Audio- Video- Image File Formats.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supported File Types
MyFax Supported File Formats Document Type Versions Extensions Adobe Portable Document Format (PDF) All Versions PDF Adobe Postscript All Versions PS Adobe Photoshop v. 3.0 and above PSD Amiga Interchange File Format (IFF) Raster Bitmap only IFF CAD Drawing Exchange Format (DXF) All AutoCad compatible versions DXF Comma Separated Values Format All Versions CSV Compuserve Graphics Interchange Format GIF87a, GIF89a GIF Corel Presentations Slide Show v. 96 and above SHW Corel Word Perfect v. 5.x. 6, 7, 8, 9 WPD, WP5, WP6 Encapsulated Postscript All Versions EPS Hypertext Markup Language HTML only with base href tag required HTML, HTM JPEG Joint Photography Experts Group All Versions JPG, JPEG Lotus 1-2-3 v. 2, 3, 4, 5, 96, 97, 9.x 123, WK1, WK3, WK4 Lotus Word Pro v. 96, 97, 9.x LWP Microsoft Excel v. 5, 95, 97, 2000, 2003, 2007 XLS, XLSX Microsoft PowerPoint v. 4 and above PPT, PPTX Microsoft Publisher v. 98, 2000, 2002, 2003, 2007 PUB Microsoft Windows Write All Versions WRI Microsoft Word Win: v. 97, 2000, 2003, 2007 Mac: v. 4, 5.x, 95, 98 DOC, DOCX Microsoft Word Template Win: v. 97, 2000, 2003, 2007 Mac: v. 4, 5.x, 95, 98 DOT, DOTX Microsoft Works Word Processor v. 4.x, 5, 6, 7, 8.x, 9 WPS OpenDocument Drawing All Versions ODG OpenDocument Presentation All Versions ODP OpenDocument Spreadsheet All Versions ODS OpenDocument Text All Versions ODT PC Paintbrush Graphics (PCX) All Versions PCX Plain Text All Versions TXT, DOC, LOG, ERR, C, CPP, H Portable Network Graphics (PNG) All Versions PNG Quattro Pro v. -
XMP SPECIFICATION PART 3 STORAGE in FILES Copyright © 2016 Adobe Systems Incorporated
XMP SPECIFICATION PART 3 STORAGE IN FILES Copyright © 2016 Adobe Systems Incorporated. All rights reserved. Adobe XMP Specification Part 3: Storage in Files NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated. Adobe, the Adobe logo, Acrobat, Acrobat Distiller, Flash, FrameMaker, InDesign, Illustrator, Photoshop, PostScript, and the XMP logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Apple, Macintosh, Mac OS and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and other countries. UNIX is a trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of their respective owners. This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights. Contents 1 Embedding XMP metadata in application files . -
Microsoft Powerpoint
Development of Multimedia WebApp on Tizen Platform 1. HTML Multimedia 2. Multimedia Playing with HTML5 Tags (1) HTML5 Video (2) HTML5 Audio (3) HTML Pulg-ins (4) HTML YouTube (5) Accessing Media Streams and Playing (6) Multimedia Contents Mgmt (7) Capturing Images 3. Multimedia Processing Web Device API Multimedia WepApp on Tizen - 1 - 1. HTML Multimedia • What is Multimedia ? − Multimedia comes in many different formats. It can be almost anything you can hear or see. − Examples : Pictures, music, sound, videos, records, films, animations, and more. − Web pages often contain multimedia elements of different types and formats. • Multimedia Formats − Multimedia elements (like sounds or videos) are stored in media files. − The most common way to discover the type of a file, is to look at the file extension. ⇔ When a browser sees the file extension .htm or .html, it will treat the file as an HTML file. ⇔ The .xml extension indicates an XML file, and the .css extension indicates a style sheet file. ⇔ Pictures are recognized by extensions like .gif, .png and .jpg. − Multimedia files also have their own formats and different extensions like: .swf, .wav, .mp3, .mp4, .mpg, .wmv, and .avi. Multimedia WepApp on Tizen - 2 - 2. Multimedia Playing with HTML5 Tags (1) HTML5 Video • Some of the popular video container formats include the following: Audio Video Interleave (.avi) Flash Video (.flv) MPEG 4 (.mp4) Matroska (.mkv) Ogg (.ogv) • Browser Support Multimedia WepApp on Tizen - 3 - • Common Video Format Format File Description .mpg MPEG. Developed by the Moving Pictures Expert Group. The first popular video format on the MPEG .mpeg web. -
