(12) Patent Application Publication (10) Pub. No.: US 2010/0113717 A1 Voskoboynikov Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. -
Dilithium Sequestrene As Ananticoagulant
J Clin Pathol: first published as 10.1136/jcp.12.3.254 on 1 May 1959. Downloaded from J. clin. Path. (1959), 12, 254. DILITHIUM SEQUESTRENE AS AN ANTICOAGULANT BY L. S. SACKER,* K. E. SAUNDERS,t BERYL PAGE, AND MARGARET GOODFELLOW From the Departments of Pathology, Dulwich and Lewisham Hospitals, London (RECEIVED FOR PUBLICATION SEPTEMBER 20, 1958) The variety of different anticoagulants used for Ethylene diamine tetra-acetic acid (E.D.T.A.), 29.2 blood samples has increased, but there is still need g., and 7.4 g. of lithium carbonate were intimately for a suitable anticoagulant for the routine mixed. Then 200 ml. of water was added and solution estimation of sodium and potassium by flame took place with vigorous evolution of carbon dioxide. photometry. So far the only satisfactory substance for this purpose has been the expensive calcium Method 2 heparin (King and Wootton, 1956). Disodium sequestrene (Proescher, 1951 ; Hadley E.D.T.A., 29.2 g., was dissolved in 200 ml. of normal and Larson, 1953) and dipotassium sequestrene lithium hydroxide solution (41.96 g. LiOH.H20 per are the most valuable of litre). (Hadley and Weiss, 1955) In both cases the resulting solution contained the the recently introduced anticoagulants for routine dilithium salt. haematological procedures because they preserve Dilithium sequestrene was obtained from these morphology of leucocytes for short periods the solutions after filtration to remove a small quantity copyright. better than the ammonium and potassium oxalate of amorphous debris, by precipitation on the addition mixture or heparin, and they prevent platelets of an equal volume of absolute methyl alcohol and clumping and preserve them. -
Ionic Compound Ratios Time: 1 -2 Class Periods
Collisions Lesson Plan Ionic Compound Ratios Time: 1 -2 class periods Lesson Description In this lesson, students will use Collisions to explore the formation of ionic compounds and compound ratios. Key Essential Questions 1. What makes up an ionic compound? 2. Are ionic compounds found in common ratios? Learning Outcomes Students will be able to determine the ionic compound ratio of an ionic compound. Prior Student Knowledge Expected Cations are postiviely charged ions and anions are negatively charged ions. Lesson Materials • Individual student access to Collisions on tablet, Chromebook, or computer. • Projector / display of teacher screen • Accompanying student resources (attached) Standards Alignment NGSS Alignment Science & Enginnering Practices Disciplinary Core Ideas Crosscutting Concepts • Developing and using • HS-PS-12. Construct and • Structure and Function models revise an explanation for the • Construcing explanations outcome of a simple chemical and designing solutions rection based on the outermost electron states of atoms, trends int he periodic table, and knowl- edge of the partterns of chemi- cal properties. www.playmadagames.com ©2018 PlayMada Games LLC. All rights reserved. 1 PART 1: Explore (15 minutes) Summary This is an inquiry-driven activity where students will complete the first few levels of the Collisions Ionic Bonding game to become introduced to the concept of ionic bonding and compound ratios. Activity 1. Direct students to log into Collisions with their individual username and password. 2. Students should enter the Ionic Bonding game and play Levels 1-6 levels. 3. Have your students answer the following questions during gameplay: 1. What combination of ions did you use to successfully match a target? 2. -
Notable Reactivity of Acetonitrile Towards Li2o2/Lio2 Probed By
Topics in Catalysis https://doi.org/10.1007/s11244-018-1072-5 ORIGINAL ARTICLE Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge Tatiana K. Zakharchenko1 · Alina I. Belova1 · Alexander S. Frolov1 · Olesya O. Kapitanova1 · Juan‑Jesus Velasco‑Velez2 · Axel Knop‑Gericke2,5 · Denis Vyalikh3,4 · Daniil M. Itkis1 · Lada V. Yashina1 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li 2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2 + MeCN mixture. We have dem- onstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery. Keywords Li–O2 battery · In situ NAP XPS · Acetonitrile · Side reactions 1 Introduction Li–O2 batteries promise extraordinary high specific energy that makes them interesting for the next generation power technologies [1, 2]. -
