Article (Published Version)

Total Page:16

File Type:pdf, Size:1020Kb

Article (Published Version) Article Interview: Bas van Fraassen BABIC, Joshua, COCCO, Lorenzo, HLADKY, Michal BLUNIER, David Lucas Simon (Transl.) Abstract Bas Van Fraassen is a nifty philosopher of science. He received his PhD in Pittsburgh in 1966, under the guidance of Adolf Grünbaum, he taught at Yale University, the university of Toronto, the University of Southern California, he has been McCosh Professor of Philosophy in Princeton, and eventually joined the department of philosophy at San Francisco State University, where he has the title of Distinguished Professor of Philosophy. He first gained attention with his book An Introduction to the Philosophy of Time and Space where he tried to develop a formal theory of space and time based on the notion of causality. The book had an enormous legacy, with experts of the likes of John Earman and David Malament joining the debate. However, he achieved V.I.P. status with his classic The Scientific Image, where he defends a combination of empiricism and antirealism towards unobservable entities based on a re-definition of what the scientific enterprise is. His last achievement is the tome Scientific Representation: Paradoxes of Perspectives, where he combines his scientific empiricism with the view that theories are best [...] Reference BABIC, Joshua, COCCO, Lorenzo, HLADKY, Michal, BLUNIER, David Lucas Simon (Transl.). Interview: Bas van Fraassen. iphilo - le journal des étudiants en Philosophie de l'UNIGE, 2017, vol. 9, p. 31-41 Available at: http://archive-ouverte.unige.ch/unige:105635 Disclaimer: layout of this document may differ from the published version. 1 / 1 Interview: Bas van Fraassen Bas Van Fraassen is a nifty philosopher of science. He received his PhD in Pittsburgh in 1966, under the guidance of Adolf Grünbaum, he taught at Yale University, the university of Toronto, the University of Southern California, he has been McCosh Professor of Philosophy in Princeton, and eventually joined the department of philosophy at San Francisco State University, where he has the title of Distinguished Professor of Philosophy. He first gained attention with his book An Introduction to the Philosophy of Time and Space where he tried to develop a formal theory of space and time based on the notion of causality. The book had an enormous legacy, with experts of the likes of John Earman and David Malament joining the debate. However, he achieved V.I.P. status with his classic The Scientific Image, where he defends a combination of empiricism and antirealism towards unobservable entities based on a re-definition of what the scientific enterprise is. His last achievement is the tome Scientific Representation: Paradoxes of Perspectives, where he combines his scientific empiricism with the view that theories are best thought as models or structures, rather than sets of sentences. In this interview, we talk about his philosophical influences and the birth of The Scientific Image during a journey through North-Africa, Turkey and Eastern Europe, we talk about saving the phenomena and suspending judgement over the existence of unobservable entities, living in world full of mysteries and leaving unanswerable questions unanswered, rationality and irrationality, living in a simulation, the historical interplay between theorizing and experimenting, the meaning of particle detectors for an empiricist, the unity of science and physicalism, the condemnation of Galilei by the Church, and the distinction between Appearance and Reality… Iphilo: How did you become a philosopher? Bas van Fraassen: Through books. When I was 17, working part-time in the Edmonton public library in Canada, I came across Plato’s Phaedo. That was so different from everything else I had been reading that it came as a revelation. Until that year it had not been in my mind to go to university (not at all an obvious choice for an immigrant boy), but my teachers began to suggest it. So then I told them I wanted to study philosophy. Nobody seemed to think this was a rational decision, and perhaps it wasn’t under the circumstances, but somehow it worked out. A main factor was the support of my first philosophy teacher, Karel Lambert, a logician. He gave me special directed study on logic and probability, using books newly published. Quite a different fare from the Phaedo! But in some ways not so far since Lambert liked arguing with me in the same way Socrates argued with his students. In my second year I was working part-time in the University library, and there I came upon Hans Reichenbach’s Philosophy of Space and Time. That is what led me to philosophy of science, it was my second transformative experience with a book. 1 IP: In The Scientific Image, you claim that from hearing the pattern of little