On Audio-Visual File Formats
On Audio-Visual File Formats Summary • digital audio and digital video • container, codec, raw data • different formats for different purposes Reto Kromer • AV Preservation by reto.ch • audio-visual data transformations Film Preservation and Restoration Hyderabad, India 8–15 December 2019 1 2 Digital Audio • sampling Digital Audio • quantisation 3 4 Sampling • 44.1 kHz • 48 kHz • 96 kHz • 192 kHz digitisation = sampling + quantisation 5 6 Quantisation • 16 bit (216 = 65 536) • 24 bit (224 = 16 777 216) • 32 bit (232 = 4 294 967 296) Digital Video 7 8 Digital Video Resolution • resolution • SD 480i / SD 576i • bit depth • HD 720p / HD 1080i • linear, power, logarithmic • 2K / HD 1080p • colour model • 4K / UHD-1 • chroma subsampling • 8K / UHD-2 • illuminant 9 10 Bit Depth Linear, Power, Logarithmic • 8 bit (28 = 256) «medium grey» • 10 bit (210 = 1 024) • linear: 18% • 12 bit (212 = 4 096) • power: 50% • 16 bit (216 = 65 536) • logarithmic: 50% • 24 bit (224 = 16 777 216) 11 12 Colour Model • XYZ, L*a*b* • RGB / R′G′B′ / CMY / C′M′Y′ • Y′IQ / Y′UV / Y′DBDR • Y′CBCR / Y′COCG • Y′PBPR 13 14 15 16 17 18 RGB24 00000000 11111111 00000000 00000000 00000000 00000000 11111111 00000000 00000000 00000000 00000000 11111111 00000000 11111111 11111111 11111111 11111111 00000000 11111111 11111111 11111111 11111111 00000000 11111111 19 20 Compression Uncompressed • uncompressed + data simpler to process • lossless compression + software runs faster • lossy compression – bigger files • chroma subsampling – slower writing, transmission and reading • born -
SA1OPS English User Manual
Register your product and get support at www.philips.com/welcome SA1OPS08 SA1OPS16 SA1OPS32 EN User manual Select files and playlists for manual Contents sync 15 Copy files from GoGear Opus to your computer 16 English 1 Important safety information 3 WMP11 playlists 16 General maintenance 3 Create a regular playlist 16 Recycling the product 4 Create an auto playlist 16 Edit playlist 17 2 Your new GoGear Opus 6 Transfer playlists to GoGear Opus 17 What’s in the box 6 Search for music or pictures with WMP11 17 Delete files and playlists from WMP11 3 Getting started 7 library 17 Overview of the controls and Delete files and playlists from GoGear connections 7 Opus 18 Overview of the main menu 7 Edit song information with WMP11 18 Install software 8 Format GoGear Opus with WMP11 19 Connect and charge 8 Connect GoGear Opus to a computer 8 6 Music 20 Battery level indication 8 Listen to music 20 Battery level indication 9 Find your music 20 Disconnect GoGear Opus safely 9 Delete music tracks 20 Turn GoGear Opus on and off 9 Automatic standby and shut-down 9 7 Audiobooks 21 Add audiobooks to GoGear Opus 21 4 Use GoGear Opus to carry files 10 Audiobook controls 21 Select audiobook by book title 21 Adjust audiobook play speed 22 5 Windows Media Player 11 Add a bookmark in an audiobook 22 (WMP11) 11 Find a bookmark in an audiobook 22 Install Windows Media Player 11 Delete a bookmark in an audiobook 22 (WMP11) 11 Transfer music and picture files to WMP11 library 11 8 Video 23 Switch between music and pictures Download, convert and transfer library -
File Formats
Electronic Records Management Guidelines - File Formats Rapid changes in technology mean that file formats can become obsolete quickly and cause problems for your records management strategy. A long-term view and careful planning can overcome this risk and ensure that you can meet your legal and operational requirements. Legally, your records must be authentic, complete, accessible, legally admissible in court, and durable for as long as your approved records retention schedules require. For example, you can convert a record to another, more durable format (e.g., from a nearly obsolete software program to a text file). That copy, as long as it is created in a trustworthy manner, is legally