Cuttlefish Buoyancy in Response to Food Availability and Ocean Acidification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nautiloid Shell Morphology
MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION -
Imported Food Risk Statement Bivalve Molluscs and Domoic Acid
Imported food risk statement Bivalve molluscs and domoic acid Commodity: Bivalve Molluscs. This includes whole or portions of bivalve molluscs that are fresh, frozen, dried or canned, such as cockles, clams, mussels, oysters and scallops. The following products are excluded and therefore not covered by this risk statement: cephalopod molluscs (e.g. squid, octopus, cuttlefish) and jelly fish marinara mix. Analyte: Domoic acid (DA) Recommendation and rationale Is DA in bivalve molluscs a medium or high risk to public health: Yes No Uncertain, further scientific assessment required Rationale: Consumption of seafood containing DA has resulted in human poisoning incidents and deaths. DA is a potent neurotoxin that causes amnesic shellfish poisoning (ASP) within 24-48 hours following ingestion. There is no antidote for ASP. DA is not destroyed by cooking, freezing or other food processing. General description Nature of the analyte: DA is a water-soluble, non-protein amino acid. It is produced by some marine diatoms of the genus Pseudo- nitzschia spp., which are likely to be present to some extent in most coastal marine environments. Isomers of DA are less toxic. Domoic acid is not reliably destroyed by common cooking methods (Vidal et al. 2009) or by autoclaving (McCarron and Hess 2006). Adverse health effects: DA is a potent neurotoxin that causes amnesic shellfish poisoning (ASP) within 24-48 hours following ingestion. There is no antidote for ASP. Clinical signs of acute DA toxicity (or ASP) are mild gastrointestinal symptoms (vomiting, diarrhoea, and abdominal pain) from an oral dose ranging between 0.9 and 2 mg DA/kg bw. -
Miscellaneous Mollusc Resources of Pacific Islands
SPC/lnshore Fish. Res./WP2 29 February 1988 ORIGINAL : ENGLISH ( Noumea, New Caledonia, 14-25 March 1988) HISCELLANEOUS MOLLUSC RESOURCES OF PACIFIC ISLANDS BY Dr A.D. Lewis Introduction l Molluscs (Phylum Molluscs) we a diverse array of "shellfish", which include bivalves (clams, cockles, oysters, mussels - Class Pelecypoda) ,gastropods ( snails, abalone, seahares- Class Gastropods) and cephalopods (squids, octopus, cuttlefish - Class Cephalopoda). These support large marine fisheries, world landings of molluscs exceeding 6 millions tonnes in 1985 (Anon, 1987) and dominated by cephalopods ( 1.67 million mt,), clams, cockles and arkshells ( 1.6 1 million mt.) and oysters ( 1.03 million mt). 2. Previous sessions at the workshop have considered in detail the molluscs of major commercial importance to Pacific Islands. This include molluscs harvested primarily for Industrial purposes (eg. trochus, green snail and pearl shell, for their nacreous shell interiors) as well as those harvested primarily for human consumption (giant clams). 3. There is in addition, however a wide range of molluscs harvested throughout the Pacific Islands for subsistence purposes and in some cases small scale commercial exploitation. Many are gleaned from a variety of inshore habitats, including mud flats, mangrove roots, sandy beaches, reef flats and rubble areas. These molluscs are commonly collected by women, and have traditionally served as important reserve food sources during times of bad weather or poor line fishing. In (tensely populated atolls, they may become a primary fooAsource, Zann ( 1985) noting that in South Tarawa (Kiribati), landings of three lagoon bivalves exceed that of all finfish combined. 4. Othermoreactivemolluscsaretakenwithluresorbaits(cephalopoda).whilstothers are trawled (scallops). -
Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo -
The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ -
Cephalopoda: Chiroteuthidae) Paralarvae in the Gulf of California, Mexico