feet we can infer the existence of a mouse, but from the traces in a cloud chamber we cannot infer the existence of muons or other invisible particles. It seems that the two inferences are formally identical. Why would you accept one and not the other? BvF: I do think the two cases can be given a parallel treatment, but we have to be careful about what the conclusion is that is inferred. As I suggested in that passage, the thesis that we infer to the truth of the best explanation has a rival: the thesis that we infer to its empirical adequacy. As it happens, the hypothesis that there is a mouse in the wainscoting is empirically adequate if and only if it is true. So there the two rival theses have the same implications. That is not so in the case of the hypothesis that what we see in the cloud chamber is the track of an unobservable particle – that could be empirically adequate without being true. I should add that I definitely did not suggest that rival thesis because I wanted to make it part of my epistemology! I offered it to embarrass the scientific realist with the question: which of these theses is the better explanation of our ordinary ‘inductive’ behavior? In fact, in the ordinary case of the mouse droppings etc. I already know that these indicate the presence of a mouse, with high probability, so no inductive reasoning is needed anyway. IP: How did you come to your view on science? BvF: Reichenbach’s Philosophy of Space and Time showed me a new world, the world created by the 20th century philosophers of science who took an active part in debates about the new revolutionary changes happening in physics. But Reichenbach had recently died. I found out though that another philosopher had donned his mantle, Adolf Grünbaum, and so I went to study with him in Pittsburgh. Reichenbach was a prominent logical empiricist, and his theory of space and time was of an empiricist sort, ‘relationalism’ rather than ‘absolutism’; Grünbaum continued in this vein. My first large project in philosophy of science was to continue the development of this sort of view of space, time, and space-time. I was wonderfully lucky again, for Grünbaum didn’t laugh at my naïve ambitions, he was tremendously supportive. I had another teacher in Pittsburgh, Wilfrid Sellars, prominent among the philosophers who had developed the new scientific realism in opposition to logical positivism and logical empiricism. His seminars were the most popular, his lectures fabulous, his grasp of history amazing, his writings profound. I learned a great deal from him, but unlike some of my class mates did not become a disciple. On the contrary, I felt a strong tension between his scientific realism and the empiricism that had so attracted me in Reichenbach. But I was not in any position to express a coherent contrary view at that time. The breakthrough for me came about ten years later. I had in the meanwhile worked out a relationalist, empiricist view of time, space, and space-time. On this view, there are on the one hand physical relations in the world that ground temporal and spatial judgements, and on the other hand mathematical structures that play the role of time, space, or space-time in physics. The crucial requirement is that the former, which may be scant in mathematical eyes, are embeddable in the 2 latter. There need not be anything in reality that is precisely ‘mirrored’ by the mathematical structures, as long as there is a satisfactory fit to what there is. Eventually I realized that this could be generalized to the relation between phenomena and their scientific models in general. I was very excited when that became clear, and I sent a long letter to Professor Grünbaum to outline this, from a campsite in Algeria. This was in my second full year’s leave from teaching. I was traveling with a car and tent on a large loop, starting from England and passing through North-Africa, Turkey, and Eastern Europe. I wrote the first versions of the main chapters of The Scientific Image in campsites along the way. IP: Why is it important to save the phenomena, that is to devise theories that correctly predict the observable outcome of experiments? Is it only for technological purposes? BvF: The empirical criteria of success in the sciences are exactly what need to be met for application, prediction, manipulation in their subject matter. Even in ancient times technology in that broad sense was of great value: think of the empirical success, despite theoretical error, of ancient astronomy. But there is also an intellectual value in the acquisition of empirical knowledge: not just the value of finding our way around in the world but of knowing our way around in the world. According to Wilfrid Sellars, to be in that position requires that we can answer all relevant why-questions, ex cathedra so to speak.
