Data-Driven Approaches for Tempo and Key Estimation of Music Recordings

Total Page:16

File Type:pdf, Size:1020Kb

Data-Driven Approaches for Tempo and Key Estimation of Music Recordings Data-Driven Approaches for Tempo and Key Estimation of Music Recordings Datengetriebene Verfahren fur¨ Tempo- und Tonart-Sch¨atzung von Musikaufnahmen Dissertation Der Technischen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-Nurnberg¨ zur Erlangung des Doktorgrades Doktor der Ingenieurwissenschaften (Dr.-Ing.) vorgelegt von Hendrik Schreiber aus Soest Als Dissertation genehmigt von der Technischen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-Nurnberg¨ Tag der mundlichen¨ Prufung:¨ 1. Juli 2020 Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Andreas Paul Fr¨oba 1. Gutachter: Prof. Dr. rer. nat. Meinard Muller¨ 2. Gutachter: Prof. Dr.-Ing. Sebastian Stober Abstract Abstract In recent years, we have witnessed the creation of large digital music collections, accessible, for example, via streaming services. Efficient retrieval from such collections, which goes beyond simple text searches, requires automated music analysis methods. Creating such methods is a central part of the research area Music Information Retrieval (MIR). In this thesis, we propose, explore, and analyze novel data-driven approaches for the two MIR analysis tasks tempo and key estimation for music recordings. Tempo estimation is often defined as determining the number of times a person would \tap" per time interval when listening to music. Key estimation labels music recordings with a chord name describing its tonal center, e.g., C major. Both tasks are well established in MIR research. To improve tempo estimation, we focus mainly on shortcomings of existing approaches, particularly estimates on the wrong metrical level, known as octave errors. We first propose novel methods using digital signal processing and traditional feature engineering. We then re-formulate the signal-processing pipeline as a deep computational graph with trainable weights. This allows us to take a purely data-driven approach using supervised machine learning (ML) with convolutional neural networks (CNN). We find that the same kinds of networks can also be used for key estimation by changing the orientation of directional filters. To improve our understanding of these systems, we systematically explore network architectures for both global and local estimation, with varying depths and filter shapes, as well as different ways of splitting datasets for training, validation, and testing. In particular, we investigate the effects of learning on different splits of cross-version datasets, i.e., datasets that contain multiple recordings of the same pieces. For training and evaluation the proposed data-driven approaches rely on curated datasets covering certain key and tempo ranges as well as genres. Datasets are therefore another focus of this work. Additionally to creating or deriving new datasets for both tasks, we evaluate the quality and suitability of popular tempo datasets and metrics, and conclude that there is ample room for improvement. To promote better, transparent evaluation, we propose new metrics and establish a large open and public repository containing evaluation code, reference annotations, and estimates. i ii Zusammenfassung Zusammenfassung In den vergangenen Jahren sind große digitale Musiksammlungen entstanden, die { beispielsweise { uber¨ Streaming-Dienste einfach zug¨anglich sind. Ein effizientes Retrieval aus solchen Sammlungen, das uber¨ die simple Textsuche hinausgeht, erfordert automatisierte Musikanalysemethoden. Das Erforschen solcher Methoden ist ein zentraler Bestandteil des Forschungsgebiets Music Information Retrieval (MIR). In dieser Arbeit stellen wir neue datengetriebene Ans¨atze fur¨ die beiden MIR- Analyseaufgaben Tempo- und Tonart-Sch¨atzung fur¨ Musikaufnahmen vor und analysieren sie. Dabei wird Tempo-Sch¨atzung oft definiert als das Z¨ahlen der Male, die eine Person beim H¨oren von Musik pro Zeitintervall \klopfen" wurde.