Chemical Proteomics Reveal CD147 As a Functional Target of Pseudolaric

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Proteomics Reveal CD147 As a Functional Target of Pseudolaric Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017 Electronic Supplementary Material (ESI) for Chemical proteomics reveal CD147 as a functional target of pseudolaric acid B in human cancer cells Yiqing Zhou,a Zhengao Di,a Xiaoming Li,bc Yuanhong Shan,d Weichao Li,a Haibing Zhang,b and Youli Xiao*acd aCAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China bInstitute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China cUniversity of Chinese Academy of Sciences, Beijing, 100039, China dCore Facility Centre of the Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China 1 Table of Contents 1. Chemistry Pages 3-5 1.1 Synthesis of PAB-Dayne Page 3 Fig. S1 1H-NMR and 13C-NMR data of PAB-Dayne Page 3 1.2 Synthesis of Dead-Dayne Page 4 Fig. S2 1H-NMR and 13C-NMR data of Dead-Dayne Page 5 2. Biological experiments Pages 6-15 2.1 Labeling of purified porcine brain tubulin Page 6 Fig. S3 Dose-dependent labeling of tubulin by PAB-Dayne. Page 6 2.2 Cell proliferation assay Page 6 Table S1 IC50 values of PAB and probes towards HeLa cells. Page 7 2.3 Gel-based AfBPP in HeLa cells Page 7 Fig. S4 Full imaging of gels in Figure 2A. Page 7 2.4 Microscopy Page 7 2.5 Mass spectrometry-based AfBPP in HeLa cells Page 8 2.6 Target validation by pull-down and western blot Page 9 2.7 Labeling of recombinant CD147/CD98 proteins Page 9 2.8 Disruption of CD147 oligomerization by PAB Page 10 2.9 Binding site identification Page 10 Fig. S5 Amino acid sequence of human CD147 isoform 2 Page 11 2.10 Western blot analysis of expression level of MMPs upon PAB treatment Page 11 2.11 siRNA transfection Page 11 2.12 Molecular modeling Page 11 Fig. S6 Ligand interactions and secondary structure of docking Page 12 2.13 Global proteomic profiling of PAB-treated HeLa cells Page 12 Fig. S7 Gene Ontology (GO) biological processes analysis of over- and Page 13 under-expressed proteins of HeLa cells upon PAB treatment Table S2 Top over- and under-expressed proteins upon PAB treatment Page 14 3. Quantitative data of proteomic studies Pages 16-22 Table S3 Proteins identified from the pull-down/LC-MS experiments. Page 16 Table S4 Global proteomic profiling of PAB-treated HeLa cells. Page 22 4. References Page 23 2 1. Chemistry 1.1 PAB-Dayne Scheme S1 Synthesis of PAB-Dayne. Pseudolaric acid B (7.0 mg, 0.016 mmol) was dissolved in anhydrous CH2Cl2 (3.0 mL), and then 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) (4.8 mg, 0.025 mmol), hydroxyl-benzotriazole (HOBt) (5.5 mg, 0.041 mmol), and N,N-diisopropyl-ethylamine (DIPEA) (6.7 µl, 0.038 mmol) were added into the solution. After 1 hour stirring, 2-(3-(but-3-yn-1-yl)-3H-diazirin-3-yl)ethan-1-amine (2.9 mg, 0.021 mmol)[1] was added to the reaction mixture followed by reaction at room temperature for another 3.5 h in the dark. The mixture was washed with saturated Na2CO3, 1N HCl and brine. The organic layer was dried by anhydrous Na2SO4, filtered and concentrated. The crude product was purified by HPLC to provide the desired product PAB-Dayne (7.2 mg, 80.6% yield). 