Racine Carrée Inverse Rapide

Total Page:16

File Type:pdf, Size:1020Kb

Racine Carrée Inverse Rapide Racine carrée inverse rapide La racine carrée inverse rapide (en anglais fast inverse square root, parfois abrégé Fast InvSqrt() ou par la constante 0x5f3759df en hexadécimal) est une méthode pour calculer x−½, l'inverse de la racine carrée d'un nombre à virgule flottante à simple précision sur 32 bits. L'algorithme a probablement été développé chez Silicon Graphics au début des années 1990. Il a entre autres été 1 utilisé dans le code source de Quake III Arena, un jeu vidéo sorti en 1999 . À l'époque, le principal avantage de cet algorithme était d'éviter d'utiliser des coûteuses opérations à virgules flottantes en préférant des opérations sur entiers. Les racines carrées inverses sont utilisées pour calculer les angles d'incidence et la réflexion pour la lumière et l'ombre en imagerie numérique. L'algorithme prend en entrée des flottants de 32 bits non signés et stocke la moitié de cette valeur pour l'utiliser plus tard. Ensuite, il traite le nombre à virgule flottante comme un entier et lui applique un décalage logique (en) à droite d'un bit et le résultat est soustrait à la valeur « magique » 0x5f3759df. Il s'agit de la première approximation de la racine carrée inverse du nombre passé en entrée. En considérant de nouveau les bits comme un nombre à virgule flottante et en appliquant au nombre la méthode de Newton, on améliore Les calculs de lumière (ici cette approximation. Bien que n'assurant pas la précision la plus fine possible, le résultat final est une approximation de la racine dans OpenArena, un jeu de tir carrée inverse d'un nombre à virgule flottante qui s'exécute quatre fois plus vite qu'une division d'un tel nombre. à la première personne) utilisent la racine carrée inverse rapide pour calculer les angles d'incidence et de Sommaire réflexion. 1 Motivation 2 Aperçu du code 2.1 Un exemple pratique 3 Fonctionnement de l'algorithme 3.1 Représentation en nombre flottant 3.2 Approcher un logarithme en passant à l'entier 3.3 Première approximation du résultat 3.4 Méthode de Newton 4 Histoire et enquête 5 Note et références 6 Liens externes Motivation 2 Les racines carrées inverses d'un nombre à virgule flottante sont utilisées pour calculer un vecteur normalisé . En synthèse d'image 3D, ces vecteurs normalisés sont utilisés pour déterminer l'éclairage et l'ombrage. Des millions de ces calculs sont ainsi nécessaires chaque seconde. Avant l'apparition de matériel dédié au TCL, ces calculs pouvaient être lents. Ce fut particulièrement le cas lorsque cette technique a été développée au début des années 1990 où les opérations sur les nombres à virgule flottante étaient plus lentes que 1 les calculs sur entiers . Afin de normaliser un vecteur, on détermine la longueur de celui-ci en calculant sa norme euclidienne : la racine carrée de la somme du carré de ses composantes. Après avoir divisé chaque composante par cette longueur, on obtient alors un nouveau vecteur unitaire Les normales à une surface pointant dans la même direction. sont largement utilisées dans les calculs d'éclairage et d'ombrage, ce qui nécessite le est la norme euclidienne du vecteur, de la même manière que l'on calcule une distance dans un espace calcul des normes des vecteurs. Ici, on montre un euclidien. champ de vecteurs normaux à la surface. est le vecteur (unitaire) normalisé. Avec représentant , , liant le vecteur unitaire à la racine carrée inverse des composantes. Aperçu du code Le code source suivant est l'implémentation de la racine carrée inverse dans Quake III Arena dont on a retiré les directives du préprocesseur C mais qui contient les 3 commentaires originaux float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // what the fuck? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } Afin de déterminer la racine carrée inverse, un programme calculerait une approximation de puis appliquerait ensuite une méthode numérique afin de peaufiner le résultat jusqu'à atteindre une erreur d'approximation acceptable. Des méthodes de calcul (en) du début des années 1990 ont permis d'avoir une première 4 approximation depuis une table de correspondance . Cette nouvelle fonction s'est montrée plus efficace que les tables de correspondance et environ quatre fois plus 5 6 rapide qu'une division flottante classique . L'algorithme a été conçu selon le standard pour les nombres à virgule flottante 32-bit, mais des recherches de Chris Lomont et ensuite Charles McEniry ont montré qu'il pouvait être implémenté en utilisant d'autres spécifications de nombres à virgule flottante. 7 Le gain de vitesse apporté par le kludge qu'est la racine carrée inverse rapide vient du traitement du mot double contenant le nombre à virgule flottante considéré comme entier qui est ensuite soustrait à une constante spécifique : 0x5f3759df. L'utilité de cette constante n'étant pas claire à première vue, on la considère alors 1, 8, 9, 10 comme un nombre magique Après cette soustraction d'entiers et ce décalage à droite on obtient un mot double qui, lorsqu'il est considéré comme un nombre à virgule flottante, devient une approximation grossière de la racine carrée inverse du nombre entré. Ensuite, une itération de la méthode de Newton est réalisée afin de gagner en précision et le résultat est retourné. L'algorithme génère des résultats raisonnablement précis en utilisant une seule approximation par la méthode de 11 Newton ; Toutefois, il reste plus lent que d'utiliser l'instruction SSE rsqrtss sortie elle aussi en 1999 sur les processeurs x86 . Un exemple pratique Considérons un nombre x = 0,156 25, pour lequel on souhaite calculer 1/√ x ≈ 2,529 82. Voici les premières étapes de l'algorithme : 0011_1110_0010_0000_0000_0000_0000_0000 Trame binaire de x et i 0001_1111_0001_0000_0000_0000_0000_0000 Décalage à droite d'une position : (i >> 1) 0101_1111_0011_0111_0101_1001_1101_1111 Le nombre magique 0x5f3759df 0100_0000_0010_0111_0101_1001_1101_1111 le résultat de 0x5f3759df - (i >> 1) En utilisant la représentation IEEE 32-bit : 0_01111100_01000000000000000000000 1.25 * 2^-3 0_00111110_00100000000000000000000 1.125 * 2^-65 0_10111110_01101110101100111011111 1.432430... * 2^+63 0_10000000_01001110101100111011111 1.307430... * 2^+1 En réinterprétant la dernière trame binaire en tant que nombre à virgule flottante on obtient l'approximation y = 2,614 86 ayant une erreur relative d'environ 3,4 %. Après une itération de la méthode de Newton, le résultat final est y = 2,525 49 avec une erreur de seulement 0,17 %. Fonctionnement de l'algorithme L'algorithme calcule 1/√ x en effectuant les étapes suivantes : 1. Transforme l'argument x en entier afin d'appliquer une approximation de log2(x) ; 2. Utilise cet entier pour calculer une approximation de log2(1/√ x) ; 3. Transforme celui-ci afin de revenir à un nombre flottant afin d'effectuer une approximation de l'exponentielle base-2 ; 4. Affine l'approximation en utilisant une itération de la méthode de Newton. Représentation en nombre flottant Puisque cet algorithme se base fortement sur la représentation bit à bit des nombres à virgule flottante de simple-précision, un aperçu rapide de ce système est fourni ici. Afin d'encoder un nombre réel non nul x en tant que flottant de simple-précision, on commence par écrire x comme un nombre binaire en notation scientifique : Où l'exposant ex est un entier, mx ∈ [0, 1), et 1.b1b2b3... est la représentation binaire de la "mantisse" (1 + mx). Notons qu'il n'est pas nécessaire d'enregistrer le bit avant le point dans la mantisse car il vaut toujours 1. Avec ce formalisme, on calcule 3 entiers : Sx, le "bit de signe", valant 0 si x > 0 ou 1 si x < 0 (1 bit) 12 Ex = ex + B est "l'exposant biaisé" où B = 127 est le "biais d'exposant" (en) (8 bits) 23 13 Mx = mx × L, où L = 2 (23 bits) Ces valeurs sont ensuite condensées de gauche à droite dans un conteneur 32 bit. Par exemple, en utilisant le nombre x = 0,156 25 = 0,001 012. En normalisant x on a : Donc, les trois valeurs entières non signées sont : S = 0 E = −3 + 127 = 124 = 011111002 23 M = 0.25 × 2 = 2097152 = 010000000000000000000002 Ces champs sont condensés comme ceci : Approcher un logarithme en passant à l'entier S'il fallait calculer 1/√ x sans un ordinateur ou une calculatrice, une table de logarithmes serait utile accompagnée de l'identité logb(1/√ x) = −½ logb(x) valide quelle que soit la base b. La racine carrée inverse rapide repose sur cette dernière ainsi que sur le fait que l'on puisse effectuer un logarithme approximatif d'un nombre en passant d'un float32 à un entier. Explications : Soit x un nombre normal positif : On a alors 14 Mais puisque mx ∈ [0, 1), le logarithme de la partie droite peut être arrondi par où σ est un paramètre arbitraire permettant de régler l'arrondi. Par exemple : σ = 0 fournit des résultats exacts aux bords de l'intervalle tandis que σ ≈ 0.0430357 fournit l'approximation optimale. Alors nous avons l'approximation 15 D'un autre côté, en interprétant la représentation binaire de x en tant qu'entier, on obtient : L'entier converti en nombre flottant (en bleu), comparé à On remarque alors que I est une approximation linéaire mise à l'échelle et décalée de log (x), comme présenté sur le graphique ci- x 2 un logarithme décalé et à contre. En d'autres termes, log2(x) est approché par l'échelle (en gris). Première approximation du résultat Le calcul de y = 1/√ x est basé sur l'identité En utilisant l'approximation du logarithme telle que précédemment définie et appliquée à x et y, l'équation devient : Qui s'écrit en code C : i = 0x5f3759df - ( i >> 1 ); Le premier terme étant le nombre magique 16 à partir duquel on déduit σ ≈ 0.0450466.
Recommended publications
  • Modified Fast Inverse Square Root and Square Root Approximation
    computation Article Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants Leonid V. Moroz 1, Volodymyr V. Samotyy 2,3,* and Oleh Y. Horyachyy 1 1 Information Technologies Security Department, Lviv Polytechnic National University, 79013 Lviv, Ukraine; [email protected] (L.V.M.); [email protected] (O.Y.H.) 2 Automation and Information Technologies Department, Cracow University of Technology, 31155 Cracow, Poland 3 Information Security Management Department, Lviv State University of Life Safety, 79007 Lviv, Ukraine * Correspondence: [email protected] Abstract: Many low-cost platforms that support floating-point arithmetic, such as microcontrollers and field-programmable gate arrays, do not include fast hardware or software methods for calculating the square root and/or reciprocal square root. Typically, such functions are implemented using direct lookup tables or polynomial approximations, with a subsequent application of the Newton– Raphson method. Other, more complex solutions include high-radix digit-recurrence and bipartite or multipartite table-based methods. In contrast, this article proposes a simple modification of the fast inverse square root method that has high accuracy and relatively low latency. Algorithms are given in C/C++ for single- and double-precision numbers in the IEEE 754 format for both square root and reciprocal square root functions. These are based on the switching of magic constants in the Citation: Moroz, L.V.; Samotyy, V.V.; initial approximation, depending on the input interval of the normalized floating-point numbers, in Horyachyy, O.Y. Modified Fast order to minimize the maximum relative error on each subinterval after the first iteration—giving Inverse Square Root and Square Root 13 correct bits of the result.