¨ Tonart-Sch¨atzung weist Musikaufnahmen einen Akkordnamen zu, der den Klangmittelpunkt beschreibt, z.B. C-Dur. Beide Aufgaben sind in der MIR-Forschung fest verankert. Um die Tempo-Sch¨atzung zu verbessern, konzentrieren wir uns haupts¨achlich auf Defizite beste- hender Ans¨atze, insbesondere Sch¨atzungen auf der falschen metrischen Ebene, den sogenannten Oktavfehlern. Dazu schlagen wir zun¨achst neue Methoden vor, die sich der digitalen Signalver- arbeitung und des traditionellen Feature-Engineerings bedienen. Anschließend formulieren wir die Signalverarbeitungspipeline in eine tiefe, graphenartige Rechenstruktur mit trainierbaren Parametern um. Dies erm¨oglicht uns einen rein datengetriebenen Ansatz unter Verwendung von uberwachtem¨ maschinellem Lernen (ML) mit neuronalen Netzen { insbesondere Convo- lutional Neural Networks (CNN). Wir stellen fest, dass durch das Andern¨ der Orientierung von gerichteten Filtern, die gleichen Arten von Netzwerken auch fur¨ die Tonart-Sch¨atzung verwendet werden k¨onnen. Um unser Verst¨andnis dieser Systeme zu vertiefen, untersuchen wir systematisch Netzwerkarchitekturen fur¨ die globale und lokale Sch¨atzung mit unterschiedlichen Tiefen und Filterformen sowie verschiedenen Datensatz-Splits fur¨ Training, Validierung und Test. Insbesondere betrachten wir, welche Auswirkungen das Lernen auf verschiedenen Splits von Cross-Version-Datens¨atzen hat. Dies sind Datens¨atze, die mehrere Aufnahmen derselben Stucke¨ enthalten. Fur¨ Training und Evaluation stutzen¨ sich die vorgeschlagenen datengetriebenen Ans¨atze auf kuratierte Datens¨atze, die bestimmte Tonart- und Tempobereiche sowie Genres abdecken. Ein weiterer Schwerpunkt dieser Arbeit liegt daher auf den Datens¨atzen selbst. Zus¨atzlich zum Erstellen oder Ableiten neuer Datens¨atze fur¨ beide o.g. Aufgaben evaluieren wir die Qualit¨at und Eignung g¨angiger Tempo-Datens¨atze und -Metriken und kommen zu dem Schluss, dass es iii Zusammenfassung Raum fur¨ Verbesserungen gibt. Um eine bessere, transparentere Evaluation zu f¨ordern, schlagen wir daher neue Metriken vor und etablieren ein großes, offenes und ¨offentliches Repository mit Evaluationscode, Referenzannotationen und Sch¨atzungen. iv Contents Contents Abstract i Zusammenfassung iii 1 Introduction5 1.1 Structure of this Thesis . 7 1.2 Contributions . 10 1.3 Main Publications . 11 1.4 Additional Publications . 12 1.5 Acknowledgments . 12 2 Fundamentals 15 2.1 Audio Signal . 15 2.2 Discrete Fourier Transform . 18 2.3 Basic Tempo Estimation . 21 2.3.1 Representation . 23 2.3.2 Onset Signal Strength . 24 2.3.3 Dominant Pulse . 24 2.4 Metrics . 26 2.5 Datasets . 27 3 Tempo Octave Correction 29 3.1 Octave Correction with Global Features and Linear Regression . 29 3.1.1 Feature Selection . 30 3.1.2 Algorithm . 32 3.1.3 Evaluation . 34 3.1.4 Conclusions . 35 3.2 Error Classification and Correction with Random Forests . 35 3.2.1 Tempo Estimation . 35 3.2.2 Tempo Error Correction . 39 3.2.3 Evaluation . 42 3.2.4 Conclusions . 45 1 Contents 4 CNN-Based Tempo Estimation 47 4.1 Training Datasets . 48 4.1.1 LMD Tempo . 