Snapping Hip Syndrome • Painful Snap with Hip Motion Jon A

Total Page:16

File Type:pdf, Size:1020Kb

Snapping Hip Syndrome • Painful Snap with Hip Motion Jon A Snapping Hip Snapping Hip Syndrome • Painful snap with hip motion Jon A. Jacobson, M.D. • Intraarticular • Extraarticular: Professor of Radiology Director, Division of Musculoskeletal Radiology – Anterior: iliopsoas tendon University of Michigan – Lateral: iliotibial tract or gluteus maximus Iliopsoas Complex Disclosures: • Consultant: Bioclinica • Advisory Board: Philips • Book Royalties: Elsevier AIIS • Not relevant to this talk Ilium Note: all images from the textbook Fundamentals of Musculoskeletal Ultrasound are copyrighted Red: psoas major by Elsevier Inc. Orange: medial iliacus fibers Purple: lateral iliacus fibers From: Guillin R. et al. Eur Rad 2009; 19:995 Snapping Hip Syndrome: iliopsoas Outline: • Image long axis to inguinal ligament superior • Snapping Hip to femoral head – Iliopsoas • Extension of flexed abducted and – Greater trochanter externally rotated hip – Hamstring • Abrupt movement of iliopsoas as iliacus muscle interposed between tendon and bone moves Deslandes et al. AJR 2008; 190:576 1 Snapping Hip Syndrome: iliopsoas Iliopsoas Bursa • Oblique-axial plane: – Superior to femoral head – Lateral to medial – Inject between tendon, ilium1 • Pain relief = successful iliopsoas surgical release2 1Dauffenbach J et al. J Ultrasound Med 2014; 33:405 2Blankenbaker DG. I Skeletal Radiol 2006; Ilium 35: 565 Snapping Hip Syndrome: iliopsoas Snapping Hip: lateral • Transverse over greater trochanter • Hip external rotation / flexion • Abrupt motion of iliotibial tract or gluteus maximus over greater trochanter Snapping Hip Syndrome: bifid iliopsoas Greater Trochanter Yellow arrow = gluteus medius White arrow = Inferior 1 2 gluteus minimus Axial MRI Deslandes et al. AJR 2008; 190:576 3 Superior 4 2 Snapping Gluteus Maximus / Iliotibial Band Trochanteric Iliotibial Gluteus Gluteus Medius Gluteus Band Medius Minimus TFL Region Bursae Gluteus Maximus • Trochanteric: deep to Glut Max gluteus maximus AF LF • Subgluteus medius PF • Subgluteus minimus LF AF: anterior facet • Axial or coronal plane LF: lateral facet PF: posterior facet PF Snapping Gluteus Maximus / Iliotibial Band Snapping Conjoined Long Head Biceps Femoris, Semitendinosus Gluteus Iliotibial Band Medius + Sacrotuberous Ligament TFL Gluteus Maximus Gluteus Maximus Gmin Sacrotuberous Ligament BF-ST Ischium SM From Bierry G et al. Radiology Spencer-Gardner LS et al. PMR 2015; 7:1102 2014;271:162 Snapping Hip Syndrome: iliotibial tract Snapping Hip: take home points Iliotibial Band • Iliopsoas – Entrapment of medial iliacus Gmax • Greater trochanter Gmin – Gluteus maximus and iliotibial tract Gmed 3 Syllabus on line and other educational material: www.jacobsonmskus.com Twitter handle: @jjacobsn 4.
Recommended publications
  • Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
    Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor
    [Show full text]
  • All About Glutes 1 Table of Contents
    All About Glutes 1 Table of Contents Are You Training Your Glutes the Wrong Way? 3 • Anatomy of the Glutes 4 • Functions of the Glutes at the Hip 4 • The Shortcoming of Most Training Programs 5 • Progression and Preventing Knee Valgus 6 • Simple Solution 6 How to Identify and Correct Tight Hip Flexors 8 • What Exactly Are Tight Hip Flexors? 9 • The Hip Flexor Muscle Group 9 • Signs You Have Tight Hip Flexors 10 • What Causes Hip Tightness 10 • Stretches to Loosen up Tight Hip Flexors 10 • Exercises to Strengthen Hip Flexors 11 Pain in the Buttocks When Sitting? Tips to Prevent and Manage 12 Piriformis Syndrome • What is Piriformis Syndrome? 13 • How Does Piriformis Syndrome Happen? 13 • Special Considerations with Clients 14 • Prevention and Pain Management 14 How Do I Build the Perfect Glutes? 16 • Can’t I Just Squat and Lunge? 17 • Your Best Bets to Target the Glutes 18 • Don’t Forget the Legs 18 • Train the Glutes SPECIFICALLY 19 TABLE OF CONTENTS 800.545.4772 WWW.ISSAONLINE.EDU 2 Are You Training Your Glutes the Wrong Way? 800.545.4772 WWW.ISSAONLINE.EDU 3 UNIT ONE These days, the glutes get a lot of attention, and it’s well deserved. When you build and strengthen your glutes in the right way, they not only make your body look better, but they also increase your performance and can diminish knee pain. The problem is most people aren’t taking the best approach to training for the highest level of glute development. Anatomy of the Glutes Let’s start with a little anatomy.