acceptable. The software in which a file is created usually has a default format, often indicated by a file name suffix (e.g., *.PDF for portable document format). Most software allows authors to select from a variety of formats when they save a file (e.g., document [DOC], Rich Text Format [RTF], text [TXT] in Microsoft Word). Some software, such as Adobe Acrobat, is designed to convert files from one format to another. Legal Framework: Key Concepts As you consider the file format options available to you, you will need to be familiar with the following concepts: Proprietary and non-proprietary file formats File format types Preservation: conversion and migration Compression Importance of planning File Format Decisions and Electronic Records Management Goals Proprietary and Non-proprietary File Formats A file format is usually described as either proprietary or non-proprietary: Proprietary formats. Proprietary file formats are controlled and supported by just one software developer, or can only be read by a limited number of other programs. -
(A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format. -
Ogg Audio Codec Download
Ogg audio codec download click here to download To obtain the source code, please see the xiph download page. To get set up to listen to Ogg Vorbis music, begin by selecting your operating system above. Check out the latest royalty-free audio codec from Xiph. To obtain the source code, please see the xiph download page. Ogg Vorbis is Vorbis is everywhere! Download music Music sites Donate today. Get Set Up To Listen: Windows. Playback: These DirectShow filters will let you play your Ogg Vorbis files in Windows Media Player, and other OggDropXPd: A graphical encoder for Vorbis. Download Ogg Vorbis Ogg Vorbis is a lossy audio codec which allows you to create and play Ogg Vorbis files using the command-line. The following end-user download links are provided for convenience: The www.doorway.ru DirectShow filters support playing of files encoded with Vorbis, Speex, Ogg Codecs for Windows, version , ; project page - for other. Vorbis Banner Xiph Banner. In our effort to bring Ogg: Media container. This is our native format and the recommended container for all Xiph codecs. Easy, fast, no torrents, no waiting, no surveys, % free, working www.doorway.ru Free Download Ogg Vorbis ACM Codec - A new audio compression codec. Ogg Codecs is a set of encoders and deocoders for Ogg Vorbis, Speex, Theora and FLAC. Once installed you will be able to play Vorbis. Ogg Vorbis MSACM Codec was added to www.doorway.ru by Bjarne (). Type: Freeware. Updated: Audiotags: , 0x Used to play digital music, such as MP3, VQF, AAC, and other digital audio formats. -
Multimedia Compression Techniques for Streaming
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-12, October 2019 Multimedia Compression Techniques for Streaming Preethal Rao, Krishna Prakasha K, Vasundhara Acharya most of the audio codes like MP3, AAC etc., are lossy as Abstract: With the growing popularity of streaming content, audio files are originally small in size and thus need not have streaming platforms have emerged that offer content in more compression. In lossless technique, the file size will be resolutions of 4k, 2k, HD etc. Some regions of the world face a reduced to the maximum possibility and thus quality might be terrible network reception. Delivering content and a pleasant compromised more when compared to lossless technique. viewing experience to the users of such locations becomes a The popular codecs like MPEG-2, H.264, H.265 etc., make challenge. audio/video streaming at available network speeds is just not feasible for people at those locations. The only way is to use of this. FLAC, ALAC are some audio codecs which use reduce the data footprint of the concerned audio/video without lossy technique for compression of large audio files. The goal compromising the quality. For this purpose, there exists of this paper is to identify existing techniques in audio-video