1 H NMR (400 MHz, CDCl3) δ 7.26-7.20 (m, 1H), 6.96 (d, J = 11.4 Hz, 1H), 6.51 (dd, J = 15.0, 11.3 Hz, 1H), 5.83 (d, J = 15.0 Hz, 1H), 3.72 (s, 3H), 3.29 (d, J = 5.4 Hz, 1H), 3.20 (q, J = 6.4 Hz, 2H), 3.08 (dd, J = 14.3, 6.4 Hz, 1H), 2.89 (dd, J = 15.6, 6.3 Hz, 1H), 2.75 (dd, J = 15.1, 8.8 Hz, 1H), 2.64 - 2.58 (m, 1H), 2.19-2.10 (m, 4H), 2.04 (dd, J = 7.2, 2.6 Hz, 2H), 1.99 (s, 3H), 1.85-1.71 (m, 7H), 13 1.66 (t, J = 7.1 Hz, 3H). C NMR (100 MHz, CDCl3) 173.0, 169.4, 168.6, 168.1, 142.5, 141.7, 134.5, 132.8, 130.6, 121.4, 90.1, 83.8, 82.7, 77.2, 69.4, 55.2, 52.1, 49.4, 34.8, 33.3, 32.4, 32.1, 30.7, + 29.7, 28.6, 27.8, 24.3, 21.8, 20.2, 13.2; HRMS-ESI calcd. for C30H38N3O7 [M+H] : 552.2710; Found: 552.2704 3 Fig. S1 1H-NMR and 13C-NMR data of PAB-Dayne. 1.2 Dead-Dayne Scheme S2 Synthesis of Dead-Dayne. To a solution of cyclohexane carboxylic acid (13 mg, 1.2 eq) dissolved in DCM (3.0 mL) in ice bath was added 1-(3-dimethyl -aminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) (20 mg, 1.2 eq), hydroxyl -benzotriazole (HOBt) (14 mg, 1.2 eq), and N,N-diisopropyl-ethylamine (DIPEA) (18 L, 1.2 eq). After stirring for 5 min, 2-(2-azidoethyl)-2-(but-3-ynyl)-1,3-dioxolane (10 mg, 1 eq) was added to the reaction mixture. The resulting solution was warmed to room temperature slowly and stirred for overnight. The reaction mixture was diluted with EtOAc (30 mL), washed with 1 N HCl, saturated NaHCO3, brine, and dried over anhydrous Na2SO4, filtered and concentrated. Purification by flash chromatography column afforded the product Dead-Dayne (16 mg, 90% yield). 1 H NMR (500 MHz, CDCl3) δ 5.55 (s, 1H), 3.11 (q, J = 6.4, 5.8 Hz, 2H), 2.11-1.99 (m, 4H), 1.91-1.77 (m, 4H), 1.72-1.65 (m, 4H), 1.48-1.37 (m, 2H), 1.34-1.27 (m, 4H). 13C NMR (125 MHz, CDCl3) δ 176.08, 82.69, 69.35, 45.52, 34.17, 32.52, 32.19, 29.70, 29.63, 26.91, 25.74, 13.22. + HRMS-ESI calcd. for C14H22N3O [M+H] : 248.1685; Found: 248.1608. 4 Fig. S2 1H-NMR and 13C-NMR data of Dead-Dayne. 5 2. Biological experiments 2.1 Labeling of purified porcine brain tubulin Purified porcine brain tubulin (Cytoskeleton, Inc.) was diluted to a final concentration of 0.1 mg/mL in PBS and incubated with probes as indicated for 30 minutes at room temperature. Samples were transferred to 96-well plate in a same line and irradiated with UV (365 nm, 8 Watt) on ice for 20 minutes. Each of 20 L protein samples were transferred to 0.6 mL tube and added with 1% SDS and fresh prepared 0.25 L each of TAMRA-N3 (10 mM stock in DMSO, Lumiprobe), CuSO4 (100 mM stock in H2O, Sigma), THPTA (Tris(3-hydroxypropyltriazolylmethyl)amine, 10 mM stock in H2O, Sigma) and sodium ascorbate (100 mM stock in H2O). The samples were incubated at room temperature for 1 h and the reaction was quenched by boiling in 5 L of SDS-PAGE loading buffer. 20 L of each sample was applied to SDS-PAGE and detected by FUJIFILM FLA 9000 plus DAGE fluorescence scanner. Finally the gel was visualized by coomassie blue staining. Fig. S3 Dose-dependent labeling of tubulin by PAB-Dayne. 2.2 Cell proliferation assay Human cervical carcinoma HeLa cell line was grown in DMEM (Dulbecco's Modified Eagle Medium, Gibco) supplemented with 1% L-Glutamine, 1% Penicillin-Streptomycin and 10% Fetal Bovine Serum (FBS, Gibco). The culture incubator set is 37 ºC with 5% CO2. HeLa cells cultured for three passages were diluted in respective culture medium to 8000 cells/mL. 100 L of cell suspension were seeded to each well of 96-well plate and incubated at 37 ºC overnight. Various concentrations of compounds (PAB, PAB-Dayne, and Dead-Dayne) were dissolved in culture medium containing 0.5% DMSO. Cells in 96-well plate were treated with 100 µL of various concentrations of compounds and DMSO (negative control) for 48 hours in a 37 ºC incubator. Cell viability was assessed by CellTiter-Glo® Luminescent Kit (Promega). 