Lat. Am. J. Aquat. Res., 46(2): 280-288, 2018 Planctoteuthis paralarvae in the Gulf of California 280 1 DOI: 10.3856/vol46-issue2-fulltext-4 Research Article First record and description of Planctoteuthis (Cephalopoda: Chiroteuthidae) paralarvae in the Gulf of California, Mexico Roxana De Silva-Dávila1, Raymundo Avendaño-Ibarra1, Richard E. Young2 Frederick G. Hochberg3 & Martín E. Hernández-Rivas1 1Instituto Politécnico Nacional, CICIMAR, La Paz, B.C.S., México 2Department of Oceanography, University of Hawaii, Honolulu, USA 3Department of Invertebrate Zoology, Santa Barbara Museum of Natural History Santa Barbara, CA, USA Corresponding author: Roxana De Silva-Dávila ([email protected]) ABSTRACT. We report for the first time the presence of doratopsis stages of Planctoteuthis sp. 1 (Cephalopoda: Chiroteuthidae) in the Gulf of California, Mexico, including a description of the morphological characters obtained from three of the five best-preserved specimens. The specimens were obtained from zooplankton samples collected in oblique Bongo net tows during June 2014 in the southern Gulf of California, Mexico. Chromatophore patterns on the head, chambered brachial pillar, and buccal mass, plus the presence of a structure, possibly a photophore, at the base of the eyes covered by thick, golden reflective tissue are different from those of the doratopsis stages of Planctoteuthis danae and Planctoteuthis lippula known from the Pacific Ocean. These differences suggest Planctoteuthis sp. 1 belongs to Planctoteuthis oligobessa, the only other species known from the Pacific Ocean or an unknown species. Systematic sampling covering a poorly sampled entrance zone of the Gulf of California was important in the collection of the specimens. Keywords: Paralarvae, Planctoteuthis, doratopsis, description, Gulf of California. -
Os Nomes Galegos Dos Moluscos 2020 2ª Ed
Os nomes galegos dos moluscos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos moluscos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"mo uscos"2020.pd# Fotografía: caramuxos riscados (Phorcus lineatus ). Autor: David Vilasís. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . Licenza comp eta: https://creativecommons.org/ icences/%,!nc-nd/-.0/ ega code. anguages. 1 Notas introdutorias O que cont!n este documento Neste recurso léxico fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas) ! primeira edición d" Os nomes galegos dos moluscos é do ano #$%& Na segunda edición (2$#$), adicionáronse algunhas especies, asignáronse con maior precisión algunhas das denominacións vernáculas galegas, corrixiuse algunha gralla, rema'uetouse o documento e incorporouse o logo da (have. )n total, achéganse nomes galegos para *$+ especies de moluscos A estrutura )n primeiro lugar preséntase unha clasificación taxonómica 'ue considera as clases, ordes, superfamilias e familias de moluscos !'uí apúntanse, de maneira xeral, os nomes dos moluscos 'ue hai en cada familia ! seguir -
Molluscs Gastropods
Group/Genus/Species Family/Common Name Code SHELL FISHES MOLLUSCS GASTROPODS Dentalium Dentaliidae 4500 D . elephantinum Elephant Tusk Shell 4501 D . javanum 4502 D. aprinum 4503 D. tomlini 4504 D. mannarense 450A D. elpis 450B D. formosum Formosan Tusk Shell 450C Haliotis Haliotidae 4505 H. varia Variable Abalone 4506 H. rufescens Red Abalone 4507 H. clathrata Lovely Abalone 4508 H. diversicolor Variously Coloured Abalone 4509 H. asinina Donkey'S Ear Abalone 450G H. planata Planate Abalone 450H H. squamata Scaly Abalone 450J Cellana Nacellidae 4510 C. radiata radiata Rayed Wheel Limpet 4511 C. radiata cylindrica Rayed Wheel Limpet 4512 C. testudinaria Common Turtle Limpet 4513 Diodora Fissurellidae 4515 D. clathrata Key-Hole Limpets 4516 D. lima 4517 D. funiculata Funiculata Limpet 4518 D. singaporensis Singapore Key-Hole Limpet 4519 D. lentiginosa 451A D. ticaonica 451B D. subquadrata 451C Page 1 of 15 Group/Genus/Species Family/Common Name Code D. pileopsoides 451D Trochus Trochidae 4520 T. radiatus Radiate Top 4521 T. pustulosus 4522 