Recommended publications
  • Curriculum Vitae
    BAS C. VAN FRAASSEN Curriculum Vitae Last updated 3/6/2019 I. Personal and Academic History .................................................................................................................... 1 List of Degrees Earned ........................................................................................................................................................ 1 Title of Ph.D. Thesis ........................................................................................................................................................... 1 Positions held ..................................................................................................................................................................... 1 Invited lectures and lecture series ........................................................................................................................................ 1 List of Honors, Prizes ......................................................................................................................................................... 4 Research Grants .................................................................................................................................................................. 4 Non-Academic Publications ................................................................................................................................................ 5 II. Professional Activities .................................................................................................................................
    [Show full text]
  • 2 Tracing the Development of Structural Realism
    1 2 TRACING THE DEVELOPMENT OF STRUCTURAL REALISM Ioannis Votsis 1. Introduction This chapter traces the development of structural realism within the scientific realism debate and the wider current of structuralism that has swept the philosophy of the natural sciences in the twentieth century. 1 The primary aim is to make perspicuous the many manifestations of structural realism and their underlying claims. Among other things, I will compare structural realism’s various manifestations in order to throw more light onto the relations between them. At the end of the chapter, I will identify the main objections raised against the epistemic form of structural realism. This last task will pave the way for the evaluation of the structural realist answer to the main epistemological question, an evaluation that will be central to the rest of this dissertation. Generally construed, structuralism is a point of view that emphasises the importance of relations. It takes the structure, i.e. the nexus of relations, of a given domain of interest to be the foremost goal of research and holds that an understanding of the subject matter has to be, and most successfully is, achieved in structural terms. The following quote from Redhead (2001a) nicely conveys this intuition: “Informally a structure is a system of related elements, and structuralism is a point of view which focuses attention on the relations between the elements as distinct from the elements themselves”(74). This vision has shaped research programmes in fields as diverse as mathematics, linguistics, literary criticism, aesthetics, anthropology, psychology, and philosophy of science. It is the last-mentioned that I am concerned with in this chapter.
    [Show full text]
  • BEYOND SPACE and TIME the Secret Network of the Universe: How Quantum Geometry Might Complete Einstein’S Dream
    BEYOND SPACE AND TIME The secret network of the universe: How quantum geometry might complete Einstein’s dream By Rüdiger Vaas With the help of a few innocuous - albeit subtle and potent - equations, Abhay Ashtekar can escape the realm of ordinary space and time. The mathematics developed specifically for this purpose makes it possible to look behind the scenes of the apparent stage of all events - or better yet: to shed light on the very foundation of reality. What sounds like black magic, is actually incredibly hard physics. Were Albert Einstein alive today, it would have given him great pleasure. For the goal is to fulfil the big dream of a unified theory of gravity and the quantum world. With the new branch of science of quantum geometry, also called loop quantum gravity, Ashtekar has come close to fulfilling this dream - and tries thereby, in addition, to answer the ultimate questions of physics: the mysteries of the big bang and black holes. "On the Planck scale there is a precise, rich, and discrete structure,” says Ashtekar, professor of physics and Director of the Center for Gravitational Physics and Geometry at Pennsylvania State University. The Planck scale is the smallest possible length scale with units of the order of 10-33 centimeters. That is 20 orders of magnitude smaller than what the world’s best particle accelerators can detect. At this scale, Einstein’s theory of general relativity fails. Its subject is the connection between space, time, matter and energy. But on the Planck scale it gives unreasonable values - absurd infinities and singularities.
    [Show full text]
  • Models, Perspectives, and Scientific Realism
    MODELS, PERSPECTIVES, AND SCIENTIFIC REALISM: ON RONALD GIERE'S PERSPECTIVAL REALISM A thesis submitted to Kent State University in partial fulfillment of the requirements for the Degree of Master of Arts by Brian R. Huth May, 2014 Thesis written by Brian R. Huth B.A., Kent State University 2012 M.A., Kent State University 2014 Approved by Frank X. Ryan, Advisor Linda Williams, Chair, Department of Philosophy James L. Blank, Dean, College of Arts and Sciences ii TABLE OF CONTENTS ACKNOWLEDGEMENTS................................................................................................. iv INTRODUCTION............................................................................................................... 1 CHAPTER I. FROM THE RECEIVED VIEW TO THE MODEL-THEORETIC VIEW........................................................................................................... 7 Section 1.1.................................................................................................... 9 Section 1.2.................................................................................................... 16 II. RONALD GIERE'S CONSTRUCTIVISM AND PERSPECTIVAL REALISM.................................................................................................... 25 Section 2.1.................................................................................................... 25 Section 2.2.................................................................................................... 31 Section 2.3...................................................................................................