    [Show full text]
  • December 2010 VOLUME 35 NUMBER 6
    December 2010 VOLUME 35 NUMBER 6 OPINION Musings 2 RikR FaR ow SECURITY Introducing Capsicum: Practical Capabilities for UNIX 7 Robe Rt N.M. watsoN, JoNathaN THE USENIX MAGAZINE aNdeRsoN, beN LauRie, aNd kRis keNNaway The Nocebo Effect on the Web: An Analysis of Fake Anti-Virus Distribution 18 Moheeb abu Ra Jab, Lucas baLLaRd, PaNayiotis MavRoMMatis, NieLs PRovos, aNd XiN Zhao Vulnerable Compliance 26 d aN GeeR Overcoming an Untrusted Computing Base: Detecting and Removing Malicious Hardware Automatically 31 Matthew hicks, MuRPh FiNNicuM, saMueL t. kiNG, MiLo M.k. MaRtiN, aNd JoNathaN M. sMith C OLUMNS Practical Perl Tools: Family Man 42 d avid N. bLaNk-edeLMaN Pete’s All Things Sun: Comparing Solaris to RedHat Enterprise and AIX 48 Petee R ba R GaLviN iVoyeur: Ganglia on the Brain 54 d ave JosePhseN /dev/random 58 Robe Rt G. Fe RReLL BOEO K reVI WS Book Reviews 60 El iZabeth Zwicky et a L. useni X NOTES Thankso t Our Volunteers 64 Ell u ie yo ng CN O FERENCES 19th USENIX Security Symposium Reports 67 Report on the 5th USENIX Workshop on Hot Topics in Security 97 Report on the 1st USENIX Workshop on Health Security and Privacy 103 Report on the 4th USENIX Workshop on Offensive Technologies 112 Report on the New Security Paradigms Workshop 117 The Advanced Computing Systems Association dec10covers.indd 1 11.17.10 1:28 PM Upcoming Events 9th USENIX CoNfErence oN fIlE aNd StoragE 2011 USENIX fEdEratEd CoNfErences Week techNologies (FASt ’11) j une 12–17, 2011, portland, OR, uSa Sponsored by USENIX in cooperation with ACM SIGOPS EventS inclUdE:
    [Show full text]
  • Agents for Games and Simulations
    First International Workshop on Agents for Games and Simulations Budapest May 11, 2009 i Table of Contents Preface iii Avi Rosenfeld and Sarit Kraus. Modeling Agents through Bounded Rationality Theories 1 Jean-Pierre Briot, Alessandro Sordoni, Eurico Vasconcelos, Gustavo Melo, Marta de Azevedo Irving and Isabelle Alvarez. Design of a Decision Maker Agent for a Distributed Role Playing Game - Experience of the SimParc Project 16 Michael Köster, Peter Novák, David Mainzer and Bernd Fuhrmann. Two Case Studies for Jazzyk BSM 31 Joost Westra, Hado van Hasselt, Frank Dignum and Virginia Dignum. Adaptive serious games using agent organizations 46 D.W.F. van Krevelen. Intelligent Agent Modeling as Serious Game 61 Gustavo Aranda, Vicent Botti and Carlos Carrascosa. The MMOG Layer: MMOG based on MAS 75 Ivan M. Monteiro and Luis O. Alvares. A Teamwork Infrastructure for Computer Games with Real-Time Requirements 90 Barry Silverman, Deepthi Chandrasekaran, Nathan Weyer, David Pietrocola, Robert Might and Ransom Weaver. NonKin Village: A Training Game for Learning Cultural Terrain and Sustainable Counter-Insurgent Operations 106 Mei Yii Lim, Joao Dias, Ruth Aylett and Ana Paiva. Intelligent NPCs for Education Role Play Game 117 Derek J. Sollenberger and Munindar P. Singh. Architecture for Affective Social Games 129 Jakub Gemrot, Rudolf Kadlec, Michal Bída, Ondřej Burkert, Radek Píbil, Jan Havlíček, Juraj Šimlovič, Radim Vansa, Michal Štolba, Lukáš Zemčák and Cyril Brom. Pogamut 3 Can Assist Developers in Building AI for Their Videogame Agents 144 Daniel Castro Silva, Ricardo Silva, Luís Paulo Reis and Eugénio Oliveira. Agent-Based Aircraft Control Strategies in a Simulated Environment 149 ii Preface Multi Agent System research offers a promising technology to implement cognitive intelligent Non Playing Characters.