A Study of Lithium Precursors on Nanoparticle Quality
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021 Electronic Supplementary Information Elucidating the role of precursors in synthesizing single crystalline lithium niobate nanomaterials: A study of lithium precursors on nanoparticle quality Rana Faryad Ali, Byron D. Gates* Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive Burnaby, BC, V5A 1S6, Canada * E-mail: [email protected] This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC; Grant No. RGPIN-2020-06522), and through the Collaborative Health Research Projects (CHRP) Partnership Program supported in part by the Canadian Institutes of Health Research (Grant No. 134742) and the Natural Science Engineering Research Council of Canada (Grant No. CHRP 462260), the Canada Research Chairs Program (B.D. Gates, Grant No. 950-215846), CMC Microsystems (MNT Grant No. 6345), and a Graduate Fellowship (Rana Faryad Ali) from Simon Fraser University. This work made use of 4D LABS (www.4dlabs.com) and the Center for Soft Materials shared facilities supported by the Canada Foundation for Innovation (CFI), British Columbia Knowledge Development Fund (BCKDF), Western Economic Diversification Canada, and Simon Fraser University. S1 Experimental Materials and supplies All chemicals were of analytical grade and were used as received without further purification. Niobium ethoxide [Nb(OC2H5)5, >90%] was obtained from Gelest Inc., and benzyl alcohol (C7H7OH, 99%) and triethylamine [N(C2H5)3, 99.0%] were purchased from Acros Organics and Anachemia, respectively. Lithium chloride (LiCl, ~99.0%) was obtained from BDH Chemicals, and lithium bromide (LiBr, ≥99.0%), lithium fluoride (LiF, ~99.9%), and lithium iodide (LiI, 99.0%) were purchased from Sigma Aldrich. -
Electrolyte Stability and Discharge Products of an Ionic-Liquid-Based Li-O2 Battery Revealed by Soft X-Ray Emission Spectroscopy
Lawrence Berkeley National Laboratory Recent Work Title Electrolyte Stability and Discharge Products of an Ionic-Liquid-Based Li-O2 Battery Revealed by Soft X-Ray Emission Spectroscopy Permalink https://escholarship.org/uc/item/6gd3f1x1 Journal Journal of Physical Chemistry C, 123(51) ISSN 1932-7447 Authors León, A Fiedler, A Blum, M et al. Publication Date 2019-12-26 DOI 10.1021/acs.jpcc.9b08777 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Electrolyte Stability and Discharge Products of an Ionic- Liquid-based Li-O2 Battery Revealed by Soft X-Ray Emission Spectroscopy Aline Léon*1, Andy Fiedler2, Monika Blum3,4, Wanli Yang4, Marcus Bär5,6,7, Frieder Scheiba2, Helmut Ehrenberg2, Clemens Heske1,3,8, and Lothar Weinhardt1,3,8 1) Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany 2) Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany 3) Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), NV 89154-4003, USA 4) Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States 5) Department of Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany 6) Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Albert-Einstein-Str. 15, 12489 Berlin, Germany 1 7) Department of Chemistry and Pharmacy, Friedrich-Alexander- Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Erlangen, Germany 8) Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. -
Common Name: LITHIUM ALUMINUM HYDRIDE HAZARD
