 5f Shielding r2Ψ2 1s 3d 3p 3s Penetration: 3s > 3p > 3d r 3d orbitals are shielded and not exposed much; Outside world won’t know as much how many d e- there are Transition Metals Are Found in Several Oxidation States Charge to mass ratio - of ions: current e which passes through circuit divided by mass gained on electrode. -
Goverdhan Mehta Chemistry - a 21St Century Science for Global Sustainability: Is It Future Ready?
Goverdhan Mehta Chemistry - A 21st Century Science for Global Sustainability: Is it future ready? Goverdhan Mehta A ‘selfie’ with theSchool chemical of Chemistry world…… University of Hyderabad National Geophysical Research Institute, CSIR Foundation Day, Sept. 27, 2019 Introducing Chemistry through the Lens of Earth's Systems: What Role Can Systems Thinking Play in Developing Chemically and Environmentally Literate Citizens? J. Kornfeld, S. Stokoe. J. Chemical Education 2019, 96, 2910-2917 A bouquet of ‘matters’ that matter New symbols Passion Sustainability Legacies Ethics & values Responsible Connections Systems Directions Humility Ideas & icons Inspirations Un mélange de beaucoup de choses “Chemistry ought not to be for chemists alone” - Miguel de Unamuno ‘…Life, Universe and Everything’ Chemistry – a source of happiness…. Chem -Connectome ‘...I feel sorry for people who don’t know anything about chemistry. They are missing an important source of happiness....’ - Linus Pauling 1901-1994 S.A. Matlin, G. Mehta, H. Hopf. Chemistry Embraced by All. Science 2015, 347, 1179 Chemistry is in everything. and everything is in it, it is the basis of life, without it we wouldn't exist. Green tea has ~ 200 chemicals Coffee has ~ 1000 chemicals Wine has >1000 chemicals Light cigarette ~ 4000 chemicals Chemistry is ubiquitous/omnipresent Chemistry – Tracing the roots and to the present BCE Art & craft of mixing substances A giant knowledge leap Alchemy to modern science Evidence based science Discipline in a Table - systematization Mendeleev’s Periodic Law ‘Molecularization’ of chemical matter 20th Century A century of evolutionary march of chemistry 20h Century Value added products from almost anything “Utility science” and everything Molecular understanding of life processes and “Core Science” chemical matter Interdisciplinarity in forefront “Integrative Science” Resource stressed planet “Sustainability Science” 21st Century S. -
Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007
Baran Group Meeting Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007 Ernst Otto Fischer (1918 - ) Other Types of Stabilized Carbenes: German inorganic chemist. Born in Munich Schrock carbene, named after Richard R. Schrock, is nucleophilic on November 10, 1918. Studied at Munich at the carbene carbon atom in an unpaired triplet state. Technical University and spent his career there. Became director of the inorganic Comparision of Fisher Carbene and Schrock carbene: chemistry institute in 1964. In the 1960s, discovered a metal alkylidene and alkylidyne complexes, referred to as Fischer carbenes and Fischer carbynes. Shared the Nobel Prize in Chemistry with Geoffery Wilkinson in 1973, for the pioneering work on the chemistry of organometallic compounds. Schrock carbenes are found with: Representatives: high oxidation states Isolation of first transition-metal carbene complex: CH early transition metals Ti(IV), Ta(V) 2 non pi-acceptor ligands Cp2Ta CH N Me LiMe Me 2 2 non pi-donor substituents CH3 (CO) W CO (CO)5W 5 (CO)5W A.B. Charette J. Am. Chem. Soc. 2001, 123, 11829. OMe O E. O. Fischer, A. Maasbol, Angew. Chem. Int. Ed., 1964, 3, 580. Persistent carbenes, isolated as a crystalline solid by Anthony J. Arduengo in 1991, can exist in the singlet state or the triplet state. Representative Fischer Carbenes: W(CO) Cr(CO) 5 5 Fe(CO)4 Mn(CO)2(MeCp) Co(CO)3SnPh3 Me OMe Ph Ph Ph NEt2 Ph OTiCp2Cl Me OMe Foiled carbenes were defined as "systems where stabilization is Fischer carbenes are found with : obtained by the inception of the facile reaction which is foiled by the impossibility of attaining the final product geometry". -
George De Hevesy in America