6 Table S1. IC50 values of PAB and probes towards HeLa cells. Compound IC50 (M) PAB 0.35 ± 0.03 PAB-Dayne 1.17 ± 0.06 Dead-Dayne > 100 2.3 Gel-based affinity-based protein profiling in HeLa cells HeLa cells were grown in culture medium until 90% confluence. The medium was removed and cells were incubated respectively with Dead-Dayne (10 M), PAB-Dayne (10 M), and PAB-Dayne (10 M) with excess PAB (50 M) for 3 hours. The medium was aspirated, and cells were washed three times with ice-cold PBS to remove the excessive probe followed by UV irradiation (365 nm, 8 watt) for 20 min on ice. The cells were harvested by scraping the cells in ice-cold lysis buffer (50 mM HEPES pH 8.0, 150 mM NaCl, 0.1 mM EDTA, 0.1% Triton X-100 and complete protease inhibitors). The lysed cells were centrifuged at 14000 g for 5 minutes and the soluble fractions were diluted to 2 mg/mL with lysis buffer. 1% SDS (w/v) was added to each sample and click reaction was performed as below: for each reaction, 20 L of protein samples were added to freshly prepared 0.25 L each of TAMRA-N3 (10 mM), CuSO4 (100 mM), THPTA (10 mM) and NaVc (100 mM).
Recommended publications
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs of this journey. iv EPIGRAPH It is foolish to tear one's hair in grief, as though sorrow would be made less by baldness. ~Cicero v TABLE OF CONTENTS Signature Page .............................................................................................................. iii Dedication ....................................................................................................................
    [Show full text]
  • In Vitro Differentiation of Bone Marrow Mesenchymal Stem Cells Into Endometrial Epithelial Cells in Mouse: a Proteomic Analysis
    Int J Clin Exp Pathol 2014;7(7):3662-3672 www.ijcep.com /ISSN:1936-2625/IJCEP0000322 Original Article In vitro differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mouse: a proteomic analysis Qing Cong1,2, Bin Li1,2, Yisheng Wang1,2, Wenbi Zhang1,2, Mingjun Cheng1,2, Zhiyong Wu1,2, Xiaoyan Zhang1,2, Wei Jiang1,2, Congjian Xu1,2,3,4 1Obstetrics and Gynecology Hospital of Fudan University, 2Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 3Department of Obstetrics and Gynecology of Shanghai Medical School, 4Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China Received March 24, 2014; Accepted June 23, 2014; Epub June 15, 2014; Published July 1, 2014 Abstract: Objective: Mouse bone marrow mesenchymal stem cells (BMSCs) have been demonstrated to differenti- ate into female endometrial epithelial cells (EECs) in vivo. Our previous studies demonstrated that BMSCs can differentiate in the direction of EECs when co-cultured with endometrial stromal cells in vitro. Here, we obtain and analyse differential proteins and their relevant pathways in the process of BMSCs differentiating into EECs by iso- baric tags for relative and absolute quantitation (iTRAQ) proteomic analysis. Methods: A 0.4-µm pore size indirect co- culture system was established with female mice endometrial stromal cells (EStCs) restricted in the upper Transwell chamber and BMSCs in the lower well plate. After indirect co-culture for several days, the BMSCs were revealed to progressively differentiate towards EECs in vitro. Then, four groups were divided according to different co-culture days with single culture groups of BMSCs as controls.
    [Show full text]
  • Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
    International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R.