    [Show full text]
  • Importance of Iliopsoas and Erector Spinae Muscles in Predicting The
    International Journal of Physiotherapy and Research, Int J Physiother Res 2014, Vol 2(5):681-88. ISSN 2321-1822 Original Article IMPORTANCE OF ILIOPSOAS AND ERECTOR SPINAE MUSCLES IN PREDICTING THE FUNCTIONAL COMPETENCE OF TRANSFEMORAL AMPUTEES Lajja K Rishi 1, Suraj Kumar *2, Sangeeta Lahiri 3, V.P. Sharma 4. 1 Master of Physiotherapy (student), National Institute for the Orthopaedically Handicapped, Kolkata, West Bengal, India. *2 HOD and Associate Professor, Department of Physiotherapy, UPRIMS&R, Saifai, Etawah, UP, India. 3 Physical Therapist (cardio-respiratory disorders & intensive care), India. 4 Professor, KGM Medical University, Lucknow, India. ABSTRACT Purpose: Muscle imbalance in transfemoral amputees impair physical mobility and activities of daily living. Aim of this study was to correlate the muscle imbalance with functional competence in transfemoral amputees. Methods: Thirty amputees were evaluated under inclusion criteria and randomly allocated into 2 groups. Group A received stretching(1 week) followed by strengthening(3 weeks) and in group B strengthening(3 weeks) were followed by stretching(1 week) . Phase I includes values after 1 week stretching program in group A and 3 weeks strengthening program in group B. Data were recorded at baseline, after phase I completion and end of treatment. Physical mobility was assessed by “Timed up and go” test. Results: Muscle imbalance and physical mobility improved significantly in both groups at the end of treatment. The correlation values of “Timed up and go” test with Iliopsoas and Erector spinae muscle showed significant improvement in both groups. Conclusion: Baseline measurements showed that Iliopsoas and Erector spinae muscles were tight whereas Gluteus maximus and Abdominal muscles were weak in transfemoral amputees.
    [Show full text]
  • Effects of a Gluteal Muscles Specific Exercise Program on the Vertical
    International Journal of Environmental Research and Public Health Article Effects of a Gluteal Muscles Specific Exercise Program on the Vertical Jump Tomás Gallego-Izquierdo 1, Gerardo Vidal-Aragón 2, Pedro Calderón-Corrales 2, Álvaro Acuña 2, Alexander Achalandabaso-Ochoa 3,* , Agustín Aibar-Almazán 3 , Antonio Martínez-Amat 3 and Daniel Pecos-Martín 1 1 Physiotherapy and Pain Group, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (T.G.-I.); [email protected] (D.P.-M.) 2 Physical Therapist, Department of Physical Therapy, University of Alcala, 28801 Madrid, Spain; [email protected] (G.V.-A.); pedrocalderon.fi[email protected] (P.C.-C.); [email protected] (Á.A.) 3 Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.; [email protected] (A.A.-A.); [email protected] (A.M.-A.) * Correspondence: [email protected]; Tel.: +34-953213651 Received: 9 June 2020; Accepted: 23 July 2020; Published: 27 July 2020 Abstract: The vertical jump is a complex movement where many factors are involved in the final result. Currently, how a specific exercise program for gluteal muscles can affect the vertical jump is unknown. So, the aim of this study was to examine the effect of a specific exercise program for the gluteal muscles on a vertical jump. Forty-nine amateur athletes completed an 8-week program. The experimental group received a specific gluteal muscle training program in addition to their regular training routine, whereas the control group received their regular training routine. Jump height, flight time, speed and power were assessed (baseline, postintervention, and 4-week follow-up).