Journal of Nuclear Medicine, published on July 13, 2019 as doi:10.2967/jnumed.119.233254 George de Hevesy in America George de Hevesy was a Hungarian radiochemist who was awarded the Nobel Prize in Chemistry in 1943 for the discovery of the radiotracer principle (1). As the radiotracer principle is the foundation of all diagnostic and therapeutic nuclear medicine procedures, Hevesy is widely considered the father of nuclear medicine (1). Although it is well-known that he spent time at a number of European institutions, it is not widely known that he also spent six weeks at Cornell University in Ithaca, NY, in the fall of 1930 as that year’s Baker Lecturer in the Department of Chemistry (2-6). “[T]he Baker Lecturer gave two formal presentations per week, to a large and diverse audience and provided an informal seminar weekly for students and faculty members interested in the subject. The lecturer had an office in Baker Laboratory and was available to faculty and students for further discussion.” (7) There is also evidence that, “…Hevesy visited Harvard [University, Cambridge, MA] as a Baker Lecturer at Cornell in 1930…” (8). Neither of the authors of this Note/Letter was aware of Hevesy’s association with Cornell University despite our longstanding ties to Cornell until one of us (WCK) noticed the association in Hevesy’s biographical page on the official Nobel website (6). WCK obtained both his undergraduate degree and medical degree from Cornell in Ithaca and New York City, respectively, and spent his career in nuclear medicine. JRO did his nuclear medicine training at Columbia University and has subsequently been a faculty member of Weill Cornell Medical College for the last eleven years (with a brief tenure at Memorial Sloan Kettering Cancer Center (affiliated with Cornell)), and is now the program director of the Nuclear Medicine residency and Chief of the Molecular Imaging and Therapeutics Section. -
Socit Chimique De France 2014 Prize Winners
Angewandte. Angewandte News Chemie Socit Chimique de France 2014 Prize Nazario Martn (Universidad Complutense de Winners Madrid) is the winner of the Prix franco-espagnol Awarded … Miguel Cataln–Paul Sabatier. Martn was featured The Socit Chimique de France has announced its here when he was awarded the 2012 EuCheMS 2014 prize winners. We congratulate all the awar- Lectureship.[4a] Martn is on the International dees and feature our authors and referees here. Advisory Boards of Chemistry—An Asian Journal, Max Malacria (Institut de Chimie des Substan- ChemPlusChem, and ChemSusChem. His report on ces Naturelles; ICSN) is the winner of the Prix modified single-wall nanotubes was recently fea- Joseph Achille Le Bel, which is awarded to tured on the cover of Chemistry—A European recognize internationally recognized research. Mal- Journal.[4b] acria studied at the Universit Aix-Marseille III, Michael Holzinger (Universit Joseph Four- where he completed his PhD under the supervision nier, Grenoble 1; UJF) is the winner of the Prix M. Malacria of Marcel Bertrand in 1974. From 1974–1981, he jeune chercheur from the Analytical Chemistry was matre-assistant with Jacques Gore at the Division. Holzinger carried out his PhD at the Universit Claude Bernard Lyon 1 (UCBL), and Friedrich-Alexander-Universitt Erlangen-Nrn- from 1981–1983, he carried out postdoctoral berg. After postdoctoral research at the Universit research with K. Peter C. Vollhardt at the Univer- Montpellier 2 (UM2) and the Max Planck Institute sity of California, Berkeley. He returned to the for Solid-State Research, and working at Robert UCBL as matre de conferences in 1983, and was Bosch, he joined Serge Cosniers group at the UJF made professor at the Universit Pierre et Marie as a CNRS charg de recherche. -
Chemistry of the D-Block Elements Chemistry of the D-Block Elements
Chemistry of the d-Block Elements History: Louis Nicolas Vauquelin 16. Mai 1763 – 14. Nov. 1829 Leopold Gmelin 2. Aug. 1788 – 13. Apr. 1853 Chemistry of the d-Block Elements History: H3N NH3 Cl Cl Pd Pd NH H3N 3 Cl Cl Louis Nicolas Vauquelin 1813 CN NC CN CoIII NC CN Gmelin 1822 NC 1 Chemistry of the d-Block Elements History: 1844: Peyrone’s Chloride 1844: Reiset [PtCl2(NH3)2] -- note! same formula! -- [PtCl2(NH3)2] ! (isomers are super-important in chemistry!) Chemistry of the d-Block Elements cis- and trans- Platinum Isomers: Serendipity in Chemistry Cisplatin was approved by the FDA for the treatment of genitourinary tumors in 1978. Since then, Michigan State has collected over $160 million in royalties from cisplatin and a related drug, carboplatin, which Prof. Barnett Rosenberg, MSU was approved by the FDA in 1989 (Prof. S.J. Lippard, MIT) for the treatment of ovarian cancers. "Testicular cancer went from a disease that normally killed about 80% of the patients, to one which is close to 95% curable. This is Newest generation: probably the most exciting development in the treatment of cancers that we have had in the past 20 years. It is now the O treatment of first choice in ovarian, bladder, and osteogenic sarcoma [bone] cancers as well." O NH3 —Barnett Rosenberg, who led the research group that discovered Pt cisplatin, commenting on the impact of cisplatin in cancer chemotherapy O NH3 O carboplatin 2 Chemistry of the d-Block Elements Cisplatin acts by cross-linking DNA in several different ways, making it impossible for rapidly dividing cells to duplicate their DNA for mitosis. -
