Protease Inhibition As New Therapeutic Strategy for GI Diseases Gut: First Published As 10.1136/Gutjnl-2015-309147 on 12 April 2016

Total Page:16

File Type:pdf, Size:1020Kb

Protease Inhibition As New Therapeutic Strategy for GI Diseases Gut: First Published As 10.1136/Gutjnl-2015-309147 on 12 April 2016 Gut Online First, published on April 12, 2016 as 10.1136/gutjnl-2015-309147 Recent advances in basic science Protease inhibition as new therapeutic strategy for GI diseases Gut: first published as 10.1136/gutjnl-2015-309147 on 12 April 2016. Downloaded from Nathalie Vergnolle1,2,3,4,5 1Inserm, U1220, Toulouse, ABSTRACT France The GI tract is the most exposed organ to proteases, Key messages 2Université de Toulouse, Université Paul Sabatier, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract Institut de Recherche en Santé ▸ Protease inhibition as therapeutic approach in Digestive (IRSD), Toulouse, contains large amounts of pancreatic proteases, but intestinal pathologies: what should we France studies have also demonstrated increased proteolytic 3 consider? Inra, U1416, Toulouse, France activity into mucosal tissues (both in the upper and 4Ecole Nationale Vétérinaire de – Profiles of active proteases have to be lower GI tract), associated with pathological conditions. Toulouse (ENVT), France performed in pathological tissues in order to 5 This review aims at outlining the evidences for Department of Pharmacology define the best molecular targets for and Physiology, University of dysregulated proteolytic homeostasis in GI diseases and therapeutic intervention Calgary, Calgary, Alberta, the pathogenic mechanisms of increased proteolytic – Large spectrum inhibitors might have severe Canada activity. The therapeutic potential of protease inhibition side effects in GI diseases is discussed, with a particular focus on Correspondence to – Promote the expression or delivery of natural Dr Nathalie Vergnolle, INSERM, IBDs, functional GI disorders and colorectal cancer. UMR-1220, IRSD, Place du endogenous inhibitors could be a safe Dr. Baylac, CHU Purpan, therapeutic option CS 60039, Toulouse 31024, – Local versus systemic delivery would have to Cedex 3, France; be considered [email protected] INTRODUCTION – The use of food-grade bacteria as carrier for Proteases represent up to 2% of the human the delivery of therapeutic proteins has been Received 3 April 2015 genome, with 500–600 different proteases that Revised 5 February 2016 proposed fi Accepted 12 February 2016 have been identi ed. Through the evolution, pro- ▸ Protease targets for IBD teases have adapted to the different conditions that – MMPs inhibitors have been abandoned characterise complex organisms: pH variation, – Serine proteases are considered oxydo-reduction environment, temperature, etc. – Ubiquitin–proteasome system inhibitors are fi Proteases speci cally cleave proteins at their considered extremities (N-terminal or C-terminal regions) and ▸ Protease targets for IBS http://gut.bmj.com/ are then called exopeptidases, or in the middle of – Trypsin inhibition fi the proteins, being quali ed then as endopepti- – Tryptase inhibitors dases. Depending on their proteolytic mechanism, – Protease-Activated Receptor (PAR )/PAR fi 1 2 human proteases are classi ed as serine, threonine, antagonists cysteine, aspartic or metalloproteases (figure 1 and table 1). Some of them are secreted and released in the extracellular milieu, while others have intracel- on September 30, 2021 by guest. Protected copyright. lular functions and exclusively remain inside the identified. These findings could question the contri- fi cells ( gure 1). bution of microbial proteases, to overall luminal proteolytic activity in the gut. Another study has PROTEASES AND PROTEASE INHIBITORS OF established significant associations between specific THE GI TRACT bacterial subgroups and faecal protease activity, sug- Proteases gesting that microbiota composition could affect In the GI tract, proteases are heavily present, both intestinal proteolytic homeostasis. More recently, in the lumen and deeply into the tissues.1 forms of secreted proteases have been identified in Pancreatic proteases (trypsins, chymotrypsin, elas- intestinal epithelium: mesotrypsin mRNA is found tase, etc) are released into the lumen of the upper in human intestinal epithelial cells3 and trypsin GI tract, where they exert digestive functions. The activity is released by cultures of those cells microbiota constitutes also an important source of (Vergnolle, personal communication). Other resi- proteases (figure 2). Bacteria, yeasts and helminths dent cells of the intestinal mucosa produce and potentially present in the intestinal lumen produce release proteases (figure 2). For instance, the major and release proteases.2 For some pathogens such as protein content of mucosal mast cells is proteases. pathogenic forms of Escherichia coli or the entero- Mast cells release different forms of proteases: toxigenic Bacteroides fragilis, their ability to release tryptase and chymase for the vast majority, and also