49 4.1.2 MTG Tempo . 49 4.1.3 Extended Ballroom . 50 4.1.4 Combined Training Dataset . 50 4.2 Method . 51 4.2.1 Signal Representation . 51 4.2.2 Network Architecture . 53 4.2.3 Network Training . 54 4.2.4 Global Tempo Estimation . 55 4.3 Evaluation . 56 4.3.1 Global Tempo Benchmarking . 56 4.3.2 Local Tempo Visualization . 57 4.4 Conclusions . 58 5 Electronic Dance Music: A Crowdsourced Experiment 59 5.1 Experiment . 60 5.2 Data Analysis . 62 5.2.1 Submission Quality . 62 5.2.2 Tempo Distribution Metrics . 63 5.2.3 Segment Annotator Agreement . 65 5.2.4 Track Annotator Agreement . 66 5.2.5 Ambiguity by Genre . 69 5.3 Evaluation . 69 5.4 Discussion and Conclusions . 70 6 Reflections on Global Tempo Estimation and Evaluation 73 6.1 Applications . 74 6.1.1 Research Justifications . 75 6.1.2 Presumed Applications . 75 6.1.3 Actual Applications . 76 6.2 Metrics . 77 6.2.1 Accuracy 1 and 2 . 77 6.2.2 P-Score . 79 6.2.3 Tempo Estimation as Classification . 79 6.3 Datasets . 80 6.3.1 Dataset Size . 80 6.3.2 Dataset Quality . 83 2 Contents 6.3.3 Modeling Global Tempo . 84 6.3.4 Dataset Suitability . 85 6.4 Research Cycles . 88 6.5 Survey . 89 6.5.1 Participants . 90 6.5.2 Relevance as MIR Task . 90 6.5.3 Application . 91 6.5.4 Genres . 91 6.5.5 Slow, Fast, and Ambiguous . 91 6.5.6 Accuracy Tolerances . 92 6.6 Proposal . 94 6.6.1 Reference Annotations . 95 6.6.2 Estimated Annotations . 95 6.6.3 Formal Octave Error . 95 6.6.4 Evaluation . 97 6.7 Conclusions . 100 7 Tailored CNN-Architectures for Tempo and Key Estimation 101 7.1 Experiments . 102 7.1.1 Key Estimation . 103 7.1.2 Tempo Estimation . 103 7.1.3 Network Architectures . ..
Recommended publications
  • The Influence of Musical Rhythm on Cardiovascular, Respiratory, And
    The Influence of Musical Rhythm on Cardiovascular, Respiratory, and Electrodermal Activity Dissertation zur Erlangung des Doktorgrades der Philosophie (Dr. phil.) vorgelegt der Philosophischen Fakult¨at der Martin-Luther-Universit¨at Halle-Wittenberg, Institut f¨ur Musik, Abteilung Musikwissenschaft von Martin Morgenstern geboren am 3. Juni 1979 in Dresden Gutachter: Professor Dr. Wolfgang Auhagen Martin-Luther-Universit¨at, Halle-Wittenberg Professor Dr. med. Hans-Christian Jabusch Hochschule f¨ur Musik Carl Maria von Weber, Dresden Tag der Verteidigung: 7. Juli 2009 iii Abstract Background. Athanasius Kircher, one of the first prominent figures to pro- pose a connection between the distinct rhythm of the heart and the state of people’s health, suggested the use of rhythmic stimuli to cure diseases. Since then, there have been various attempts to alter the heart rate by means of auditory stimuli, and for similar purposes. Be it in music or in rhythmical coordination tasks, interactions of periodic exogenous pulses and endogenous biological rhythms have been studied extensively. However, there are still limitations to understanding the regulating mechanisms in cardio-respiratory synchronisation. Aims. Various listening and bio-feedback experiments are discussed, dealing with different aspects of the influence of rhythmical auditory stimuli on cardio-respiratory regulation, biological rhythm generation and coordina- tion. A focus is on the interpretation of respective physiological adaptation processes and different relaxation strategies that might help musicians to deal with unwanted stress before, during, and after a musical performance. Dif- ferent challenges inherent to empirical musicological and music-related bio- medical research, and how they might be tackled in future experiments, are considered.