Historical Group
Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 64 Summer 2013 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield | Prof J Betteridge (Twickenham, 4, Harpole Close, Swanwick, Derbyshire, | Middlesex) DE55 1EW | Dr N G Coley (Open University) [e-mail [email protected]] | Dr C J Cooksey (Watford, Secretary: Prof. J. W. Nicholson | Hertfordshire) School of Sport, Health and Applied Science, | Prof E Homburg (University of St Mary's University College, Waldegrave | Maastricht) Road, Twickenham, Middlesex, TW1 4SX | Prof F James (Royal Institution) [e-mail: [email protected]] | Dr D Leaback (Biolink Technology) Membership Prof W P Griffith | Dr P J T Morris (Science Museum) Secretary: Department of Chemistry, Imperial College, | Mr P N Reed (Steensbridge, South Kensington, London, SW7 2AZ | Herefordshire) [e-mail [email protected]] | Dr V Quirke (Oxford Brookes Treasurer: Dr J A Hudson | University) Graythwaite, Loweswater, Cockermouth, | Prof. H. Rzepa (Imperial College) Cumbria, CA13 0SU | Dr. A Sella (University College) [e-mail [email protected]] Newsletter Dr A Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Dr G P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp 1 RSC Historical Group Newsletter No. 64 Summer 2013 Contents From the Editor 2 Obituaries 3 Professor Colin Russell (1928-2013) Peter J.T. -
CARL BOSCH and HIS MUSEUM Fathi Habashi, Laval University
Bull. Hist. Chem., VOLUME 35, Number 2 (2010) 111 CARL BOSCH AND HIS MUSEUM Fathi Habashi, Laval University Carl Bosch (1874-1940) (Fig. 1) was for the development of the catalysts. born in Cologne, studied metallurgy Further problems which had to be and mechanical engineering at the Tech- solved were the construction of safe nische Hochschule in Berlin (1894-96), high-pressurized reactors and a cheap then chemistry at Leipzig University, way of producing and cleaning the graduating in 1898. In 1899 he entered gases necessary for the synthesis of the employ of the Badische Anilin- und ammonia. Step by step Bosch went Sodafabrik in Ludwigshafen (Fig. 2) on to using increasingly larger manu- and participated in the development facturing units. In order to solve the of the then new industry of synthetic growing problems posed by materials indigo. and related safety problems, BASF set up the chemical industry’s first When in 1908 the Badische ac- Materials Testing Laboratory in 1912 quired the process of high-pressure to identify and control problems in synthesis of ammonia, which had been materials for instrumentation and developed by Fritz Haber (1868-1934) process engineering. at the Technische Hochschule in Karl- sruhe, Bosch was given the task of The plant in Oppau for the pro- developing this process on an industrial duction of ammonia and nitrogen Figure 1. Carl Bosch (1874-1940) scale. This involved the construction of fertilizers was opened in 1913. Bosch plant and apparatus which would stand up wanted fertilizers to be tested thorough- to working at high gas pressure and high-reaction tem- ly, so that customers were to be given proper instructions peratures. -
Download Download
..f.,5$1______ -~ survey -------) WHO WAS WHO IN KINETICS, REACTION ENGINEERING, AND CATALYSIS CAMI L. JACKSON AND JOSEPH H . HOLLES University of liyoming • Laramie, WY 82071 n the tradition of "Who was Who in Transport Phenom We have tried to include the names that are encountered ena" by Byron Bird in Chemical Engineering Education,CI J frequently in textbooks for both undergraduates and gradu Iwe have developed a similar set of microbiographies for ates (by noted authors such as Levenspiel, Hill, Fogler, and persons in the fields of kinetics, reaction engineering, and Froment and Bischoff). Again, we follow Bird's lead and do catalysis. As noted by Bird, an otherwise typical lecture not include these people simply for authoring books in these can be enlivened by presenting biographical information fields . We do, however, include-where appropriate- famous about the people whose names appear in famous equations, texts written by those scientists and engineers included for dimensionless groups, plots, approximations, and theories . other reasons. We have tried to focus on those persons who The wide variety of applications for this type of information contributed