Volcanology and Petrology of the Rattlesnake Ash-Flow Tuff, Eastern Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Volcanology and Petrology of the Rattlesnake Ash-Flow Tuff, Eastern Oregon AN ABSTRACTOF THE THESIS OF Martin J. Streck for the degree of Doctor of Philosophy in Geology presented on April 27, 1994. Title: Volcanology and Petrology of the Rattlesnake Ash-Flow Tuff, Eastern Oregon. Abstractapproved: Anita L. Grunr The RattlesnakeAsh-Flow Tufferupted 7.05±0.01 Ma from the western HarneyBasin,southeasternOregon.The location of the vent area is inferred based on vent-ward increases in size of pumices, in degree ofwelding,and in degree of post- emplacementcrystallization.Today's outcrops cover 9000 km2 and estimated original outcrop coverage wasca.35000km2.Tuff thickness is uniform ranging mainly between 5 and 30 in with maxima up to 70in.Estimated eruption volume is 280 km3 dense rock equivalent (DRE). Lithological variations include vitric non- to densely weldedtuff, vapor-phase, devitrified, spherulitic, lithophysal,and rheomorphic tuff. Lithological zoning characteristics of the tuff change locally at nearly constant tuff thickness over distancesof 1 to 3 kmgrading from incipiently welded tuff to highly zonedsections.Regional variations become apparent by integrating many sections from onearea.A three-dimensional facies model is developed describing the local and regional facies variations. The RattlesnakeTuffconsists of high-silica rhyolite (HSR) erupted as pumices and glass shards. Dacite pumices make up less than1%of the total volume and quenched basalt and basaltic andesite inclusions inside dacite pumices constitute << 0.1 volume %. HSR pumices cluster in 4 to 5 compositional groups which are discerned best by La,Eu,Ba, Hf(Zr), Ta(Nb).Major element variations are minor but consistent between groupswith Si02increasing andFeO*, MgO, Ti02,and CaO decreasing with differentiation.Modalmineralogy,mineralchemistry,and partition coefficients also changeprogressively. The diversityof HSR is likely the product of crystal fractionation processes. A model isproposedby which astratified magma chamber is generated from the roof of the chamber downwardby progressivelymore evolved HSR. Least evolved HSRis likely the product ofdehydration melting of high-grade intermediate to mafic protoliths. High Ba/Rb ratios of 30 in the least evolved HSR limit the potential protoliths to lithologies with equal or higher Ba/Rb. Dacite pumices and mafic inclusions reveal the nature of the mafic root zone to the Rattlesnake Tuff magma chamber. Quenching and mingling textureswith the host pumice indicate that basaltic andesite and basalt inclusions are cognate. Daciteformed at the interface between HSR and underlying enriched basaltic andesite and wasgenerated by mixing of these two components. Basaltic andesite is fractionated andenriched in trace elements compared to regional primitive tholeiite (HAOT).Basaltic andesite has evolved from HAOT's mainly through fractionation and recharge whilebeing stalled underneath a silicic cap. Volcanology and Petrology of the Rattlesnake Ash-Flow Tuff, Eastern Oregon by Martin J. Streck A THESIS submitted to Oregon StateUniversity in partial fulfillment of the requirements for the degree of Doctor of Philosophy CompletedApril 27, 1994 Commencement June 1995 APPROVED: at,-"k / Associate Professor of Geology, charge of major Date thesis is presented April 27. 1994 Typed by theauthor Martin J. Streck Acknowledgements I would like to thank Anita Grunder for her continuing support and advice whenever needed. Her constant striving and abilities to improve my ideas and text kept me focused on clarity and significance. Many thanks go also to the team at the OSU Radiation Center, especially to Bob Walker (deceased), Art Johnson, Jack Higginbotham, Roman Schmitt, and Mike Conrady. Without their scientific and financial support, this thesis would be a lot thinner! The time and efforts of my graduate committee, Gordon Goles, Ed Taylor, Bob Duncan, Roger Nielsen, and John Dilles, are much appreciated. Among many people who contributed with discussions, friendship, hospitality, and others (e.g. 4WD vehicles) are: Jim MacLean, Anita Grunder, Jenda Johnson, Dave Sherrod, John Dilles, the Basalt Bunch (also known as Chemically Dependent Petrologists at OSU), and Hernan Garcia. Finally and foremost, I would like to thank Soraya Simons for her love and support. Also, I owe much gratitude to my parents for their love, trust, andfor the principles they taught me. An honest tale speeds best being plainly told. King Richard III ACT IV Table of Contents Chapter I: Facies variations in a thin, widespread ignimbrite sheet: The RattlesnakeTuff,EasternOregon....................................... 1 Abstract ....................................................................................1 Introduction............................................................................... 2 Tectonicsetting........................................................................... 3 Name and age............................................................................. 6 General aspect............................................................................ 6 Distribution,thickness and volume.................................................... 7 Today's outcrops................................................................ 7 Original areal coverage.......................................................... 16 Volume........................................................................... 17 Depositionalfacies....................................................................... 22 Pumiceclasts..................................................................... 22 Lithic fragments................................................................. 