T. stellatus Stellate Trochus 4523 T. histrio 4524 T. maculatus Maculated Top 452A T. niloticus Commercial Top 452B Umbonium Trochidae 4525 U. vestiarium Common Button Top 4526 Turbo Turbinidae 4530 T. marmoratus Great Green Turban 4531 T. intercostalis Ribbed Turban Snail 4532 T. brunneus Brown Pacific Turban 4533 T. argyrostomus Silver-Mouth Turban 4534 T. petholatus Cat'S Eye Turban 453A Nerita Neritidae 4535 N. chamaeleon Chameleon Nerite 4536 N. albicilla Ox-Palate Nerite 4537 N. polita Polished Nerite 4538 N. plicata Plicate Nerite 4539 N. undata Waved Nerite 453E Littorina Littorinidae 4540 L. scabra Rough Periwinkle 4541 L. -
8 Armed Bandits; a Closer Look at Cephalopods an Educator’S Guide to the Program
8 Armed Bandits; A Closer Look at Cephalopods An Educator’s Guide to the Program Grades K-5 Program Description: This program explores the class of mollusk known as cephalopods. Cephalopods are the most intelligent group of mollusk and most of them lack a shell. The name cephalopod means “head-foot” and contains: octopus, squid, cuttlefish and nautilus. The goal of 8-armed bandits is to teach students the characteristics, defense mechanisms, and extreme intelligence of cephalopods. *Before your class visits the Oklahoma Aquarium* This guide contains information and activities for you to use both before and after your visit to the Oklahoma Aquarium. You may want to read stories about cephalopods and their abilities to the students, present information in class, or utilize some of the activities from this booklet. 1 Table of Contents 8 armed bandits abstract 3 Educator Information 4 Vocabulary 5 Internet resources and books 6 PASS/OK Science standards 7-8 Accompanying Activities Build Your Own squid (K-5) 9 How do Squid Defend Themselves? (K-5) 10 Octopus Arms (K-3) 11 Octopus Math (pre-K-K) 12 Camouflage (K-3) 13 Octopus Puppet (K-3) 14 Hidden animals (K-1) 15 Cephalopod color pages (3) (K-5) 16 Cephalopod Magic (4-5) 19 Nautilus (4-5) 20 2 8 Armed Bandits; A Closer Look at Cephalopods: Abstract Cephalopods are a class of mollusk that are highly intelligent and unlike most other mollusk, they generally lack a shell. There are 85,000 different species of mollusk; however cephalopods only contain octopi, squid, cuttlefish and nautilus. -
Cuttlefish Sepia Officinalis (Mollusca-Cephalopoda)
Journal of Marine Science and Technology, Vol. 22, No. 1, pp. 15-24 (2014) 15 DOI: 10.6119/JMST-013-0820-1 NEUROGENESIS IN CEPHALOPODS: “ECO-EVO-DEVO” APPROACH IN THE CUTTLEFISH SEPIA OFFICINALIS (MOLLUSCA-CEPHALOPODA) Sandra Navet1, Sébastien Baratte2, 3, Yann Bassaglia2, 4, Aude Andouche2, Auxane Buresi2, and Laure Bonnaud1, 2 Key words: nervous system, cephalopods, development, evolution. from developmental processes and have been selected during evolution as they confer an adaptive advantage. In the general concern of Evo-Devo investigations, the ecological dimension ABSTRACT of the development is essential in the light of new knowledge Cephalopods are new evolutionary and ecological models. on genome plasticity [54]. Actually, since development is also By their phylogenetic position (Lophotrochozoa, Mollusca), influenced by non-genetic parameters, as environmental varia- they provide a missing master piece in the whole puzzle of tions or epigenetic processes, the functional and adaptive neurodevelopment studies. Their derived and specific nervous context of organisms to their environment has to be integrated system but also their convergence with vertebrates offer into a new field to study evolution of metazoans, called Eco- abundant materials to question the evolution and development Evo-Devo. of the nervous system of Metazoa (evo-devo studies). In Nervous system (NS) organisation of numerous metazoans addition, their various adaptions to different modes of life is well known but efforts on development are restricted to open new fields of investigation of developmental plasticity chordates and ecdysozoans: the mouse, Drosophila, Caenor- according to ecological context (eco-evo-devo approach). In habditis being the most extensively explored evo-devo models this paper, we review the recent works on cephalopod nervous [2]. -