    [Show full text]
  • ABSTRACT LOHMEYER, EDWIN LLOYD. Unstable Aesthetics
    ABSTRACT LOHMEYER, EDWIN LLOYD. Unstable Aesthetics: The Game Engine and Art Modifications (Under the direction of Dr. Andrew Johnston). This dissertation examines episodes in the history of video game modding between 1995 and 2010, situated around the introduction of the game engine as a software framework for developing three-dimensional gamespaces. These modifications made to existing software and hardware were an aesthetic practice used by programmers and artists to explore the relationship between abstraction, the materiality of game systems, and our phenomenal engagement with digital media. The contemporary artists that I highlight—JODI, Cory Arcangel, Orhan Kipcak, Julian Oliver, and Tom Betts—gravitated toward modding because it allowed them to unveil the technical processes of the engine underneath layers of the game’s familiar interface, in turn, recalibrating conventional play into sensual experiences of difference, uncertainty, and the new. From an engagement with abstract forms, they employed modding techniques to articulate new modes of aesthetic participation through an affective encounter with altered game systems. Furthermore, they used abstraction, the very strangeness of the mod’s formal elements, to reveal our habitual interactions with video games by destabilizing conventional gamespaces through sensory modalities of apperception and proprioception. In considering the imbrication of technics and aesthetics in game engines, this work aims to resituate modding practices within a dynamic and more inclusive understanding
    [Show full text]
  • Survey of the Fast Computation of the Reciprocal Square Root Through Integer Operations on Floating-Point Values
    Survey of the Fast Computation of the Reciprocal Square Root through Integer Operations on Floating-Point Values Thomas Nelson University of Massachusetts Lowell Published July 27, 2017 Abstract Finding a value's reciprocal square root has many uses in vector-based calculations, but arithmetic calculations of finding a square root and performing division are too computationally expensive for typical large-scale real-time performance constraints. This survey examines the \Fast Inverse Square Root" algorithm and explores the techniques of its implementation through examination of the Newton-Raphson Method of Approximation and the magic-number 0x5f3759df which allow for the reciprocal square root to be calculated with only multiplication and subtraction operations. 1 Overview p1 The reciprocal of the square root of a value, x , also called the \inverse square root" is necessary for vector calculations which are instrumental in common 3D-rendering applications. Due to the time-sensitive nature of these applications, there has been a great deal of development over the past 20 years in providing fast approximations of this reciprocal value. While hardware manufacturers began including instruction-set level methods of performing this calculation in 1999, it has taken some time for these to become widespread in end-user machines [5]. An algorithm to quickly find this reciprocal, known as the \Fast Inverse Square Root" algorithm, was popularized and publicized in the late 90s as a general-use solution. 1 Fast Computation of the Reciprocal Square Root THE ALGORITHM This survey explores this \Fast Inverse Square Root" algorithm in detail, providing a full examination of the mathematical formula it employs as well as a derivation of the notorious magic number 0x5f3759df found therein.