    [Show full text]
  • EDMTCC 2014 – the EDM Guide
    EDMTCC 2014 F# The EDM Guide: Technology, Culture, Curation Written by Robby Towns EDMTCC.COM [email protected] /EDMTCC NESTAMUSIC.COM [email protected] @NESTAMUSIC ROBBY TOWNS AUTHOR/FOUNDER/ENTHUSIAST HANNAH LOVELL DESIGNER LIV BULI EDITOR JUSTINE AVILA RESEARCH ASSISTANT ACKNOWLEDGEMENTS SIMON MORRISON GOOGLE VINCENT REINDERS 22TRACKS GILLES DE SMIT 22TRACKS LUKE HOOD UKF DANA SHAYEGAN THE COLLECTIVE BRIAN LONG KNITTING FACTORY RECORDS ERIC GARLAND LIVE NATION LABS BOB BARBIERE DUBSET MEDIA HOLDINGS GLENN PEOPLES BILLBOARD MEGAN BUERGER BILLBOARD THE RISE OF EDM 4 1.1 SURVIVAL OF THE FITTEST 6 1.2 DISCO TO THE DROP 10 1.3 A REAL LIFE VIDEO GAME 11 1.4 $6.2 BILLION GLOBAL INDUSTRY 11 1.5 GOING PUBLIC 13 1.6 USB 14 TECHNOLOGY: 303, 808, 909 15 2.1 ABLETON LIVE 18 2.2 SERATO 19 2.3 BEATPORT 21 2.4 SOUNDCLOUD 22 2.5 DUBSET MEDIA HOLDINGS 23 CULTURE: BIG BEAT TO MAIN STREET 24 3.1 DUTCH DOMINANCE 26 3.2 RINSE FM 28 3.3 ELECTRIC DAISY CARNIVAL 29 3.4 EDM FANS = HYPERSOCIAL 30 CURATION: DJ = CURATOR 31 4.1 BOOMRAT 33 4.2 UKF 34 4.3 22TRACKS 38 BONUS TRACK 41 THE RISE OF EDM “THE MUSIC HAS SOMETHING IN COMMON WITH THE CURRENT ENGLISH- SYNTHESIZER LED ELECTRONIC DANCE MUSIC...” –LIAM LACEY, CANADIAN GLOBE & MAIL 1982 EDMTCC.COM What is “EDM”? The answer from top brands, and virtually to this question is not the every segment of the entertain- purpose of this paper, but is ment industry is looking to cap- a relevant topic all the same.
    [Show full text]
  • Music Interventions in Health Care White Paper H C Are in Healt I Nterventions Music 1
    MUSIC INTERVENTIONS IN HEALTH CARE WHITE PAPER ARE C H NTERVENTIONS IN HEALT NTERVENTIONS I MUSIC MUSIC 1 BY LINE GEBAUER AND PETER VUUST - IN COLLABORATION WITH WIDEX, SOUNDFOCUS, DKSYSTEMS, AARHUS UNIVERSITY AND DANISH SOUND INNOVATION NETWORK PUBLISHER ABOUT THE PUBLICATION DANISH SOUND INNOVATION NETWORK This publication and possible comments and discussions can be Technical University of Denmark downloaded from www.danishsound.org. Matematiktorvet, Building 303B 2800 Kongens Lyngby The content of this publication reflects the authors’ point of view Denmark and not necessarily the view of the Danish Sound Innovation T +45 45253411 Network as such. W www.danishsound.org Copyright of the publication belongs to the authors. Possible agree- FEBRUARY 2014 ments between the authors might regulate the copyright in detail. ABOUT THE AUTHORS PROF. PETER VUUST is a unique combination of a world class musician and a top-level scientist. Based on his distinguished music and research career, he was appointed professor at The Royal Academy of Music Aarhus (RAMA) in 2008. Peter Vuust has since 2007 led the multidisciplinary research group Music in the Brain, at CFIN Aarhus University Hospital, which aims at understanding the neural processing of music, by using a combination of advanced music theory, behavioural experience, and state-of-the-art brain scanning methods. DR LINE GEBAUER holds an MA in Psychology and a PhD in Neuroscience from Aarhus University. She is currently a postdoctoral fellow in Prof. Peter Vuust’s Music in the Brain research group. Line is studying the neurobiological correlates of 2 music perception, in particular music-induced emotions and pleasure in healthy individuals and in people with developmental WHITE disorders.