An Eocene Orthocone from Antarctica Shows Convergent Evolution of Internally Shelled Cephalopods
RESEARCH ARTICLE An Eocene orthocone from Antarctica shows convergent evolution of internally shelled cephalopods Larisa A. Doguzhaeva1*, Stefan Bengtson1, Marcelo A. Reguero2, Thomas MoÈrs1 1 Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden, 2 Division Paleontologia de Vertebrados, Museo de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Background The Subclass Coleoidea (Class Cephalopoda) accommodates the diverse present-day OPEN ACCESS internally shelled cephalopod mollusks (Spirula, Sepia and octopuses, squids, Vampyro- teuthis) and also extinct internally shelled cephalopods. Recent Spirula represents a unique Citation: Doguzhaeva LA, Bengtson S, Reguero MA, MoÈrs T (2017) An Eocene orthocone from coleoid retaining shell structures, a narrow marginal siphuncle and globular protoconch that Antarctica shows convergent evolution of internally signify the ancestry of the subclass Coleoidea from the Paleozoic subclass Bactritoidea. shelled cephalopods. PLoS ONE 12(3): e0172169. This hypothesis has been recently supported by newly recorded diverse bactritoid-like doi:10.1371/journal.pone.0172169 coleoids from the Carboniferous of the USA, but prior to this study no fossil cephalopod Editor: Geerat J. Vermeij, University of California, indicative of an endochochleate branch with an origin independent from subclass Bactritoi- UNITED STATES dea has been reported. Received: October 10, 2016 Accepted: January 31, 2017 Methodology/Principal findings Published: March 1, 2017 Two orthoconic conchs were recovered from the Early Eocene of Seymour Island at the tip Copyright: © 2017 Doguzhaeva et al. This is an of the Antarctic Peninsula, Antarctica. They have loosely mineralized organic-rich chitin- open access article distributed under the terms of compatible microlaminated shell walls and broadly expanded central siphuncles. -
Phylum Mollusca: Macroevolution Module Instructor’S Guide Lesson by Kevin Goff
Phylum Mollusca: Macroevolution Module Instructor’s Guide Lesson by Kevin Goff Overview: Through a sequence of engaging laboratory investigations coupled with vivid segments from the acclaimed Shape of Life video series, students explore the fascinating structural and behavioral adaptations of modern molluscs. But rather than study these animals merely as interesting in the here-and-now, students learn to view them as products of a 550 million year evolution. Students interpret their diverse adaptations as solutions to the challenges of life in a dangerous world. They use the Phylum Mollusca to undersand three major macroevolutionary patterns: divergent evolution, convergent evolution and coevolution. Grades: 7-12. There are high and middle school versions of each lab activity. Subjects: Biology, earth science, ecology, paleontology, evolutionary science Standards: See at the end of this document. Instructional Approach: In general, these lessons use an “explore-before-explain” pedagogy, in which students make and interpret observations for themselves as a prelude to formal explanations and the cultivation of key scientific concepts. There are exercises in inquiry and the scientific process using authentic data, where students are pressed to think at higher cognitive levels. Instruction is organized around three unifying themes – the macroevolutionary patterns of divergence, convergence, and coevolution – and students learn to interpret diverse biological examples of these patterns. Suggested Lesson Sequence: This module comprises four lessons. Each is written so that it can be used either as a stand-alone lesson, or as a piece in a longer unit. Logistics and other details for each lesson are provided in separate instructor’s guides. To do the full unit, follow this sequence: 1.