23 Speculations on pumice and lithics variations................................24 Source area................................................................................ 25 Welding andcrystallization facies...................................................... 29 Terminology,appearance and occurrence.................................... 29 Welding facies................................................................... 29 Crystallizationfacies............................................................ 36 Rheomorphictuff................................................................ 41 Transitions between facies.....................................................42 Facies model..............................................................................42 Regional facies variations...................................................... 43 LocalFacies variations.......................................................... 50 Discussion of welding and crystallization facies......................................51 Comparison to existing facies models........................................ 51 Timing............................................................................ 51 Causes of facies variations..................................................... 52 Conclusions.............................................................................. .54 References................................................................................. 55 Table of Contents, Continued: ChapterII:The RattlesnakeTuff,part I: Relationships between high-silica rhyolites, dacites and mafic inclusions................................ 60 Abstract.................................................................................... 60 Introduction............................................................................... 61 Geologic and tectonic setting............................................................ 64 Analyticalmethods....................................................................... 64 Eruptive productsof theRattlesnakeTuff............................................. 65 High-silicarhyolites............................................................. 65 Dacites............................................................................ 83 Basalticinclusions............................................................... 84 Discussion.................................................................................85 Rhyolite genesis..........................................................................85 Fractionation models............................................................ 86 Partial melting models.......................................................... 87 Mafic root zone.......................................................................... .92 Contemporaneous and regional basalts....................................... 92 Mafic inclusion- HAOT connection .......................................... 93 Modeling......................................................................... 96 Dacites:mafic-silicic interface........................................................... 103 Mixing - mingling and hybridization.......................................... 103 Compositionalgap.............................................................. 107 Magma chamber reconstruction.........................................................108 Conclusions.............................................................................. .111 References................................................................................. 113 Chapter III: The Rattlesnake Tuff, part II: Differentiation of the high-silica rhyolites ..........................................................................118 Abstract................................................................................... .118 Introduction..............................................................................
Recommended publications
  • Structural Geology of the Cat Mountain Rhyolite in the Northern Tucson Mountains, Pima County, Arizona
    Structural geology of the Cat Mountain rhyolite in the northern Tucson Mountains, Pima County, Arizona Item Type text; Thesis-Reproduction (electronic) Authors Knight, Louis Harold, 1943- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 12:31:24 Link to Item http://hdl.handle.net/10150/551931 STRUCTURAL GEOLOGY OF THE CAT MOUNTAIN RHYOLITE IN THE NORTHERN TUCSON MOUNTAINS, PIMA COUNTY, ARIZONA Ly Louis H. Knight, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 196? STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknow­ ledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Repeated Caldera Collapse and Ignimbrite Emplacement at a Peralkaline Volcano Nina Jordan, Silvio G
    Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano Nina Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William Mcintosh, Michael Branney, Stéphane Scaillet To cite this version: Nina Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William Mcintosh, et al.. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano. Journal of Volcanology and Geothermal Research, Elsevier, 2018, 349, pp.47-73. 10.1016/j.jvolgeores.2017.09.013. insu-01618160 HAL Id: insu-01618160 https://hal-insu.archives-ouvertes.fr/insu-01618160 Submitted on 17 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano Nina J. Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William C. McIntosh, Michael J. Branney, Stéphane Scaillet PII: S0377-0273(17)30078-1 DOI: doi:10.1016/j.jvolgeores.2017.09.013 Reference: VOLGEO 6196 To appear in: Journal of Volcanology and Geothermal Research Received date: 31 January 2017 Revised date: 1 September 2017 Accepted date: 17 September 2017 Please cite this article as: Nina J.
    [Show full text]
  • Compositional Zoning of the Bishop Tuff
    JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C).