    [Show full text]
  • Editorial Metadata in Electronic Music Distribution Systems: Between Universalism and Isolationism
    Journal of New Music Research 2005, Vol. 34, No. 2, pp. 173 – 184 Editorial Metadata in Electronic Music Distribution Systems: Between Universalism and Isolationism Franc¸ ois Pachet, Amaury La Burthe, Jean-Julien Aucouturier and Anthony Beurive´ Sony CSL – Paris Abstract about the artist, the title, and so on. Although you enjoy the new tune, you do not know much about We address the problem of metadata management in the Bjork: you have only been able to classify the artist in context of future Electronic Music Distribution (EMD) your walkman’s local genre taxonomy as ‘‘Electronica / systems, and propose a classification of existing musical Icelandic’’. editorial systems in two categories: the isolationists and As you walk by a cafe´ in Reykjavik, you decide that the universalists. Universalists propose shared informa- you would like to see what information the local tion at the expense of consensuality, while isolationist community has to offer about Bjork (she’s Icelandic, approaches allow individual parameterization at the isn’t she?) You turn on your walkman, which immedi- expense of the lack of reusability. We propose an ately connects to the nearby metadata server at the cafe´ architecture and a system for managing editorial and download locally available information. Unfortu- metadata that lies in the middle of these two extremes: nately, access to the music files is copyrighted and we organize musical editorial information in such a way restricted. However, you have access to the correspond- that users can benefit from shared metadata when they ing metadata. Your walkman automatically browses the wish, while also allowing them to create and manage a local genre taxonomy and is able to trace down Bjork, private version of editorial information.
    [Show full text]
  • Chapter 7 the Neuroscience of Emotion in Music Jaak Panksepp and Colwyn Trevarthen
    07-Malloch-Chap07 9/9/08 10:41 AM Page 105 Chapter 7 The neuroscience of emotion in music Jaak Panksepp and Colwyn Trevarthen 7.1 Overture: why humans move, and communicate, in musical–emotional ways Music moves us. Its rhythms can make our bodies dance and its tones and melodies can stir emotions. It brings life to solitary thoughts and memories, can comfort and relieve loneliness, promote private or shared happiness, and engender feelings of deep sadness and loss. The sounds of music communicate emotions vividly in ways beyond the ability of words and most other forms of art. It can draw us together in affectionate intimacy, as in the first prosodic song-like conversations between mothers and infants. It can carry the volatile emotions of human attach- ments and disputes in folk songs and grand opera, and excite the passions of crowds on great social occasions. These facts challenge contemporary cognitive and neural sciences. The psychobiology of music invites neuroscientists who study the emotional brain to unravel the neural nature of affective experience, and to seek entirely new visions of how the mind generates learning and memory— to reveal the nature of ‘meaning’. The science of communicative musicality—the dynamic forms and functions of bodily and vocal gestures—helps us enquire how the motivating impulses of music can tell compelling stories. This also leads us to ask how human music relates to our animal emotional heritage and the dynamic instinctual movements that communicate emotions. Research on the emotional systems of animals is bringing us closer to explanations of the still mysterious aspects of human affective experiences, and hence the emotional power of music.