    [Show full text]
  • (HMGB1) Deletion Leads to Small Heart and Glycolipid Metabolic
    Yu et al. Cell Death Discovery (2020) 6:106 https://doi.org/10.1038/s41420-020-00340-9 Cell Death Discovery ARTICLE Open Access Cardiomyocyte-restricted high-mobility group box 1 (HMGB1) deletion leads to small heart and glycolipid metabolic disorder through GR/PGC-1α signalling Peng Yu 1, Ming Liu2,BaoliZhang3,YingYu2,EnyongSu3,ShiyaoXie3,LeiZhang3,XueYang3,HongJiang 3, Ruizhen Chen3, Yunzeng Zou3 and Junbo Ge3 Abstract Cardiac growth and remodelling are key biological processes influencing the physiological performance of the heart, and a previous study showed a critical role for intracellular HMGB1 in vitro. However, the in vivo study, which used conditional Hmgb1 ablation, did not show a significant effect on cellular or organic function. We have demonstrated the extracellular effect of HMGB1 as a pro-inflammatory molecule on cardiac remodelling. In this study, we found that HMGB1 deletion by cTnT-Cre in mouse hearts altered glucocorticoid receptor (GR) function and glycolipid metabolism, eventually leading to growth retardation, small heart and heart failure. The subcellular morphology did not show a significant change caused by HMGB1 knockout. The heart showed significant elevation of glycolysis, free fatty acid deposition and related enzyme changes. Transcriptomic analysis revealed a list of differentially expressed genes that coincide with glucocorticoid receptor function in neonatal mice and a significant increase in inflammatory genes in 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; adult mice. Cardiac HMGB1 knockout led to a series of changes in PGC-1α, UCP3 and GyK, which were the cause of metabolic changes and further impacted cardiac function. Ckmm-Cre Hmgb1fl/fl mice did not show a specific phenotype, which was consistent with the reported negative result of cardiomyocyte-specific Hmgb1 deletion via MHC-Cre.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • (KPNA7), a Divergent Member of the Importin a Family of Nuclear Import
    Kelley et al. BMC Cell Biology 2010, 11:63 http://www.biomedcentral.com/1471-2121/11/63 RESEARCH ARTICLE Open Access Karyopherin a7 (KPNA7), a divergent member of the importin a family of nuclear import receptors Joshua B Kelley1, Ashley M Talley1, Adam Spencer1, Daniel Gioeli2, Bryce M Paschal1,3* Abstract Background: Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin a and importin b. NLS cargo is recognized by importin a, which is bound by importin b. Importin b mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin b triggers disassembly of the complex. To date, six importin a family members, encoded by separate genes, have been described in humans. Results: We sequenced and characterized a seventh member of the importin a family of transport factors, karyopherin a 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin b (IBB) is divergent, and shows stronger binding to importin b than the IBB domains from of other importin a family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic. Conclusion: KPNA7 is a novel importin a family member in humans that belongs to the importin a2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin a family.
    [Show full text]
  • The Role of Myc-Induced Protein Synthesis in Cancer
    Published OnlineFirst November 24, 2009; DOI: 10.1158/0008-5472.CAN-09-1970 Review The Role of Myc-Induced Protein Synthesis in Cancer Davide Ruggero School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California Abstract tions and processing by directly controlling the expression of ribo- Deregulation in different steps of translational control is an nucleases, rRNA-modifying enzymes, and nucleolar proteins NPM emerging mechanism for cancer formation. One example of involved in ribosome biogenesis such as nucleophosmin ( ), Nop52, Nop56 DKC1 an oncogene with a direct role in control of translation is , and (Table 1;ref. 16). Furthermore, Myc in- UBF the Myc transcription factor. Myc directly increases protein duces Upstream Binding Factor ( ) expression, which is an es- synthesis rates by controlling the expression of multiple com- sential transcription factor for RNA Pol I-mediated transcription ponents of the protein synthetic machinery, including ribo- (21). It has also been recently shown that a fraction of the Myc somal proteins and initiation factors of translation, Pol III protein is localized in the nucleolus and directly regulates rRNA rDNA and rDNA. However, the contribution of Myc-dependent in- synthesis by binding to E-box elements located in the pro- – creases in protein synthesis toward the multistep process moter (17 19). In addition, it can activate Pol I transcription by rDNA leading to cancer has remained unknown. Recent evidence binding and recruiting to the promoter SL1, which is essen- strongly suggests that Myc oncogenic signaling may monopo- tial for the assembly of the RNA Pol I pre-initiation complex (18).