    [Show full text]
  • Plate Tectonics, Volcanic Petrology, and Ore Formation in the Santa Rosalia Area, Baja California, Mexico
    Plate tectonics, volcanic petrology, and ore formation in the Santa Rosalia area, Baja California, Mexico Item Type text; Thesis-Reproduction (electronic) Authors Schmidt, Eugene Karl, 1947- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 01:50:58 Link to Item http://hdl.handle.net/10150/555057 PLATE TECTONICS, VOLCANIC PETROLOGY, AND ORE FORMATION IN THE SANTA ROSALIA AREA, BAJA CALIFORNIA, MEXICO by Eugene Karl Schmidt A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 5 z- STATEMENT BY AUTHOR This thesis has been submitted in partial ful­ fillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate ac­ knowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manu­ script in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • The Initiation and Evolution of Ignimbrite Faults, Gran Canaria, Spain
    The initiation and evolution of ignimbrite faults, Gran Canaria, Spain Aisling Mary Soden B.A. (Hons.), Trinity College Dublin Thesis presented for the degree of Doctor of Philosophy (Ph.D.) University of Glasgow Department of Geographical & Earth Sciences January 2008 © Aisling M. Soden, 2008 Abstract Abstract Understanding how faults initiate and fault architecture evolves is central to predicting bulk fault zone properties such as fault zone permeability and mechanical strength. The study of faults at the Earth’s surface and at near-surface levels is significant for the development of high level nuclear waste repositories, and CO2 sequestration facilities. Additionally, with growing concern over water resources, understanding the impact faults have on contaminant transport between the unsaturated and saturated zone has become increasingly important. The proposal of a high-level nuclear waste repository in the tuffs of Yucca Mountain, Nevada has stimulated interest into research on the characterisation of brittle deformation in non-welded to densely welded tuffs and the nature of fluid flow in these faults and fractures. The majority of research on the initiation and development of faults has focussed on shear faults in overall compressional stress regimes. Dilational structures have been examined in compressional settings e.g. overlapping faults generating extensional oversteps, or in normal faults cutting mechanical layered stratigraphy. Previous work has shown the affect mechanical stratigraphy has on fault dip angle; competent layers have steeply dipping segments and less competent layers have shallowly dipping segments. Displacement is accommodated by shear failure of the shallow segments and hybrid failure of the steeply dipping segments. As the fault walls of the shear failure segment slip past each other the walls of the hybrid failure segment are displaced horizontally as well as vertically thus forming dilation structures such as pull-aparts or extensional bends.
    [Show full text]
  • Kamiskotia Area
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • The Geology of the Castle Rock Area, Grant, Harney and Malheur Counties, Oregon
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 4-30-1976 The Geology of the Castle Rock Area, Grant, Harney and Malheur Counties, Oregon John David Wood Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Stratigraphy Commons Let us know how access to this document benefits ou.y Recommended Citation Wood, John David, "The Geology of the Castle Rock Area, Grant, Harney and Malheur Counties, Oregon" (1976). Dissertations and Theses. Paper 2608. https://doi.org/10.15760/etd.2606 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. AN ABSTRACT OF THE THESIS OF John David Wood for the Master of Science in Geology presented April 30, 1976. Title: The Geology of the Castle Rock Area, Grant, Harney and Malheur Counties, Oregon. APPROVED BY MEMBERS OF THE THESIS COMMITTEE: ~ ..s-:: 1'97-' &~ %' 1797b - Gilbert T. Benson 5,jfli; Ansel G. Joh~n ~ ~ j 4'76 Richard R. Petersen, Graduate Offi Representative The geology of the Castle Rock area aids in the under- standing of Cenozoic volcanic stratigraphy and structures in an area where these volcanic rocks thin near the margins of the pre-Tertiary basement rocks and structural trends are overlapping. The Castle Rock area is unique in several as- pects and is important in understanding and interpreting the geology in adjacent regions which have all been studied, at least on a regional basis.