    [Show full text]
  • Text-Based Description of Music for Indexing, Retrieval, and Browsing
    JOHANNES KEPLER UNIVERSITAT¨ LINZ JKU Technisch-Naturwissenschaftliche Fakult¨at Text-Based Description of Music for Indexing, Retrieval, and Browsing DISSERTATION zur Erlangung des akademischen Grades Doktor im Doktoratsstudium der Technischen Wissenschaften Eingereicht von: Dipl.-Ing. Peter Knees Angefertigt am: Institut f¨ur Computational Perception Beurteilung: Univ.Prof. Dipl.-Ing. Dr. Gerhard Widmer (Betreuung) Ao.Univ.Prof. Dipl.-Ing. Dr. Andreas Rauber Linz, November 2010 ii Eidesstattliche Erkl¨arung Ich erkl¨are an Eides statt, dass ich die vorliegende Dissertation selbstst¨andig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die w¨ortlich oder sinngem¨aß entnommenen Stellen als solche kenntlich gemacht habe. iii iv Kurzfassung Ziel der vorliegenden Dissertation ist die Entwicklung automatischer Methoden zur Extraktion von Deskriptoren aus dem Web, die mit Musikst¨ucken assoziiert wer- den k¨onnen. Die so gewonnenen Musikdeskriptoren erlauben die Indizierung um- fassender Musiksammlungen mithilfe vielf¨altiger Bezeichnungen und erm¨oglichen es, Musikst¨ucke auffindbar zu machen und Sammlungen zu explorieren. Die vorgestell- ten Techniken bedienen sich g¨angiger Web-Suchmaschinen um Texte zu finden, die in Beziehung zu den St¨ucken stehen. Aus diesen Texten werden Deskriptoren gewon- nen, die zum Einsatz kommen k¨onnen zur Beschriftung, um die Orientierung innerhalb von Musikinterfaces zu ver- • einfachen (speziell in einem ebenfalls vorgestellten dreidimensionalen Musik- interface), als Indizierungsschlagworte, die in Folge als Features in Retrieval-Systemen f¨ur • Musik dienen, die Abfragen bestehend aus beliebigem, beschreibendem Text verarbeiten k¨onnen, oder als Features in adaptiven Retrieval-Systemen, die versuchen, zielgerichtete • Vorschl¨age basierend auf dem Suchverhalten des Benutzers zu machen.
    [Show full text]
  • MUSIK MACHT GEISTIG FIT.Pdf
    Studium generale © Herausgeber: B. Fischer, 77736 Zell a.H, Birkenweg 19 Tel: 07835-548070 www.wisiomed.de Musik und geistige Leistungsfähigkeit Herausgeber: Prof. Dr. med. Bernd Fischer Musik macht geistig fit „Wer Musikschulen schließt, gefährdet die innere Sicherheit“ (Nida-Rümelin,.2005) in Kooperation mit der Memory-Liga e. V. Zell a. H. sowie dem Verband der Gehirntrainer Deutschlands VGD® und Wissiomed® Akademie Haslach (www.wissiomed.de) Die Unterlagen dürfen in jeder Weise in unveränderter Form unter Angabe des Herausgebers in nicht kommerzieller Weise verwendet werden! Wir sind dankbar für Veränderungsvorschläge, Erweiterungen, Anregungen und Korrekturen, die sie uns jederzeit unter [email protected] zukommen lassen können. © Herausgeber: B. Fischer, 77736 Zell a.H, Birkenweg 19 Tel: 07835-548070 www.wisiomed.de Musik und geistige Leistungsfähigkeit Gliederung Herausgeber, Mitarbeiterinnen 8 Einleitung 9 Musik und Hirndurchblutung 31 Musik und Hirndurchblutung linkes Gehirn 33 Musik und Hirndurchblutung rechtes Gehirn 36 Musik und Hirnstoffwechsel 38 Musik und neurophysiologische Veränderungen 42 Musik und Immunlage 43 Musik und gewebliche Veränderungen im Gehirn 46 Musik und geistige Leistungsfähigkeit 55 Musik, Emotion und emotionale Intelligenz 55 Musik fördert die Aufmerksamkeit 62 2 © Herausgeber: B. Fischer, 77736 Zell a.H, Birkenweg 19 Tel: 07835-548070 www.wisiomed.de Musik und geistige Leistungsfähigkeit Musik fördert die Wahrnehmung 66 Musik und Arbeitsgedächtnis 68 Musik und Langzeitgedächtnis 69 Musik als Rhythmusgeber I 73 Funktionen des präfrontalen Kortex 78 Musik als Rhythmusgeber II 83 Musik und Symmetrieverbesserung des Gehirns 86 Musik und Synchronisation von Atmung und Kreislauf 87 Musik und aktuelle geistige Leistungsfähigkeit 90 Musikerziehung und geistige Leistungsfähigkeit in Bezug auf allgemeine Intelligenz, Rechnen, abstraktes Denken, Kreativität, Emotion, soziale Kompetenz, schulische Erfolge incl.