proteases is crucial for their pathogenicity. Serine, cathepsin G and granzyme B. Resident macro- cysteine, aspartic and metalloproteases are phages also produce and/or release different forms To cite: Vergnolle N. Gut 2 Published Online First: expressed and released by the microbiota (table 2). of proteases: matrix metalloproteinases (MMPs) [please include Day Month However, it is interesting to note that when the (MMP-12 among other MMPs), caspase, cathepsins Year] doi:10.1136/gutjnl- nature of the proteases present in human faeces L and D.1 In the inflamed gut, inflammatory cells 2015-309147 was investigated, only host proteases were are another major source of proteases, which they Vergnolle N. Gut 2016;0:1–10. doi:10.1136/gutjnl-2015-309147 1 Copyright Article author (or their employer) 2016. Produced by BMJ Publishing Group Ltd (& BSG) under licence. Recent advances in basic science Although specific proteases can be detected in tissues, the cel- lular origin of most proteases is quite difficult to define, and no study so far has determined the origin of proteases detected in Gut: first published as 10.1136/gutjnl-2015-309147 on 12 April 2016. Downloaded from intestinal tissues. The site of action of a given protease is also debated. As of today, one can only specify the possible site of action of a given protease. Another level of difficulty in studying proteases is that for activity tests, substrates are never fully specific of one protease, neither are their inhibitors. Therefore, the proteolytic activity that is measured is possibly due to a mix of proteases and cannot be attributed to one specific protease. Protease inhibitors Protease inhibitors have coevolved with proteases, in order to control their destructive nature. Natural endogenous protease inhibitors are particularly present in the GI tract.1 They are either circulating inhibitors produced at distance from the GI tract (mostly in the liver), or are produced on site, by intestinal Figure 1 Representation of human cell proteases according to their epithelial cells or infiltrated inflammatory cells (table 3). Serpins catalytic mechanism and their intracellular or extracellular representation. MMPs, matrix metalloproteinases. A1, A3, A4, E1 and C1 are circulating protease inhibitors inhi- biting serine proteases such as trypsins, chymase, tryptase, elas- tases, kallikreins and cathepsin G (table 3). Secretory leucocyte use to degrade extracellular tissues and intracellular particles, protease inhibitor (SLPI) and elafin are produced in situ by thereby increasing their phagocytic properties.4 Upon inflamma- intestinal epithelial cells or leucocytes. Both inhibit elastase and tory cell infiltration and activation, tissue proteolytic activity is proteinase-3, while SLPI also inhibits trypsin, chymotrypsin, considerably increased. Neutrophils in particular release massive cathepsin G, tryptase and chymase7 (table 3). Tissue inhibitors amounts of elastase, proteinase-3 and cathepsin G5 (figure 2). of metalloproteinases (TIMPs) are ubiquitously produced, Finally, all resident cells of the GI tract express intracellular pro- TIMP-1, TIMP-2, TIMP-3 and TIMP-4 are present in the GI teases: caspases, which have fundamental roles in cell apoptosis, tract, where they inhibit a number of different MMPs8 (table 3). and autophagins, which are the proteolytic enzymes responsible The caspase-9 inhibitor, which is a cellular inhibitor of apop- of autophagy processes6 (table 1). A special case can be made tosis protein-2 (c-IAP2) is also ubiquitously produced by cells for deubiquitylases, which are crucial regulators of intracellular present in intestinal tissues. protein turnover through the proteasome system. These enzymes present in all cell types, are either cysteines or metallo- PROTEASES AND INTESTINAL PHYSIOLOGY http://gut.bmj.com/ proteinases and target ubiquitinylated proteins, thereby chan- The roles and functions of proteases and their inhibitors under ging their degradation fate inside the cell. physiological conditions have been poorly investigated. While Table 1 Proteases identified in GI tissues and cells, and disease-associated upregulation Upregulated expression in on September 30, 2021 by guest. Protected copyright. Family Proteases Cellular location Possible sites of action CD UC IBS CRC Serine proteases Elastases Intra/extra L, M, P, I + + + + Proteinase-3 Intra/extra L, M, P, I + + Chymase Extra L, M, P + + + Kallikreins Extra L, M, P + + + Granzymes Intra/extra L, M, I + + + Tryptase Extra L, M, P + + + + Plasminogen Extra M, P + Activator Trypsins Extra L, M, P + + + Cathepsin G Intra/extra L, M, P, I + + Thrombin L, M, P + + Factors V and VIII L, M, P + Matriptase Membrane-bound M, I + Cysteine proteases Caspases Intra
Recommended publications
  • Characterizing the Roles of ADAM10 and 15 Disintegrins in Prostate Biology and Disease