    [Show full text]
  • Physics Needs Philosophy. Philosophy Needs Physics. Carlo Rovelli
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Physics needs philosophy. Philosophy needs physics. Carlo Rovelli Extended version of a keynote talk at the XVIII UK-European Conference on the Foundation of Physics, given at the London School of Economics the 16 July 2016 Published on Foundations of Physics, 48, 481-491, 2018 Abstract Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method. 1. Against Philosophy is the title of a chapter of a book by one of the great physicists of the last generation: Steven Weinberg, Nobel Prize winner and one of the architects of the Standard Model of elementary particle physicsi. Weinberg argues eloquently that philosophy is more damaging than helpful for physics—although it might provide some good ideas at times, it is often a straightjacket that physicists have to free themselves from. More radically, Stephen Hawking famously wrote that “philosophy is dead” because the big questions that used to be discussed by philosophers are now in the hands of physicistsii.
    [Show full text]
  • Loop Quantum Gravity: the First 25 Years Carlo Rovelli
    Loop quantum gravity: the first 25 years Carlo Rovelli To cite this version: Carlo Rovelli. Loop quantum gravity: the first 25 years. Classical and Quantum Gravity, IOP Publishing, 2011, 28 (15), pp.153002. 10.1088/0264-9381/28/15/153002. hal-00723006 HAL Id: hal-00723006 https://hal.archives-ouvertes.fr/hal-00723006 Submitted on 7 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Loop quantum gravity: the first twenty five years Carlo Rovelli Centre de Physique Th´eorique de Luminy∗, Case 907, F-13288 Marseille, EU (Dated: January 27, 2011) I give a synthetic presentation of loop quantum gravity. I spell-out the aims of the theory and compare the results obtained with the initial hopes that motivated the early interest in this research direction. I give my own perspective on the status of the program and attempt of a critical evaluation of its successes and limits. I. INTRODUCTION The history of quantum gravity is full of great hopes later disappointed. I remember as a young student sitting in a major conference where a world-renowned physicists Loop gravity is not quite twenty-five years old, but announced that the final theory of quantum gravity and is getting close to such a venerable age: several basic everything had finally been found.
    [Show full text]
  • The Pragmatics of Explanation: Remarks on Van Fraassen's Theory of Why-Questions1
    The Pragmatics of explanation: Remarks on van Fraassen’s theory of why-questions1 A Pragmática da explicação: Comentários sobre a teoria das questões-por-quê de van Fraassen Renato Cesar Cani Universidade Federal do Paraná – UFPR/CAPES – Brasil [email protected] Abstract: In this article, my aim is to analyze Bas van Fraassen’s pragmatic solution to two of the traditional problems concerning scientific explanation, namely, rejection and asymmetry. According to his view, an explanation is an answer to some request for information. The emergence of a question, as well as the evaluation of the explanations adduced, depends on considerations about contextual factors. In addition, I will evaluate the pertinence of objections raised by Philip Kitcher and Wesley Salmon against van Fraassen’s account. I will argue that their charge is not sound, for it actually misunderstands the role played by context in van Fraassen’s account. Although Salmon’s and Kitcher’s realist commitments motivate the point made by them, I will hold that a pragmatic account of explanation does not commit one to an anti-realist approach to science. Keywords: Pragmatics of Explanation. Bas van Fraassen. Why-questions. Asymmetry. Realism. Resumo: Neste artigo, meu objetivo é analisar a solução pragmática oferecida por Bas van Fraassen a dois dos tradicionais problemas da explicação científica, quais sejam, o da rejeição e o da assimetria. Em sua visão, uma explicação é uma resposta a alguma demanda por informação. O surgimento de uma questão, bem como a avaliação das possíveis explicações, depende de fatores contextuais. Além disso, avaliarei a pertinência das objeções de Philip Kitcher e Wesley Salmon contra a concepção de van Fraassen.