    [Show full text]
  • Lithology, Dynamism and Volcanic Successions at Melka Kunture (Upper Awash, Ethiopia) Jean-Paul Raynal, Guy Kieffer
    Lithology, dynamism and volcanic successions at Melka Kunture (Upper Awash, Ethiopia) Jean-Paul Raynal, Guy Kieffer To cite this version: Jean-Paul Raynal, Guy Kieffer. Lithology, dynamism and volcanic successions at Melka Kunture (Upper Awash, Ethiopia). Studies on the Early Paleolithic site of Melka Kunture, Ethiopia. Edited by Jean Chavaillon and Marcello Piperno, 1, Istituto Italiano di Preistoria e Protostoria, pp.111-135, 2004. halshs-00003990 HAL Id: halshs-00003990 https://halshs.archives-ouvertes.fr/halshs-00003990 Submitted on 7 Jul 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geology, volcanology and geochemistry Drainage pattern and regional morphostructure at Melka Kunture (Upper Awash, Ethiopia) ........................83 Guillaume Bardin, Jean-Paul Raynal, Guy Kieffer Volcanic markers in coarse alluvium at Melka Kunture (Upper Awash, Ethiopia) ...........................................93 Guy Kieffer, Jean-Paul Raynal, Guillaume Bardin Trace element geochemistry in Balchit obsidian (Upper Awash, Ethiopia) ....................................................103
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • The Council Reporter
    The Council Reporter Volume 33, Issue 4 April 2013 "ROCKY" THE ROCKHOUND Official Publication of the Washington State Mineral Council 1 The Council Reporter WASHINGTON STATE MINERAL COUNCIL 2013 OFFICERS OFFICERS President Perry Gulsvig [email protected] (509)290-1355 VP Brad Johnson [email protected] (206)403-3073 2nd VP Michael Shaw [email protected] (509)244-8542 Secretary Diane Myers [email protected] (360)427-1569 Treasurer Kathy Earnst [email protected] (360)856-0588 Imm Past Pres: Andy Johnson [email protected] (509)546-1950 TRUSTEES --- EAST SIDE Steve Townsend [email protected] (11-12-13) (509)-933-2236 Howard Walter 1 S. 56th Ave, Yakima, WA 98908-3107 (12-13-14) (509) 972-3437 Dale Geer P.O. Box 34, Moxie, WA 98936 (12-13-14) (509) 248-6975 Krisanne Gray E. 1012 Indiana Ave., Spokane, WA 99207 (11-12-13) (509) 701-3519 Dave Mastin [email protected] (13-14-15) TRUSTEES --- WEST SIDE Gordon Lyons [email protected] (13-14-15) Tony Schackmann [email protected] (13-14-15) (360)372-2777 Stu Earnst 27871 Minkler Road Sedro Woolley, WA 98284 (12-13-14) (360) 856-0588 Bob Pattie 4316 N. E. 10th, Renton, WA 98059 (12-13-14) (425) 226-3154 Glenn Morita 4528 152nd Pl SW, Lynnwood, WA 98087 (11-12-13) (425) 743-6249 Lisa Bishop Waters [email protected] (11-12-13) (206) 371-1810 STAFF Editor Glenn Morita 4528 152nd Pl SW, Lynnwood, WA 98087 (425) 743-6249 Historian Jackie Pattie 4316 N. E. 10th, Renton, WA 98059 (425) 226-3154 Wagonmaster open The West Side Board meets the third Tuesday of each month between Quarterly meetings, unless a meeting is specially called.
    [Show full text]
  • Chiricahua National Monument Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Chiricahua National Monument Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/081 THIS PAGE: Close up of the many rhyolitic hoodoos within the Monument ON THE COVER: Scenic vista in Chiricahua NM NPS Photos by: Ron Kerbo Chiricahua National Monument Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/081 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 June 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters.
    [Show full text]
  • Fiamme Textures in Volcanic Successions: Flaming Issues of Definition and Interpretation ⁎ Katharine F
    Journal of Volcanology and Geothermal Research 164 (2007) 205–216 www.elsevier.com/locate/jvolgeores Fiamme textures in volcanic successions: Flaming issues of definition and interpretation ⁎ Katharine F. Bull , Jocelyn McPhie ARC Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, TAS 7001, Australia Received 27 October 2006; received in revised form 29 March 2007; accepted 11 May 2007 Available online 24 May 2007 Abstract Fiamme are aligned, “flame-like” lenses found in welded ignimbrite. Fiamme also occur in welded pyroclastic fall deposits, secondary welded pumice-rich facies, diagenetically altered and compacted non-welded, pumiceous, volcaniclastic facies and lavas. Fiamme can be formed in a variety of ways. The common genetic use of the term fiamme for pumice clasts that have undergone welding compaction is too narrow. “Fiamme“ is best used as a descriptive term for elongate lenses or domains of the same mineralogy, texture and composition, which define a pre-tectonic foliation, and are separated by domains of different mineralogy, texture or composition. This descriptive term can be used regardless of the origin of the texture, and remains appropriate for flattened pumice clasts in welded ignimbrite. © 2007 Elsevier B.V. All rights reserved. Keywords: fiamme; pumice; welding; volcanic textures 1. Introduction need for a practical definition and a review of common volcanic facies in which fiamme occur. Widespread use of the term ‘fiamme’, Italian for As with many geological terms, ‘fiamme’ has ‘flames’, has ignited much confusion about its meaning acquired a genetic connotation, which, in many cases, in relation to interpretation of textures in volcanic rocks.
    [Show full text]