    Characterizing the roles of ADAM10 and 15 disintegrins in prostate biology and disease by Magdalena M. Grabowska A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2011 Doctoral Committee: Professor Mark L. Day, Chair Professor James T. Elder Professor Robert S. Fuller Professor Jill A. Macoska Professor Benjamin L. Margolis Dedication To my parents for their unending support ii Acknowledgements I would like to extend a tremendous thank you to my family and friends without whose support this doctoral process would not have been possible. I would also like to thank Derek for being a constant source of support in all aspects of my life. I would like to thank Mark for taking me on as a graduate student and my committee for their commitment to my training. Thank you to the faculty members and administrators of the Cellular and Molecular Biology and the Cancer Biology Programs for your willingness to help with training, letters, funding, and graduate student business as a whole. Finally, I would like to thank collaborators who have provided reagents, resources, expertise, and lab equipment without which my research would not have been possible. Thank you. iii Table of Contents Dedication ............................................................................................................ ii Acknowledgements .............................................................................................. iii List of Figures
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Characterisation of Inflammatory Responses in Two Models of Experimental Ischaemia
    CHARACTERISATION OF INFLAMMATORY RESPONSES IN TWO MODELS OF EXPERIMENTAL ISCHAEMIA Louise Marks, April 2001 A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Medicine, University of Glasgow. Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories, University of Glasgow, Bearsden Road, Glasgow, G61 1QH. UNIVERSITY GLASGOW ProQuest Number: 13833994 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833994 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 \lbl2 0)P1\ II Contents Title page page I Contents page n List of tables page VIII List of figures page IX Abbreviations page XIV Acknowledgements page XVI Authors declaration page XVH Summary page XVIII Chapter 1. Introduction page 1 1.1 Stroke Background page 1 1.1.1 Stroke facts and figures page 1 1.1.2 Ischaemia and stroke page 1 1.2 Classification of stroke page 2 1.2.1 Haemorrhagic stroke page 3 1.2.2 Ischaemic stroke page 3 1.3 Models of cerebral ischaemia page 4 1.3.1 Use of the rat as a model of cerebral
    [Show full text]
  • Schneider-Dissertation-2019
    Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Schneider, Benjamin Aaron. 2019. Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029686 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+ ! "!#$%%&'()($*+!,'&%&+(&#!! -.! /&+0)1$+!")'*+!234+&$#&'! (*! 54&!6&,)'(1&+(!*7!84&1$%('.!)+#!84&1$3)9!/$*9*:.! ! ! $+!,)'($)9!7;97$991&+(!*7!(4&!'&<;$'&1&+(%! 7*'!(4&!#&:'&&!*7! 6*3(*'!*7!=4$9*%*,4.! $+!(4&!%;-0&3(!*7! 84&1$%('.! ! ! >)'?)'#!@+$?&'%$(.! 8)1-'$#:&A!B"! ! ! ",'$9!CDEF! ! ! G!CDEF!/&+0)1$+!")'*+!234+&$#&'! "99!'$:4(%!'&%&'?&#H! ! ! 6$%%&'()($*+!"#?$%*'I!='*7&%%*'!J1$9.!=H!/)9%K;%!! /&+0)1$+!")'*+!234+&$#&'+ ! !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+
    [Show full text]
  • Crystallization and Structure Analysis
    Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013 1 ELECTRONIC SUPPLEMENTARY INFORMATION Table of Contents 1. Experimental procedures 1 Production and purification of sermetstatin 1 Production and purification of snapalysin 2 In vitro activation studies of prosnapalysin 3 Proteolytic and inhibition assays 4 Cleavage of sermetstatin mutants 4 Complex formation and purification 5 Crystallization and X-ray diffraction data collection 5 Structure solution and refinement 6 Miscellaneous 8 2. Acknowledgments 8 3. Supplemental References 9 4. Supplemental Tables 11 Supplemental Table S1 11 Supplemental Table S2 12 Supplemental Table S3 13 5. Supplemental Figures 14 Supplemental Figure S1 14 1. Experimental procedures Production and purification of sermetstatin – A synthetic gene coding for sermetstatin from Streptomyces caespitosus (UniProt database code Q9FDS0), also known as Streptomyces caespitosus neutral proteinase inhibitor 1, was purchased (GenScript) and cloned into a modified pET-32a vector between the BglII and HindIII restriction sites. This vector attaches an N-terminal thioredoxin-His6 fusion construct followed by a tobacco-etch-virus (TEV) protease recognition site. Sermetstatin was produced by heterologous overexpression in Escherichia coli Origami2 (DE3) cells (Novagen). These were grown at 37°C in Luria-Bertani (LB) medium containing 100µg/ml ampicillin and 10µg/ml tetracycline, induced at an OD550 of 0.6 with isopropyl-β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.25mM, and subsequently incubated overnight at 18°C. Cultures were centrifuged at 7,000xg for 30min at 4°C. Pellets were washed twice with buffer A (50mM Tris-HCl, 500mM NaCl, pH8.0) and resuspended in the same buffer further containing 20mM imidazole and supplemented with EDTA-free protease inhibitor cocktail tablets (Roche Diagnostics) and DNase I (Roche Diagnostics).