    [Show full text]
  • Empiricism, Stances, and the Problem of Voluntarism
    Swarthmore College Works Philosophy Faculty Works Philosophy 1-1-2011 Empiricism, Stances, And The Problem Of Voluntarism Peter Baumann Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-philosophy Part of the Philosophy Commons Let us know how access to these works benefits ouy Recommended Citation Peter Baumann. (2011). "Empiricism, Stances, And The Problem Of Voluntarism". Synthese. Volume 178, Issue 1. 27-36. DOI: 10.1007/s11229-009-9519-7 https://works.swarthmore.edu/fac-philosophy/13 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Philosophy Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Empiricism, Stances and the Problem of Voluntarism Peter Baumann Synthese 178, 2011, 207-224 Empiricism can be very roughly characterized as the view that our knowledge about the world is based on sensory experience. Our knowledge about the world is "based" on sensory experience in the sense that we could not know what we know without relying on sense experience. This leaves open the possibility that sense experience is only necessary but not sufficient for the knowledge based upon it1-as long as the non-empirical elements are not themselves sufficient for the relevant piece of knowledge.2 The basing relation is not just a genetic one but also a justificatory one: Sense experience does not only lead to beliefs which happen to count as knowledge but also qualifies them as knowledge. In his important book The Empirical Stance Bas van Fraassen characterizes traditional empiricism at one point in a more negative way-as involving the rejection of "metaphysical" explanations which proceed by postulating the existence of something not 1 "But although all our cognition commences with experience, yet it does not on that account all arise from experience." (Kant, CpR, B1).
    [Show full text]
  • Philosophical Adventures
    Philosophical Adventures Elisabeth A. Lloyd INDIANA UNIVERSITY John Dewey lecture delivered at the one hundred tenth annual Central Division meeting of the American Philosophical Association in New Orleans, Louisiana, on February 21, 2013. I had the lovely opportunity of being introduced by Alison Wylie, to whom I owe a large thank you, and thank you especially to Anne Jacobson, and the whole program committee, for this chance to share a bit of my life and career with you. This invitation charged that I was to give an “autobiographical sort” of talk. Specifically, it required the speaker to provide “an intellectual autobiography, with perhaps some account of the way in which [she] was shaped by or shaped the profession, how the profession seems to have changed over the years, etc. The lecturer might reflect on the people and issues that led [her] into philosophy and provide a personal perspective on the state of the field today.” I tried to stick pretty closely to this mandate. Over the course of my career, which is now—although I find this astounding—over thirty years long, I have had the great pleasure of seeing my primary field of research grow and establish itself as a serious field of thought and activity in philosophy. When I was in graduate school at Princeton in the early 1980s, I was told, and I quote, “there is no such thing as Philosophy of Biology. You can’t write a dissertation on that.” And John Beatty wrote that same year: “In the world of academic specialties and subspecialties, philosophy of biology certainly counts as a self-respecting, if not otherwise respected, field of study.”1 It is impossible to imagine anyone saying that now! Five years later, I was also told that feminist philosophy of science was hopeless, that there were no good cases of male bias in science worth discussing, and that since science was self- correcting, those sorts of bias couldn’t have any long-term significance.