Common Name: LITHIUM ALUMINUM HYDRIDE CAS Number: 16853-85-3 RTK Substance number: 1121 DOT Number: UN 1410 Date: April 1986 Revision: November 1999 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Lithium Aluminum Hydride can affect you when * Exposure to hazardous substances should be routinely breathed in. evaluated. This may include collecting personal and area * Contact can cause severe skin and eye irritation and burns. air samples. You can obtain copies of sampling results * Breathing Lithium Aluminum Hydride can irritate the from your employer. You have a legal right to this nose and throat. information under OSHA 1910.1020. * Breathing Lithium Aluminum Hydride can irritate the * If you think you are experiencing any work-related health lungs causing coughing and/or shortness of breath. Higher problems, see a doctor trained to recognize occupational exposures can cause a build-up of fluid in the lungs diseases. Take this Fact Sheet with you. (pulmonary edema), a medical emergency, with severe shortness of breath. WORKPLACE EXPOSURE LIMITS * Exposure can cause loss of appetite, nausea, vomiting, The following exposure limits are for Aluminum pyro powders diarrhea and abdominal pain. (measured as Aluminum): * Lithium Aluminum Hydride can cause headache, muscle weakness, loss of coordination, confusion, seizures and NIOSH: The recommended airborne exposure limit is coma. 5 mg/m3 averaged over a 10-hour workshift. * High exposure can affect the thyroid gland function resulting in an enlarged thyroid (goiter). ACGIH: The recommended airborne exposure limit is * Lithium Aluminum Hydride may damage the kidneys. 5 mg/m3 averaged over an 8-hour workshift. * Lithium Aluminum Hydride is a REACTIVE CHEMICAL and an EXPLOSION HAZARD. -
Lithium Aluminum Hydride
Lithium aluminum hydride sc-215254 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Lithium aluminum hydride STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY4 HEALTH3 HAZARD INSTABILITY2 W SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS Li-Al-H4, Al-H4-Li, "lithium aluminum hydride", "lithium aluminum tetrahydride", "lithium aluminium tetrahydride", "lithium tetrahydroaluminate", "aluminate, tetrahydro-, lithium", "lithium aluminohydride", "aluminum lithium hydride", "lithium alanate", LAH Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability 4 Toxicity 2 Body Contact 4 Min/Nil=0 Low=1 Reactivity 2 Moderate=2 High=3 Chronic 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 10 CANADIAN WHMIS CLASSIFICATION CAS 16853-85-3Lithium tetrahydroaluminate E-Corrosive Material EMERGENCY OVERVIEW RISK Causes severe burns. Risk of serious damage to eyes. Reacts violently with water liberating extremely flammable gases. Extremely flammable. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. ■ Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the oesophagus and stomach may experience burning pain; vomiting and diarrhoea may follow. ■ Accidental ingestion of the material may be damaging to the health of the individual. -
S41467-020-19206-W.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-19206-w OPEN Unravelling the room-temperature atomic structure and growth kinetics of lithium metal Chao Liang 1, Xun Zhang1, Shuixin Xia1, Zeyu Wang1, Jiayi Wu1, Biao Yuan 1, Xin Luo1, Weiyan Liu1, ✉ Wei Liu 1 &YiYu 1 Alkali metals are widely studied in various fields such as medicine and battery. However, limited by the chemical reactivity and electron/ion beam sensitivity, the intrinsic atomic 1234567890():,; structure of alkali metals and its fundamental properties are difficult to be revealed. Here, a simple and versatile method is proposed to form the alkali metals in situ inside the transmission electron microscope. Taking alkali salts as the starting materials and electron beam as the trigger, alkali metals can be obtained directly. With this method, atomic resolution imaging of lithium and sodium metal is achieved at room temperature, and the growth of alkali metals is visualized at atomic-scale with millisecond temporal resolution. Furthermore, our observations unravel the ambiguities in lithium metal growth on garnet-type solid electrolytes for lithium-metal batteries. Finally, our method enables a direct study of physical contact property of lithium metal as well as its surface passivation oxide layer, which may contribute to better understanding of lithium dendrite and solid electrolyte interphase issues in lithium ion batteries. ✉ 1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:5367 | https://doi.org/10.1038/s41467-020-19206-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19206-w t has been a long history for the research on alkali metals1, the to control the dose-rate of the electron beam. -