    [Show full text]
  • Diagnosis and Management of Snapping Hip Syndrome
    Cur gy: ren lo t o R t e a s e m a u r c e h h Via et al., Rheumatology (Sunnyvale) 2017, 7:4 R Rheumatology: Current Research DOI: 10.4172/2161-1149.1000228 ISSN: 2161-1149 Review article Open Access Diagnosis and Management of Snapping Hip Syndrome: A Comprehensive Review of Literature Alessio Giai Via1*, Alberto Fioruzzi2, Filippo Randelli1 1Department of Orthopaedics and Traumatology, Hip Surgery Center, IRCCS Policlinico San Donato, Milano, Italy 2Department of Orthopaedics and Traumatology, IRCCS Policlinico San Matteo, Pavia, Italy *Corresponding author: Alessio Giai Via, Department of Orthopaedics and Traumatology, Hip Surgery Center, IRCCS Policlinico San Donato, Milano, Italy, Tel: +393396298768; E-mail: [email protected] Received date: September 11, 2017; Accepted date: November 21, 2017; Published date: November 30, 2017 Copyright: ©2017 Via AG, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: Snapping hip is a common clinical condition, characterized by an audible or palpable snap of the hip joint. The snap can be perceived at the lateral side of the hip (external snapping hip), or at the medial (internal snapping hip). It is usually asymptomatic, but in few cases, in particular in athletes, the snap become painful (snapping hip syndrome-SHS). Materials and methods: This is a narrative review of current literature, which describes the pathogenesis, diagnosis and treatment of SHS. Conclusion: The pathogenesis of SHS is multifactorial.
    [Show full text]
  • The Influence of Iliotibial Tract on Patellar Tracking Chi-Chuan Wu, MD* Chun-Hsiung Shih, MD†
    2wu.qxd 2/10/04 11:19 AM Page 199 FEATURE ARTICLE The Influence of Iliotibial Tract on Patellar Tracking Chi-Chuan Wu, MD* Chun-Hsiung Shih, MD† Abstract Thirty patients with 49 snapping hips and patellar Significant improvements in the congruence angle and malalignment underwent surgical release of the iliotibial lateral patellofemoral angle were noted on Merchant tract contracture over the trochanteric area. Minimal fol- radiograph for all knees (PϽ.01). On CT, at 20° and 45° low-up was 2 years (average 4.6 years, range: 2-9 years). knee bending, all congruence, lateral patellofemoral, and Eight patients underwent computed tomography (CT) patellar tilt angles significantly improved postoperatively preoperatively and 1 month postoperatively to investigate in 8 knees (PϽ.01). Iliotibial tract affects patellar tracking the patellar location in the patellofemoral articulation with and dominates lateral patellar supporting structures. knee bending at 0°, 20°, 45°, 60°, and 90°. Anterior knee pain is common in orthope- patellar supporting structures have not yet examined regardless of the presence or dics and patellar malalignment is a com- been defined. absence of snapping hip.22,24,25 The clini- mon disorder that causes this pain.1-10 The Snapping hip, an uncommon disorder, cal features of patellofemoral pain syn- cause of patellar malalignment has been is caused by iliotibial tract contracture drome included aggravated anterior knee investigated and predisposing factors (external type).20-23 Snapping hip usually pain during stair climbing, knee soreness include an abnormal patellofemoral artic- is diagnosed because of discomfort or after prolonged sitting, and positive ulation, abnormal lower extremity align- snapping in the upper thigh.
    [Show full text]
  • ACE's Essentials of Exercise Science for Fitness Professionals
    ACE’s Essentials of Exercise Science for Fitness Professionals Chapter 3: Fundamentals of Applied Kinesiology Hip Flexors . There are 21 major muscles involved in the actions of the hip joint. – Actions of the hip joint include flexion, extension, internal rotation, external rotation, adduction, and abduction. – More than half of these muscles are involved in multiple actions. Anterior Hip Muscles: Hip Flexors . Active range of motion for hip flexion . Prime movers: iliopsoas, rectus femoris, sartorius, pectineus, and tensor fasciae latae – Act synergistically to cause hip flexion (e.g., “up” phase of a knee lift) – Act eccentrically to control hip extension (e.g., “down” phase of a knee lift) Hip Flexors: Considerations . Muscle origins and insertions impact muscular function. Iliopsoas – The psoas major and Sample Sample stretching exercise: minor originate in the strengthening low back and insert to the exercise: proximal femur, leading to poor mechanical leverage when used to raise and lower a straight leg. – The abdominals are not strong enough to balance the large force and keep the spine in neutral alignment. Hip Flexors: Considerations . Rectus femoris – Works at both the knee and hip, concentrically contracting to perform hip flexion and knee extension. – Sample strengthening exercise: standing straight-leg raise – Sample stretching exercise: iliopsoas lunge, bending the back knee . The sartorius is the longest muscle in the body. – It is also involved in hip abduction, adduction, and external rotation, and knee flexion and internal rotation. Tensor fascia latae (TFL) – IT band – Explosive hip flexion results in a highly developed TFL. Hip Internal and External Rotators . The hip internal rotators include the tensor fasciae latae, semitendinosus (slight), and semimembranosus (slight).