    [Show full text]
  • 1 a Tale of Two Interpretations
    Notes 1 A Tale of Two Interpretations 1. As Georges Dicker puts it, “Hume’s influence on contemporary epistemology and metaphysics is second to none ... ” (1998, ix). Note, too, that Hume’s impact extends beyond philosophy. For consider the following passage from Einstein’s letter to Moritz Schlick: Your representations that the theory of rel. [relativity] suggests itself in positivism, yet without requiring it, are also very right. In this also you saw correctly that this line of thought had a great influence on my efforts, and more specifically, E. Mach, and even more so Hume, whose Treatise of Human Nature I had studied avidly and with admiration shortly before discovering the theory of relativity. It is very possible that without these philosophical studies I would not have arrived at the solution (Einstein 1998, 161). 2. For a brief overview of Hume’s connection to naturalized epistemology, see Morris (2008, 472–3). 3. For the sake of convenience, I sometimes refer to the “traditional reading of Hume as a sceptic” as, e.g., “the sceptical reading of Hume” or simply “the sceptical reading”. Moreover, I often refer to those who read Hume as a sceptic as, e.g., “the sceptical interpreters of Hume” or “the sceptical inter- preters”. By the same token, I sometimes refer to those who read Hume as a naturalist as, e.g., “the naturalist interpreters of Hume” or simply “the natu- ralist interpreters”. And the reading that the naturalist interpreters support I refer to as, e.g., “the naturalist reading” or “the naturalist interpretation”. 4. This is not to say, though, that dissenting voices were entirely absent.
    [Show full text]
  • Bas Van Fraassen, Scientific Representation, Oxford: Oxford University Press, 2008
    VAN FRAASSEN’S LONG JOURNEY FROM ISOMORPHISM TO USE Mauricio Suárez (May 20, 2009. Forthcoming in Metascience.) Bas Van Fraassen, Scientific Representation, Oxford: Oxford University Press, 2008. Pp. Xiv + 408. Scientific Representation is the latest stage in Bas Van Fraassen’s sustained and profound defence of empiricism against scientific realism over the years. It is a long and demanding book. It aims to give an account of how science represents reality, and is comprised of four parts, discussing the nature of representation, measurement, structure and perspective, and the relation of appearance to reality. The book’s key message could be lost in the otherwise engaging and interesting details (many of which relate to quantum mechanics but there is unfortunately not enough space to discuss them here). It may be summarised as follows: ‘constructive empiricism’ – the antirealist view first defended in the celebrated The Scientific Image (1980) – needs to be modified in some substantial ways to make room for an appropriate notion of representation. The modification yields ‘empiricist structuralism’ or, as I shall call it, ‘structural empiricism’. The shift is meant to preserve the central epistemic commitments of the old view while bringing in some new advantages. Van Fraassen provides reasons for the change; and he offers arguments for the new position. But like any shift this is a gamble. If the reasons for change are convincing but the arguments for the alternative are not, we end up in no man’s land. Or in someone else’s land. I think we end up in the land of pragmatism. A good way to express the reasons for change is by reference to an old paper of mine discussed critically in what appear to be two key passages of the book (Van Fraassen 2008: 25-26 and 247-250).
    [Show full text]
  • Loop Quantum Gravity
    QUANTUM GRAVITY Loop gravity combines general relativity and quantum theory but it leaves no room for space as we know it – only networks of loops that turn space–time into spinfoam Loop quantum gravity Carlo Rovelli GENERAL relativity and quantum the- ture – as a sort of “stage” on which mat- ory have profoundly changed our view ter moves independently. This way of of the world. Furthermore, both theo- understanding space is not, however, as ries have been verified to extraordinary old as you might think; it was introduced accuracy in the last several decades. by Isaac Newton in the 17th century. Loop quantum gravity takes this novel Indeed, the dominant view of space that view of the world seriously,by incorpo- was held from the time of Aristotle to rating the notions of space and time that of Descartes was that there is no from general relativity directly into space without matter. Space was an quantum field theory. The theory that abstraction of the fact that some parts of results is radically different from con- matter can be in touch with others. ventional quantum field theory. Not Newton introduced the idea of physi- only does it provide a precise mathemat- cal space as an independent entity ical picture of quantum space and time, because he needed it for his dynamical but it also offers a solution to long-stand- theory. In order for his second law of ing problems such as the thermodynam- motion to make any sense, acceleration ics of black holes and the physics of the must make sense.
    [Show full text]