    [Show full text]
  • Supplementary Information
    SUPPLEMENTARY INFORMATION Myeloperoxidase-derived 2-chlorohexadecanal is generated in mouse heart during endotoxemia and induces modification of distinct cardiomyocyte protein subsets in vitro Jürgen Prasch, Eva Bernhart, Helga Reicher, Manfred Kollroser, Gerald N. Rechberger, Chintan N. Koyani, Christopher Trummer, Lavinia Rech, Peter P. Rainer, Astrid Hammer, Ernst Malle, Wolfgang Sattler Table S1: Biological process gene ontology (GO) enrichment analysis. #term ID term description observed background false discovery matching proteins in network (labels) gene count gene count rate GO:0006457 protein folding 10 153 5.21e-09 Cct3,Cct5,Cct8,Fkbp4,Hsp90aa1,Hsp a1l,Hspb1,Pdia3,Pdia6,Tcp1 GO:0007339 binding of sperm to 6 36 4.02e-07 Aldoa,Cct3,Cct5,Cct8,Hspa1l,Tcp1 zona pellucida GO:0061077 chaperone-mediated 6 60 2.67e-06 Cct3,Cct5,Cct8,Fkbp4,Hspb1,Tcp1 protein folding GO:0017144 drug metabolic process 11 494 4.06e-06 Aldh2,Aldoa,Eno1,Gapdh,Hsp90aa1,I dh3a,Ldha,Ndufs2,Pgam1,Phgdh,Uq crc1 GO:2000573 positive regulation of 6 69 4.16e-06 Cct3,Cct5,Cct8,Ddx39b,Hsp90aa1,Tc DNA biosynthetic p1 process GO:0009987 cellular process 47 12459 4.22e-06 Alad,Alb,Aldh2,Aldoa,Cct3,Cct5,Cct8, Dctn2,Ddx39,Ddx39b,Des,Eef1g,Eef 2,Eif3f,Eif4a2,Eno1,Fdps,Fkbp4,Gap dh,Hnrnpl,Hsp90aa1,Hspa1l,Hspb1,I dh3a,Ldha,Lmna,Lyz1,Ndufs2,Pcna, Pdia3,Pdia6,Pgam1,Phgdh,Prph,Psm d13,Rpsa,Ruvbl2,Tcp1,Tuba3b,Tubal 3,Tubb3,Tubb6,Uap1l1,Uqcrc1,Uqcrc 2,Vim,Ywhab GO:1904851 positive regulation of 4 10 4.22e-06 Cct3,Cct5,Cct8,Tcp1 establishment of protein localization to telomere GO:0046031
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Research Article Association Between Programmed Cell Death 6 Interacting Protein Insertion/Deletion Polymorphism and the Risk Of
    Research Article Association between Programmed Cell Death 6 Interacting Protein Insertion/Deletion Polymorphism and the Risk of Breast Cancer in a Sample of Iranian Population Mohammad Hashemi,1,2 Javad Yousefi,3 Seyed Mehdi Hashemi,3 Shadi Amininia,2 Mahboubeh Ebrahimi,2 Mohsen Taheri,4 and Saeid Ghavami5,6,7 1 Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran 2Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran 3Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran 4Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran 5Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg,MB,CanadaR3E0J9 6Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada R3E 0J9 7Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Correspondence should be addressed to Mohammad Hashemi; [email protected] and Saeid Ghavami; [email protected] Received 13 January 2015; Revised 1 April 2015; Accepted 15 April 2015 Academic Editor: Grant Izmirlian Copyright © 2015 Mohammad Hashemi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. It has been suggested that genetic factors contribute to patients’ vulnerability to breast cancer (BC). The programmed cell death 6 interacting protein (PDCD6IP) encodes for a protein that is known to bind to the products of the PDCD6 gene, which is involved in the apoptosis pathway.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]