Identification of Targets of JS-K Against HBV-Positive Human Hepatocellular Carcinoma Hepg2. 2.15 Cells with Itraq Proteomics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R. -
The Future of Dermatopathology
Modern Pathology (2006) 19, S155–S163 & 2006 USCAP, Inc All rights reserved 0893-3952/06 $30.00 www.modernpathology.org The future of dermatopathology A Neil Crowson Departments of Dermatology, Pathology, and Surgery, University of Oklahoma and Regional Medical Laboratory, St John Medical Center, Tulsa, OK, USA Of the major issues that dermatopathology will face in the immediate future, two powerful challenges loom large. The first is the application of novel nondestructive imaging technologies to in vivo diagnosis in humans. The second is the application of molecular technologies to a diagnostic arena which formerly belonged exclusively to the light microscopist. The first to be considered in this context is the application of near infrared spectroscopy to the noninvasive in vivo diagnosis of neoplastic skin disease. The second will be a discussion of application, methodology and the current state of the art in microarray technologies as they apply to neoplastic dermatopathology and, in particular, the diagnosis and prognostication of melanoma. Modern Pathology (2006) 19, S155–S163. doi:10.1038/modpathol.3800513 Keywords: in vivo microscope; tissue microarray; basal cell carcinoma; infrared spectroscopy Noninvasive assessment of skin lesions keratoses and squamous cell carcinomata in vitro. by near infrared (IR) spectroscopy Melanocytic nevi could be subdivided into banal vs dysplastic nevi based upon their spectral differences In the late 1990s, working with Dr Laura McIntosh and melanomas could be separately recognized as and colleagues at the National Research Council of well. Furthermore, the different types of lesion were Canada, the University of Manitoba, Central Medical shown to have distinct mid-IR signatures when Laboratories and the Misericordia General Hospital compared to adjacent normal epidermal and dermal in Winnipeg, Canada, we designed and patented a compartments. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
The Genetics of Bipolar Disorder
Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF. -
A Systems Genetics Approach to Revealing the Pdgfb Molecular Network of the Retina
Molecular Vision 2020; 26:459-471 <http://www.molvis.org/molvis/v26/459> © 2020 Molecular Vision Received 19 November 2019 | Accepted 17 June 2020 | Published 19 June 2020 A systems genetics approach to revealing the Pdgfb molecular network of the retina Shasha Li,1,2 Fuyi Xu,2 Lin Liu,1 Rong Ju,3 Jonas Bergquist,1,4 Qing Yin Zheng,5,6 Jia Mi,1 Lu Lu,2 Xuri Li,3 Geng Tian1 (The first two authors contributed equally to this work.) 1Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, China; 2Department of Genetics, Genomics and informatics, University of Tennessee Health Science Center, Memphis, TN; 3State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China; 4Analytical Chemistry and Neurochemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden; 5Transformative Otology and Neuroscience Center, Case Western Reserve University School of Medicine, Cleveland, OH; 6Departments of Otolaryngology, Case Western Reserve University School of Medicine, Cleveland, OH. Purpose: Platelet-derived growth factor (PDGF) signaling is well known to be involved in vascular retinopathies. Among the PDGF family, the subunit B (PDGFB) protein is considered a promising therapeutic target. This study aimed to identify the genes and potential pathways through which PDGFB affects retinal phenotypes by using a systems genetics approach. Methods: Gene expression data had been previously generated in a laboratory for the retinas of 75 C57BL/6J(B6) X DBA/2J (BXD) recombinant inbred (RI) strains. Using this data, the genetic correlation method was used to identify genes correlated to Pdgfb. A correlation between intraocular pressure (IOP) and Pdgfb was calculated based on the Pearson correlation coefficient. -
Deer Thymosin Beta 10 Functions As a Novel Factor for Angiogenesis And
Zhang et al. Stem Cell Research & Therapy (2018) 9:166 https://doi.org/10.1186/s13287-018-0917-y RESEARCH Open Access Deer thymosin beta 10 functions as a novel factor for angiogenesis and chondrogenesis during antler growth and regeneration Wei Zhang1,2†, Wenhui Chu1,2†, Qingxiu Liu1,2†, Dawn Coates3, Yudong Shang1,2 and Chunyi Li1,2* Abstract Background: Deer antlers are the only known mammalian organ with vascularized cartilage that can completely regenerate. Antlers are of real significance as a model of mammalian stem cell-based regeneration with particular relevance to the fields of chondrogenesis, angiogenesis, and regenerative medicine. Recent research found that thymosin beta 10 (TMSB10) is highly expressed in the growth centers of growing antlers. The present study reports here the expression, functions, and molecular interactions of deer TMSB10. Methods: The TMSB10 expression level in both tissue and cells in the antler growth center was measured. The effects of both exogenous (synthetic protein) and endogenous deer TMSB10 (lentivirus-based overexpression) on antlerogenic periosteal cells (APCs; nonactivated antler stem cells with no basal expression of TMSB10) and human umbilical vein endothelial cells (HUVECs; endothelial cells with no basal expression of TMSB10) were evaluated to determine whether TMSB10 functions on chondrogenesis and angiogenesis. Differences in deer and human TMSB10 in angiogenesis and molecular structure were determined using animal models and molecular dynamics simulation, respectively. The molecular mechanisms underlying deer TMSB10 in promoting angiogenesis were also explored. Results: Deer TMSB10 was identified as a novel proangiogenic factor both in vitro and in vivo. Immunohistochemistry revealed that TMSB10 was widely expressed in the antler growth center in situ, with the highest expression in the reserve mesenchyme, precartilage, and transitional zones. -
Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo -
RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies
RESEARCH ARTICLE RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies Chanchal Mandal1, Sun Hwa Kim1, Jin Choul Chai1, Seon Mi Oh1, Young Seek Lee1, Kyoung Hwa Jung2*, Young Gyu Chai1,3* 1 Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea, 2 Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea, 3 Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea * [email protected] (YGC); [email protected] (KHJ) Abstract Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associ- OPEN ACCESS ated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well Citation: Mandal C, Kim SH, Chai JC, Oh SM, Lee characterized. In this present study, our aim is to profile important genes that regulate cellu- YS, Jung KH, et al. (2016) RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in lar development during fetal development. Human embryonic carcinoma cells (NCCIT) are Ethanol-Treated Embryoid Bodies. PLoS ONE 11(3): cultured to form embryoid bodies and then treated in the presence and absence of ethanol e0149976. doi:10.1371/journal.pone.0149976 (50 mM). We employed RNA sequencing to profile differentially expressed genes in the eth- Editor: Shihui Yang, National Renewable Energy anol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB Lab, UNITED STATES +EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified Received: July 13, 2015 from NCCIT vs. -
The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem. -
Dissecting Heterogeneous Cell Populations Across Drug and Disease Conditions with Popalign
Dissecting heterogeneous cell populations across drug and disease conditions with PopAlign Sisi Chena,b,1 , Paul Rivauda,b , Jong H. Parka,b, Tiffany Tsoua,b , Emeric Charlesc, John R. Haliburtond, Flavia Pichiorrie, and Matt Thomsona,b,1 aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125; bBeckman Center for Single-Cell Profiling and Engineering, California Institute of Technology, Pasadena, CA 91125; cDepartment of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; dAugmenta Bioworks Inc., Menlo Park, CA 94025; and eDepartment of Hematologic Malignancies Translational Science, City of Hope, Monrovia, CA 91016 Edited by Jonathan S. Weissman, University of California, San Francisco, CA, and approved September 25, 2020 (received for review March 31, 2020) Single-cell measurement techniques can now probe gene expres- The key conceptual advance underlying PopAlign is repre- sion in heterogeneous cell populations from the human body sentational: we model the distribution of gene-expression states across a range of environmental and physiological conditions. within a heterogeneous cell population using a probabilistic However, new mathematical and computational methods are mixture model that we infer from single-cell data. PopAlign required to represent and analyze gene-expression changes that identifies and represents subpopulations of cells as indepen- occur in complex mixtures of single cells as they respond to sig- dent Gaussian densities within a reduced -
Chemical Proteomics Reveal CD147 As a Functional Target of Pseudolaric
Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017 Electronic Supplementary Material (ESI) for Chemical proteomics reveal CD147 as a functional target of pseudolaric acid B in human cancer cells Yiqing Zhou,a Zhengao Di,a Xiaoming Li,bc Yuanhong Shan,d Weichao Li,a Haibing Zhang,b and Youli Xiao*acd aCAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China bInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China cUniversity of Chinese Academy of Sciences, Beijing, 100039, China dCore Facility Centre of the Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China 1 Table of Contents 1. Chemistry Pages 3-5 1.1 Synthesis of PAB-Dayne Page 3 Fig. S1 1H-NMR and 13C-NMR data of PAB-Dayne Page 3 1.2 Synthesis of Dead-Dayne Page 4 Fig. S2 1H-NMR and 13C-NMR data of Dead-Dayne Page 5 2. Biological experiments Pages 6-15 2.1 Labeling of purified porcine brain tubulin Page 6 Fig. S3 Dose-dependent labeling of tubulin by PAB-Dayne. Page 6 2.2 Cell proliferation assay Page 6 Table S1 IC50 values of PAB and probes towards HeLa cells. Page 7 2.3 Gel-based AfBPP in HeLa cells Page 7 Fig. S4 Full imaging of gels in Figure 2A. Page 7 2.4 Microscopy Page 7 2.5 Mass spectrometry-based AfBPP in HeLa cells Page 8 2.6 Target validation by pull-down and western blot Page 9 2.7 Labeling of recombinant CD147/CD98 proteins Page 9 2.8 Disruption of CD147 oligomerization by PAB Page 10 2.9 Binding site identification Page 10 Fig. -
Robust Hypergraph Regularized Non-Negative Matrix Factorization for Sample Clustering and Feature Selection in Multi-View Gene E
Yu et al. Human Genomics 2019, 13(Suppl 1):46 https://doi.org/10.1186/s40246-019-0222-6 RESEARCH Open Access Robust hypergraph regularized non- negative matrix factorization for sample clustering and feature selection in multi- view gene expression data Na Yu1, Ying-Lian Gao2, Jin-Xing Liu1*, Juan Wang1* and Junliang Shang1 From IEEE International Conference on Bioinformatics and Biomedicine 2018 Madrid, Spain. 3-6 December 2018 Abstract Background: As one of the most popular data representation methods, non-negative matrix decomposition (NMF) has been widely concerned in the tasks of clustering and feature selection. However, most of the previously proposed NMF-based methods do not adequately explore the hidden geometrical structure in the data. At the same time, noise and outliers are inevitably present in the data. Results: To alleviate these problems, we present a novel NMF framework named robust hypergraph regularized non-negative matrix factorization (RHNMF). In particular, the hypergraph Laplacian regularization is imposed to capture the geometric information of original data. Unlike graph Laplacian regularization which captures the relationship between pairwise sample points, it captures the high-order relationship among more sample points. Moreover, the robustness of the RHNMF is enhanced by using the L2,1-norm constraint when estimating the residual. This is because the L2,1-norm is insensitive to noise and outliers. Conclusions: Clustering and common abnormal expression gene (com-abnormal expression gene) selection are conducted to test the validity of the RHNMF model. Extensive experimental results on multi-view datasets reveal that our proposed model outperforms other state-of-the-art methods.