    [Show full text]
  • 31295019800852.Pdf (1.481Mb)
    IMPACT OF PAY-FOR-PLAY DOWNLOADING ON THE MUSIC INDUSTRY by James Robert Law A SENIOR THESIS in GENERAL STUDIES Submitted to the General Studies Council in the College of Arts and Sciences at Texas Tech University in Partial fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved BLOOD Choo~~~~s~~ unications of Thesis Committee ~- THOMAS HUGHES School o-f Visual and Performing Arts Accepted DR. ~MICHAEL SCHOENECKE Director of General Studies MAY 2005 -r3 ACKNOWLEDGMENTS ^ooS ,,-) < I would like to thank Dr. Youngblood and Dr. Hughes CxO.c^ for their incredible assistance and patience. Your help is much appreciated, and I could not have finished this without the incredible amount of time and energy you both put forth. I would like to consider you both not only valuable mentors in my life, but also friends. I would like to thank my girlfriend, Michele Stephens, for her incredible encouragement that motivated me when I was so near completion. Thank you for understanding my one-track mind. Thanks for letting me talk out my ideas with you to solidify them. Finally, thanks to my mother, whose support I will always appreciate. Her prayers and concerns were always felt and well received. Without the sacrifices she made, I would not have had the time or the wits to finish this. 11 TABLE OF CONTENTS ACKNOWLEDGMENTS ii CHAPTER I. INTRODUCTION 1 II. TECHNOLOGICAL BACKGROUND 3 What Is the MP3 File Format 3 What Is a Peer-to-Peer Network 5 What Makes a Download Legal/Illegal 7 What Is a Pay-for-Play Downloading Program...
    [Show full text]
  • The Motivational Qualities and Effects of Music
    CHARACTERISTICS AND EFFECTS OF MOTIVATIONAL MUSIC IN EXERCISE A thesis submitted for the degree of Doctor of Philosophy by David-Lee Priest Department of Sport Sciences, Brunel University July 2003 i ABSTRACT The research programme had three principal objectives. First, the evaluation and extension of the extant conceptual framework pertaining to motivational music in exercise settings. Second, the development of a valid instrument for assessing the motivational qualities of music: The Brunel Music Rating Inventory-2 (BMRI-2). Third, to test the effects of motivational and oudeterous (lacking in both motivational and de-motivational qualities) music in an externally-valid setting. These objectives were addressed through 4 studies. First, a series of open-ended interviews were conducted with exercise leaders and participants (N = 13), in order to investigate the characteristics and effects of motivational music in the exercise setting. The data were content analysed to abstract thematic categories of response. These categories were subsequently evaluated in the context of relevant conceptual frameworks. Subsequently, a sample of 532 health-club members responded to a questionnaire that was designed to assess the perceived characteristics of motivational music. The responses were analysed across age groups, gender, frequency of attendance (low, medium, high), and time of attendance (morning, afternoon, evening). The BMRI-2 was developed in order to address psychometric weaknesses that were associated with its forbear, the BMRI. A refined item pool was created which yielded an 8-item instrument that was subjected to confirmatory factor analysis. A single-factor model demonstrated acceptable fit indices across three different pieces of music, two samples of exercise participants, and both sexes.