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • A Novel Mechanism of Latency in Matrix Metalloproteinases **
    López-Pelegrín et al. 1 A novel mechanism of latency in matrix metalloproteinases ** Mar López-Pelegrín 1, Miroslaw Ksiazek 2, Abdulkarim Y. Karim 2,4, Tibisay Guevara1, Joan L. Arolas 1,*, Jan Potempa 2,3* & F. Xavier Gomis-Rüth 1,* Running title: Structure of Tannerella forsythia prokarilysin 1 Proteolysis Lab; Department of Structural Biology; Molecular Biology Institute of Barcelona, CSIC; Barcelona Science Park; c/ Baldiri Reixac, 15-21; 08028 Barcelona, Catalonia (Spain). 2 Department of Microbiology, Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Ul. Gronostajowa 7; 30-387 Kraków (Poland). 3 Oral Immunology and Infectious Disease; University of Louisville School of Dentistry; Louisville, KY 40202 (USA). 4 Present address: Department of Biology; College of Science; University of Salahaddin; Erbil, Kurdistan (Irak). * Correspondence: e-mail: [email protected]; phone: (+34) 934 020 186; fax : (+34) 934 034 979 ; e-mail: [email protected]; phone: (+34) 934 020 187; fax : (+34) 934 034 979 ; or e-mail : [email protected]; phone (+1) 502 852 5572 ; Fax (+1) 502 852 5572. Keywords: matrixin; MMP; pro-domain; zymogen; X-ray crystal structure; microbial infection ____________________________________________________________________________________________________ BACKGROUND: Animal and plant MMPs are kept cysteines. Here we determined the structure of a pro- zymogenic through large pro-domains and a cysteine- karilysin fragment encompassing the pro-peptide and switch mechanism. the catalytic domain, and found that the former runs across the cleft in the opposite direction to a bound RESULTS: Bacterial MMP karilysin has only a short N- substrate and inhibits the latter through an “aspartate- terminal peptide upstream of the catalytic domain, which switch” mechanism.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Architecture and Function of Metallopeptidase Catalytic Domains
    Cerdà-Costa et al. 1 !"#$%&'#&("')*+,)-(+#&%.+).-)/'&*00.1'1&%,*2')#*&*03&%#) ,./*%+2) ) 45"%*)6'",786.2&*)9):;)<*=%'")>./%28?@&$)A)) ) ) B".&'.032%2)C*DE)F'1*"&/'+&).-)G&"(#&("*0)H%.0.I3E)J.0'#(0*")H%.0.I3)K+2&%&(&').-) H*"#'0.+*L)6GK6E)H*"#'0.+*)G#%'+#')B*"ME)N'0%O)H(%0,%+IE)#P)H*0,%"%)?'%O*#L)QR8SQE)T8 UVUSV)H*"#'0.+*)WG1*%+X;) ) A)6.""'21.+,'+#'Y)'8/*%0Y)-OI"Z%D/D;#2%#;'2L)1$.+'Y)W[\]X)^\])USU)QV_L)-*OY)W[\]X)^\]) U\])^`^;) ) a$')*(&$."2)2&*&')&$'3)$*=')+.)#./1'&%+I)-%+*+#%*0)%+&'"'2&;) ) b'3c.",2Y)G&"(#&("*0)D%.#$'/%2&"3L)/'&d%+#%+)#0*+L)#*&*03&%#),./*%+2L)*#&%='82%&')#0'-&L) $3,".03&%#)'+d3/'2L)/*&"%O)/'&*00.1".&'*2'2L)*2&*#%+2L)!F!JL)*,*/*032%+2L)2'""*032%+2L) /'&*00.1".&'*2'L)/'&*00.1".&'%+*2';) ! Cerdà-Costa et al. 2 "#$%&"'%! a$')#0'*=*I').-)1'1&%,')D.+,2)D3)/'&*00.1'1&%,*2'2)WJB2X)%2)'22'+&%*0)-.")0%-';)a$'2')(D%e(%&.(2)'+d3/'2) 1*"&%#%1*&')%+)*00)/*f.")1$32%.0.I%#*0)1".#'22'2L)*+,)2.)&$'%"),'"'I(0*&%.+)0'*,2)&.),%2'*2'2)"*+I%+I)-"./)#*+#'") *+,)/'&*2&*2%2L)%+-0*//*&%.+L)*+,)/%#".D%*0)%+-'#&%.+)&.)+'(".0.I%#*0)%+2(0&2)*+,)#*",%.=*2#(0*"),%2.",'"2;)JB2) #0'*=')&$'%")2(D2&"*&'2)c%&$.(&)#.=*0'+&)%+&'"/',%*&')%+)*)2%+I0'82&'1)"'*#&%.+)%+=.0=%+I)*)2.0='+&)/.0'#(0'L)*) I'+'"*0) D*2'P*#%,L) *+,) *) /.+.8) .") ,%+(#0'*") #*&*03&%#) /'&*0) 2%&';) J.2&) /.+./'&*00%#) JB2) #./1"%2') *) 2$."&) /'&*08D%+,%+I)/.&%-)WNT<<NXL)c$%#$)%+#0(,'2)&c.)/'&*08D%+,%+I)$%2&%,%+'2)*+,)*)I'+'"*0)D*2'P*#%,)I0(&*/*&'L) *+,)&$'3)*"')I".(1',)%+&.)&$')d%+#%+)&"%D').-)JB2;)a$')0*&&'"),%=%,'2)/*%+03)%+&.)&$')I0(d%+#%+)*+,)/'&d%+#%+) #0*+2;) J'&d%+#%+2) #.+2%2&)