    [Show full text]
  • Myofascial Pain Syndrome of Gluteus Minimus Mimicking Lumbar Radiculitis -A Case Report
    Anesth Pain Med 2015; 10: 16-20 http://dx.doi.org/10.17085/apm.2015.10.1.16 ■Case Report■ Myofascial pain syndrome of gluteus minimus mimicking lumbar radiculitis -A case report- Department of Anesthesiology and Pain Medicine, Daegu Fatima Hospital, Daegu, Korea Joong-Ho Park, Kwang-Suk Shim, Young-Min Shin, Chiu Lee, Sang-Gon Lee, and Eun-Ju Kim Myofascial pain syndrome (MPS) can be characterized by pain difficult. Delays in making the correct diagnosis can result in caused by trigger points (TrPs) and fascial constrictions. Patients longer hospital stays, higher hospital fees, and unnecessary with MPS of the gluteus minimus muscles often complain of diagnostic tests and inadequate treatments. The authors have symptoms such as hip pain, especially when standing up after sitting or lying on the affected side, limping, and pain radiating down to successfully diagnosed and treated a patient with MPS of the the lower extremities. A 24-year-old female patient presenting with gluteus minimus initially diagnosed with lumbar radiculitis. motor and sensory impairments of both lower extremities was With thorough physical examination and injection of TrPs referred to our pain clinic after initially being diagnosed with lumbar radiculitis. Under the impression of MPS of the gluteus minimus under ultrasonography guidance, the patient was relieved of her muscles following through evaluation and physical examination of symptoms. We report this case to emphasize the importance of the patient, we performed trigger point injections under ultrasonography physical examination in patients presenting with symptoms guidance on the myofascial TrPs. Dramatic improvement of the suggestive of lumbar radiculitis.
    [Show full text]
  • The Absence of Piriformis Muscle, Combined Muscular Fusion, and Neurovascular Variation in the Gluteal Region
    Autopsy Case Report The absence of piriformis muscle, combined muscular fusion, and neurovascular variation in the gluteal region Matheus Coelho Leal1 , João Gabriel Alexander1 , Eduardo Henrique Beber1 , Josemberg da Silva Baptista1 How to cite: Leal MC, Alexander JG, Beber EH, Baptista JS. The absence of piriformis muscle, combined muscular fusion, and neuro-vascular variation in the gluteal region. Autops Case Rep [Internet]. 2021;11:e2020239. https://doi.org/10.4322/ acr.2020.239 ABSTRACT The gluteal region contains important neurovascular and muscular structures with diverse clinical and surgical implications. This paper aims to describe and discuss the clinical importance of a unique variation involving not only the piriformis, gluteus medius, gluteus minimus, obturator internus, and superior gemellus muscles, but also the superior gluteal neurovascular bundle, and sciatic nerve. A routine dissection of a right hemipelvis and its gluteal region of a male cadaver fixed in 10% formalin was performed. During dissection, it was observed a rare presentation of the absence of the piriformis muscle, associated with a tendon fusion between gluteus and obturator internus, and a fusion between gluteus minimus and superior gemellus muscles, along with an unusual topography with the sciatic nerve, which passed through these group of fused muscles. This rare variation stands out with clinical manifestations that are not fully established. Knowing this anatomy is essential to avoid surgical iatrogeny. Keywords Anatomic Variation; Anatomy; Buttocks; Muscle; Piriformis Muscle Syndrome. INTRODUCTION The gluteal region contains important Over the years, these variations have been neurovascular and muscular structures that may classified and distributed into different groups. impose diverse clinical and surgical approaches.