algorithms and techniques that attempt to realize the same. compression for transmission and carry out a comparative Fortunately, the field of compression is an active one when it analysis of the techniques based on certain parameters. The comes to content delivering. With a lot of algorithms in the play, side outcome would be a program that would stream the which one actually delivers content while putting less strain on the audio/video file of our choice while the main outcome is users' network bandwidth? This paper carries out an extensive finding out the compression technique that performs the best analysis of present popular algorithms to come to the conclusion of the best algorithm for streaming data. -
Opus, a Free, High-Quality Speech and Audio Codec
Opus, a free, high-quality speech and audio codec Jean-Marc Valin, Koen Vos, Timothy B. Terriberry, Gregory Maxwell 29 January 2014 Xiph.Org & Mozilla What is Opus? ● New highly-flexible speech and audio codec – Works for most audio applications ● Completely free – Royalty-free licensing – Open-source implementation ● IETF RFC 6716 (Sep. 2012) Xiph.Org & Mozilla Why a New Audio Codec? http://xkcd.com/927/ http://imgs.xkcd.com/comics/standards.png Xiph.Org & Mozilla Why Should You Care? ● Best-in-class performance within a wide range of bitrates and applications ● Adaptability to varying network conditions ● Will be deployed as part of WebRTC ● No licensing costs ● No incompatible flavours Xiph.Org & Mozilla History ● Jan. 2007: SILK project started at Skype ● Nov. 2007: CELT project started ● Mar. 2009: Skype asks IETF to create a WG ● Feb. 2010: WG created ● Jul. 2010: First prototype of SILK+CELT codec ● Dec 2011: Opus surpasses Vorbis and AAC ● Sep. 2012: Opus becomes RFC 6716 ● Dec. 2013: Version 1.1 of libopus released Xiph.Org & Mozilla Applications and Standards (2010) Application Codec VoIP with PSTN AMR-NB Wideband VoIP/videoconference AMR-WB High-quality videoconference G.719 Low-bitrate music streaming HE-AAC High-quality music streaming AAC-LC Low-delay broadcast AAC-ELD Network music performance Xiph.Org & Mozilla Applications and Standards (2013) Application Codec VoIP with PSTN Opus Wideband VoIP/videoconference Opus High-quality videoconference Opus Low-bitrate music streaming Opus High-quality music streaming Opus Low-delay -
Image Data Martin Spitaler
Imperial College London MICROSCOPY DAY 2011: Understanding and handling image data Martin Spitaler Understanding Images (Martin Spitaler) • What’s in an image file: •Pixel data • metadata • Getting the data into the file: Image acquisition • Image file formats • Using images: Image visualisation and presentation Handling Images (Chris Tomlinson & Mark Woodbridge) • Omero image database • Xperimenter experiment annotation system What’s in an image file: Pixel data Pixel (or binary) data with information about the sample • One or more frames of pixels (XY, XZ) • Each frame typically consists of a two-dimensional array of pixel values • Pixel values can be: • light intensity • array of intensities (PALM, STORM) • array of fluorescence lifetimes • in the future: correlated data, e.g. exposure times (CMOS), mass spectra, … • Frames are stacked in one or more specific orders: • Channel (colour, lifetime, …) •Z stack •Time • XY position in a plate MICROSCOPY DAY 2011: Understanding & handling image data Martin Spitaler What’s in an image file: Meta data Meta data make sense of the pixel information • Image type (TIFF, LSM, CXD, …) • pixel dimensions (size, time point, focus position) • Hardware settings: •objective lens • excitation light source: • type (laser, lamp) •intensity • excitation and dichroic filters •… • emission settings: • emission filters • detector gain and offset • pinhole size • sampling speed / exposure time •… MICROSCOPY DAY 2011: Understanding & handling image data Martin Spitaler What’s NOT in an image file: Experimental -
Codec Is a Portmanteau of Either
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.