to the science of a field and not just contributed to has been demonstrated by using activity breaks to teach the a specific reaction or system (e.g., Haber and Bosch). While history of our professionl21 and as trading card rewards for contributions to specific reactions or systems are important, academic performance _l31 we elected not to include them in order to limit the scope of With the introduction and widespread acceptance ofWiki the project. Finally, we have tried to include interesting non pedia, basic biographical information on many of the early technical or non-professional information where possible to contributors to the profession of chemical engineering can be show the breadth of these individuals. -
Milestones and Personalities in Science and Technology
History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting, -
4. Marie Curie, Ethics and Research
CATHERINE MILNE 4. MARIE CURIE, ETHICS AND RESEARCH INTRODUCTION Recently Chemistry and Engineering News (Bard, Prestwich, Wight, Heller, & Zimmerman, 2010) carried a series of commentaries on the culture of academic research in chemistry with a focus on the role of funding in research. Initially, Alan Bard decried how decisions about tenure seem more and more to focus on grant getting rather than consideration of the applicant’s accomplishments generated because of access to this funding. Bard argued further that often this funding was based, not on the quality of the proposed research but on a researcher’s ability to “hype their research” and damming truth in the process (Bard et al., 2010, p. 27). According to him, there was a disturbing trend in universities for researchers to be encouraged, almost expected, to generate patents and from there, even to be involved in initiating “start up” companies. Other researchers responded. Glen Prestwich and Charles Wight (Bard et al., 2010) argue that if researchers were able to present a clear connection between “taxpayer dollars” and funded research, the public would realize the value that science delivers. Prestwich and Wight argue further that a new cadre of researchers is involved in identifying real world problems, translating basic research into applications, and creating products as well as publications. Moving from basic research to applications that address real world problems is called translational research, and Prestwich and Wight see this research as a positive development in chemistry. Adam Heller (Bard et al., 2010) weighs in claiming that the pursuit of “patent-protected, people-serving products” was not “a sad sign of our times but a reawakening of the proud history of academic chemistry and chemical engineering” (p. -
Great Moments in Science and Technology English, Spanish, French: 103 X 15 Min
SCIENCE TECHNOLOGY MEDICINE DOCUMENTARY 15 MIN. VERSIONS Great Moments in Science and Technology English, Spanish, French: 103 x 15 min. Arabic: 89 x 15 min. The viewer gains an insight into both the scientific and the socio-political background to an Portuguese: 33 x 15 min. invention or discovery. Pioneers of science are portrayed, and the nature of their research and its further development through to the present are reconstructed. RIGHTS Not available worldwide. Computer animations are used to make certain processes easier to understand and to show Please contact your regional how various systems function. Re-enacted scenes illustrate the conditions under which the distribution partner. scientists worked and the approach they took. Particularly impressive are the historical film sequences, some of which date back to the early days of cinematography. ORDER NUMBER 24 4110 | 01 – 103 01 Wilhelm C. Röntgen: X-rays 30 Louis Pasteur, Robert Koch: English, Spanish, French 02 The Lumière Brothers: Bacteriology Cinematography 31 Edward Jenner, Paul Ehrlich, 24 4110 | 01 – 89 03 Otto Lilienthal: The Glider Emil von Behring: Vaccination Arabic 04 Werner von Siemens: 32 Alexander Fleming, Howard Florey, The Electric Dynamo Ernst Chain: Penicillin 24 4110 | 01 – 32, 47 05 Nikolaus August Otto: 33 Horace Wells, William Morton, Portuguese The Four-stroke Engine John Warren: Anaesthesia 06 Louis Daguerre: The Camera 34 Joseph Lister, Ignaz Semmelweis: 07 Karl Friedrich Drais: The Bicycle Antisepsis 08 Heinrich Hertz: Electromagnetic Waves 35 Ramón y Cajal: Neuron Theory 09 The Wright brothers: The Aeroplane 36 Frederick Banting, Charles Best, 10 Thomas Alva Edison: The Light Bulb John Macleod, James Collip: Insulin 11 Johann Philipp Reis, 37 Karl Landsteiner: Alexander Graham Bell: The Telephone The AB0 Blood Group System 12 Samuel F.