    [Show full text]
  • Anatomy of the Lateral Retinaculum
    Anatomy of the lateral retinaculum Introduction The lateral retinaculum of the knee is not a distinct anatomic structure but is composed of various fascial structures on the lateral side of the patella. Anatomical descriptions of the lateral retinaculum have been published, but the attachments, name or even existence of its tissue bands and layers are controversial. The medial patellofemoral ligament on the other hand has been more recently re-examined and its detailed anatomy characterised (Amis et al., 2003, Nomura et al., 2005, Panagiotopoulos et al., 2006, Smirk and Morris, 2003, Tuxoe et al., 2002) The first fascial layer is the fascia lata (deep fascia) that continues to envelop the knee from the thigh (Kaplan, 1957). The fascia lata covers the patellar region but does not adhere to the quadriceps apparatus. The iliotibial tract is integral to the deep fascia and is a lateral thickening of the fascia lata. The anterior expansion of the iliotibial band curves forward. It forms a group of arciform fibres and blends with the fascia lata covering the patella. Fulkerson (Fulkerson and Gossling, 1980) described the anatomy of the knee lateral retinaculum in two distinctly separate layers (Figure 1). The superficial oblique layer originates from the iliotibial band and interdigitates with the longitudinal fibres of the vastus lateralis. The deep layer consist of the deep transverse retinaculum with the epicondylopatellar ligament proximally and the patellotibial ligament distally. The patellotibial ligament proceeds obliquely to attach to the lateral meniscus and tibia. The epicondylopatellar ligament was said to be probably the same 1 ligament described by Kaplan.
    [Show full text]
  • The Muscles That Act on the Lower Limb Fall Into Three Groups: Those That Move the Thigh, Those That Move the Lower Leg, and Those That Move the Ankle, Foot, and Toes
    MUSCLES OF THE APPENDICULAR SKELETON LOWER LIMB The muscles that act on the lower limb fall into three groups: those that move the thigh, those that move the lower leg, and those that move the ankle, foot, and toes. Muscles Moving the Thigh (Marieb / Hoehn – Chapter 10; Pgs. 363 – 369; Figures 1 & 2) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: ANTERIOR: Iliacus* iliac fossa / crest lesser trochanter femoral nerve flexes thigh (part of Iliopsoas) of os coxa; ala of sacrum of femur Psoas major* lesser trochanter --------------- T – L vertebrae flexes thigh (part of Iliopsoas) 12 5 of femur (spinal nerves) iliac crest / anterior iliotibial tract Tensor fasciae latae* superior iliac spine gluteal nerves flexes / abducts thigh (connective tissue) of ox coxa anterior superior iliac spine medial surface flexes / adducts / Sartorius* femoral nerve of ox coxa of proximal tibia laterally rotates thigh lesser trochanter adducts / flexes / medially Pectineus* pubis obturator nerve of femur rotates thigh Adductor brevis* linea aspera adducts / flexes / medially pubis obturator nerve (part of Adductors) of femur rotates thigh Adductor longus* linea aspera adducts / flexes / medially pubis obturator nerve (part of Adductors) of femur rotates thigh MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: linea aspera obturator nerve / adducts / flexes / medially Adductor magnus* pubis / ischium (part of Adductors) of femur sciatic nerve rotates thigh medial surface adducts / flexes / medially Gracilis* pubis / ischium obturator nerve of proximal tibia rotates
    [Show full text]
  • Evaluation of the Hip Adam Lewno, DO PCSM Fellow, University of Michigan Primary Care Sports Update 2017 DEPARTMENT of FAMILY MEDICINE
    DEPARTMENT OF FAMILY MEDICINE Evaluation of the Hip Adam Lewno, DO PCSM Fellow, University of Michigan Primary Care Sports Update 2017 DEPARTMENT OF FAMILY MEDICINE Disclosures • Financial: None • Images: I would like to acknowledge the work of the original owners and artists of the pictures used today DEPARTMENT OF FAMILY MEDICINE Objectives • Identify the main anatomic components of the hip • Perform basic Hip examination along with associated special tests • Use a group educational model to correlate Hip examination with hip anatomy DEPARTMENT OF FAMILY MEDICINE Why do we care about the Hip? • The hip distributes weight between the appendicular and axial skeleton but it is also the joint from which motion is initiated and executed for the lower extremity • Forces through the hip joint can reach 3-5 times the body weight during running and jumping • 10-24% of athletic injuries in children are hip related • 5-6% adult athletic injuries in adults are hip and pelvis DEPARTMENT OF FAMILY MEDICINE Why is the Hip difficult to diagnosis? The hip is difficult to diagnosis secondary to parallel presenting symptoms of back pain which can exist concomitantly or independently of hip pathology DEPARTMENT OF FAMILY MEDICINE Hip Anatomy • Bone • Ligament • Muscle • Nerve • Vessels DEPARTMENT OF FAMILY MEDICINE DEPARTMENT OF FAMILY MEDICINE Bones DEPARTMENT OF FAMILY MEDICINE Ligaments DEPARTMENT OF FAMILY MEDICINE Everything is Connected DEPARTMENT OF FAMILY MEDICINE Muscles DEPARTMENT OF FAMILY MEDICINE Important Movers DEPARTMENT OF FAMILY MEDICINE
    [Show full text]