A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory
sensors Article A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory Niraj Verma 1,† , Yunwen Tao 1,†, Wenli Zou 2, Xia Chen 3, Xin Chen 4, Marek Freindorf 1 and Elfi Kraka 1,* 1 Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; [email protected] (N.V.); [email protected] (Y.T.); [email protected] (M.F.) 2 Institute of Modern Physics, Northwest University, Xi’an 710127, China; [email protected] 3 Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; [email protected] 4 Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 20 March 2020; Accepted: 15 April 2020; Published: 21 April 2020 Abstract: Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. -
Chemical List
1 EXHIBIT 1 2 CHEMICAL CLASSIFICATION LIST 3 4 1. Pyrophoric Chemicals 5 1.1. Aluminum alkyls: R3Al, R2AlCl, RAlCl2 6 Examples: Et3Al, Et2AlCl, EtAlCl2, Me3Al, Diethylethoxyaluminium 7 1.2. Grignard Reagents: RMgX (R=alkyl, aryl, vinyl X=halogen) 8 1.3. Lithium Reagents: RLi (R = alkyls, aryls, vinyls) 9 Examples: Butyllithium, Isobutyllithium, sec-Butyllithium, tert-Butyllithium, 10 Ethyllithium, Isopropyllithium, Methyllithium, (Trimethylsilyl)methyllithium, 11 Phenyllithium, 2-Thienyllithium, Vinyllithium, Lithium acetylide ethylenediamine 12 complex, Lithium (trimethylsilyl)acetylide, Lithium phenylacetylide 13 1.4. Zinc Alkyl Reagents: RZnX, R2Zn 14 Examples: Et2Zn 15 1.5. Metal carbonyls: Lithium carbonyl, Nickel tetracarbonyl, Dicobalt octacarbonyl 16 1.6. Metal powders (finely divided): Bismuth, Calcium, Cobalt, Hafnium, Iron, 17 Magnesium, Titanium, Uranium, Zinc, Zirconium 18 1.7. Low Valent Metals: Titanium dichloride 19 1.8. Metal hydrides: Potassium Hydride, Sodium hydride, Lithium Aluminum Hydride, 20 Diethylaluminium hydride, Diisobutylaluminum hydride 21 1.9. Nonmetal hydrides: Arsine, Boranes, Diethylarsine, diethylphosphine, Germane, 22 Phosphine, phenylphosphine, Silane, Methanetellurol (CH3TeH) 23 1.10. Non-metal alkyls: R3B, R3P, R3As; Tributylphosphine, Dichloro(methyl)silane 24 1.11. Used hydrogenation catalysts: Raney nickel, Palladium, Platinum 25 1.12. Activated Copper fuel cell catalysts, e.g. Cu/ZnO/Al2O3 26 1.13. Finely Divided Sulfides: Iron Sulfides (FeS, FeS2, Fe3S4), and Potassium Sulfide 27 (K2S) 28 REFERRAL -
Ionic Conductivity of Solid Mixtures
NASA TECHNICAL NOTE NASA-- TN D-4606 d./ *o 0 *o nP LOAN COPY: RRURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX IONIC CONDUCTIVITY OF SOLID MIXTURES by William L. Fielder Lewis Research Celzter 3 ._i _... Cleveland, Ohio r I t , 1 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. MAY 1968 ,/ I I TECH LIBRARY KAFB, NM ,lllllllllll__ .llllllllll I1111 lllllllllllllllll I 023L03b NASA TN D-4606 IONIC CONDUCTIVITY OF SOLID MIXTURES By William L. Fielder Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technicol Information Springfield, Virginia 22151 - CFSTI price $3.00 IONIC CONDUCTIVITY OF SOLID MIXTURES by William L. Fielder Lewis Research Center SUMMARY The conductivities of four solid mixtures were determined as a function of tempera ture: (1) the lithium fluoride - lithium chloride eutectic, (2) the lithium chloride - potassium chloride eutectic, (3) the lithium fluoride - sodium chloride eutectic, and (4) a 50-mole-percent mixture of sodium chloride and potassium chloride. Two conductivity regions were obtained for each of the four mixtures. The activation energies for the conductivity for the lower-temperature regions ranged from 14 to 27 kilocalories per mole (59 to 114 kJ/mole). These energies were similar to the cation migration energies for the single crystals of the alkali halides. The conductivity of the mixtures in the lower-temperature regions is best explained by the following mechanism: (1) formation of cation vacancies primarily by multivalent impurities, and (2) migration of the cations through these vacancies. The activation energies for the conductivity of the solid mixtures in the upper- temperature regions ranged from 5 to 9 kilocalories per mole (20 to 39 kJ/mole).