    [Show full text]
  • Musiquence – Design, Implementation and Validation of a Customizable Music and Reminiscence Cognitive Stimulation Platform for People with Dementia
    Luís Duarte Andrade Ferreira Licenciado em Design de Media Interativos Musiquence – Design, Implementation and Validation of a Customizable Music and Reminiscence Cognitive Stimulation Platform for People with Dementia Dissertação para obtenção do Grau de Doutor em Media Digitais Orientador: Doutor Sergi Bermúdez i Badia, Professor Associado, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira Co-orientador: Doutora Sofia Carmen Faria Maia Cavaco, Professora Auxiliar, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Doutor Nuno Manuel Robalo Correia, Professor Catedrático, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Arguente(s): Doutor António Fernando Vasconcelos Cunha Castro Coelho, Professor Associado com Agregação, Faculdade de Engenharia da Universidade do Porto Doutor Rui Filipe Fernandes Prada, Professor Associado, Instituto Superior Técnico da Universidade do Porto Vogal(ais): Doutor Dennis Reidsma, Professor Associado, University of Twente Doutor Roberto Llorens Rodríguez, Professor Auxiliar da Universitat Politècnica de Valencia Doutor Sergi Bermúdez i Badia, Professor Associado, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira Doutora Teresa Isabel Lopes Romão, Professora Associada, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Junho 2020 Doctoral Dissertation Title | Musiquence - Design, Implementation and Validation of a Customizable Music and Reminiscence Cognitive Stimulation Platform for People with Dementia.
    [Show full text]
  • A Meta-Analytic Review and Field Studies of Ultra-Distance Athletes
    Running head: EFFECTS OF SYNCHRONOUS MUSIC Effects of Synchronous Music in Sport and Exercise: A Meta-Analytic Review and Field Studies of Ultra-Distance Athletes A Dissertation submitted by Michelle Louise Curran GCertCrimAnlys BCCJ Griffith GCertTT&L BSc(Psych)(Hons) USQ For the award of Doctor of Philosophy October 2012 EFFECTS OF SYNCHRONOUS MUSIC ii Abstract Effects of music in sport and exercise have been investigated in many forms since the first published study by Ayers (1911). Music has been shown to provide significant benefits to physical and psychological responses but whether such benefits apply to ultra-distance athletes is unknown. The present research quantified effects of music in sport and exercise, specifically in terms of performance, psychological responses, physiological functioning and ratings of perceived exertion (RPE); and also investigated such effects among ultra-distance athletes in training and race environments. Study 1 was a meta-analysis of published research evidence, which quantified effects of music on performance, feelings (Feeling Scale - FS), heart rate (HR), oxygen utilisation (VO 2), and RPE. A total of 86 studies producing 162 effects showed weighted mean effects of d = .35 (performance), d = .47 (FS), d = .14 (HR), d = .25 (VO 2), and d = .29 (RPE) confirming small to moderate benefits of music. In Study 2, two elite ultra-distance athletes completed a 20 km training session on four occasions listening to synchronous motivational music, synchronous neutral music, an audio book, or no music. Motivational music provided athletes with significant benefits compared to no music and audio book conditions. Neutral music was associated with the slowest completion times for Athlete 1 but the second fastest for Athlete 2, behind motivational music.
    [Show full text]
  • Employing Subjective Tests and Deep Learning for Discovering the Relationship Between Personality Types and Preferred Music Genres
    electronics Article Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres Aleksandra Dorochowicz 1, Adam Kurowski 1,2 and Bo˙zenaKostek 1,2,* 1 Faculty of Electronics, Telecommunications and Informatics, Multimedia Systems Department, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gda´nsk,Poland; [email protected] (A.D.); [email protected] (A.K.) 2 Faculty of Electronics, Telecommunications and Informatics, Audio Acoustics Laboratory, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gda´nsk,Poland * Correspondence: [email protected]; Tel.: +48-58-3472717 Received: 13 October 2020; Accepted: 25 November 2020; Published: 28 November 2020 Abstract: The purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks. First, an Internet survey was built, in which the respondents identify themselves as extraverts or introverts according to the given definitions. Their task was to listen to music excerpts that belong to several music genres and choose the ones they like. Next, music samples were parameterized. Two parametrization schemes were employed for that purpose, i.e., low-level MIRtoolbox parameters (MIRTbx) and variational autoencoder neural network-based, which automatically extract parameters of musical excerpts. The prediction of a personality type was performed employing four baseline algorithms, i.e., support vector machine (SVM), k-nearest neighbors (k-NN), random forest (RF), and naïve Bayes (NB).
    [Show full text]