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • Characterisation of the Potential of Probiotics Or Their Extracts As Therapy for Skin
    Characterisation of the potential of probiotics or their extracts as therapy for skin A thesis submitted to the University of Manchester for the Degree of Doctor of Philosophy in the Faculty of Medical and Human Sciences 2014 Walaa Mohammedsaeed, Master of Science (MSc) School of Medicine Table of Contents Contents Table of Contents .............................................................................................................. 2 Table of Figures ................................................................................................................ 5 List of Tables .................................................................................................................... 8 List of Abbreviations ........................................................................................................ 9 1 Abstract ....................................................................................................................... 11 2 Declaration .................................................................................................................. 12 3 Copyright Statement .................................................................................................... 13 4 Acknowledgements ...................................................................................................... 14 5 The author ................................................................................................................... 15 6 Publications arising from this Thesis ...........................................................................
    [Show full text]
  • Antioxidant Peptides Encrypted in Flaxseed Proteome: an in Silico
    Food Science and Human Wellness 8 (2019) 306–314 Contents lists available at ScienceDirect Food Science and Human Wellness jo urnal homepage: www.elsevier.com/locate/fshw Antioxidant peptides encrypted in flaxseed proteome: An in silico assessment a b,c a,∗ Dawei Ji , Chibuike C. Udenigwe , Dominic Agyei a Department of Food Science, University of Otago, Dunedin 9054, New Zealand b School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada c Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada a r t i c l e i n f o a b s t r a c t Article history: Flaxseed proteins and antioxidant peptides (AP) encrypted in their sequences were analysed in silico with Received 16 June 2019 a range of bioinformatics tools to study their physicochemical properties, allergenicity, and toxicity. Nine Received in revised form 8 August 2019 proteases (digestive, plant and microbial sources) were assessed for their ability to release known APs Accepted 12 August 2019 from 23 mature flaxseed storage proteins using the BIOPEP database. The families of proteins identified Available online 13 August 2019 were predominantly globulins, oleosins, and small amount of conlinin. Overall, 253 APs were identified from these proteins. More peptides were released by enzymatic hydrolysis from the globulins than those Keywords: from oleosins and conlinin. Compared with other enzymes studied, the plant proteases (papain, ficin, and Bioactive peptides bromelain) were found to be superior to releasing APs from the flaxseed proteins. Analysis of toxicity Antioxidant peptides by ToxinPred showed that none of the peptides released was toxic.
    [Show full text]