    [Show full text]
  • Elementary Functions and Approximate Computing Jean-Michel Muller
    Elementary Functions and Approximate Computing Jean-Michel Muller To cite this version: Jean-Michel Muller. Elementary Functions and Approximate Computing. Proceedings of the IEEE, Institute of Electrical and Electronics Engineers, 2020, 108 (12), pp.1558-2256. 10.1109/JPROC.2020.2991885. hal-02517784v2 HAL Id: hal-02517784 https://hal.archives-ouvertes.fr/hal-02517784v2 Submitted on 29 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Elementary Functions and Approximate Computing Jean-Michel Muller** Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 Lyon, France Abstract—We review some of the classical methods used for consequence of that nonlinearity is that a small input error quickly obtaining low-precision approximations to the elementary can sometimes imply a large output error. Hence a very careful functions. Then, for each of the three main classes of elementary error control is necessary, especially when approximations are function algorithms (shift-and-add algorithms, polynomial or rational approximations, table-based methods) and for the ad- cascaded: approximate computing cannot be quick and dirty y y log (x) ditional, specific to approximate computing, “bit-manipulation” computing.
    [Show full text]
  • PAPPNASE + We Believe In
    +++++ Kürzeste und längste MV im selben (Uni)Jahr +++ Tschechisch für Anfänger im oVIS +++ FERIEE...ähh LERNPHASEEEEEE PAPPNASE + We believe in www.visionen.ethz.ch Ausgabe 03 / Juni 2018 Mobilität Magazin des Vereins der Informatik Stu die r enden an der ETH Zürich (VIS) Open Systems gehört mit seinen Mission Control Security Services im Bereich IT- Sicherheit zu den europaweit anerkannten Anbietern. Wir arbeiten von Zürich und Sydney aus in einem dynamischen Umfeld in über 180 Ländern. Bei uns kannst Du Dein Wissen in einem jungen Team in die Praxis umsetzen und rasch Verantwortung übernehmen. Infos über Einstiegs- und Karrieremöglichkeiten sowie Videos findest Du auf unserer Website. www.open.ch 3 Editorial Liebe Leserinnen und Leser Dies wird wohl mein letztes Editorial sein. Das Ende meines Bachelors nähert sich in grossen Schritten und im nächsten Semster werde ich zumindest vor- übergehend nicht mehr durch die Gänge des CABs wandeln, da ich ein Prak- tikum mache. Im Moment scheint generell alles in Bewegung zu sein. Hörte sich die Idee einer VISCON für mich vor einigen Monaten noch nach einer grossen Schnaps- idee an, wird sie im Oktober Realität. Max schwört euch mit einem Artikel auf den Event ein. Ebenfalls hat Max einen Bericht über den Mitgliederrat des VSETH geschrieben. Wer sich für dessen Verbandspolitik interessiert und wis- sen möchte, warum der AMIV der einzige Fachverein ist, der sich "für die Anlie- gen der Studierenden einsetzt", dem sei dieser Artikel ans Herz gelegt. Vorher kommt aber noch der Sommer, der während des ETH-Studiums nicht nur Freude bereithält, schliesslich sollte man noch lernen.
    [Show full text]
  • Logic Programming in Non-Conventional Environments
    Logic Programming in non-conventional environments Stefano Germano Nov 2014 – Oct 2017 Version: 2.0 Department of Mathematics and Computer Science Doctoral Degree in Mathematics and Computer Science XXX Cycle – S.S.D. INF/01 Doctoral Thesis Logic Programming in non-conventional environments Stefano Germano Coordinator Prof. Nicola Leone Supervisor Prof. Giovambattista Ianni Nov 2014 – Oct 2017 This work is licensed under a Creative Commons ‘Attribution 4.0 International’ licence. Stefano Germano Logic Programming in non-conventional environments Doctoral Thesis, Nov 2014 – Oct 2017 Coordinator of the Doctoral Programme: Prof. Nicola Leone Supervisor: Prof. Giovambattista Ianni University of Calabria Doctoral Degree in Mathematics and Computer Science Department of Mathematics and Computer Science Via Pietro Bucci – I-87036 Arcavacata di Rende, CS – Italy Abstract Logic Programming became a very useful paradigm in many different areas and thus several languages (and solvers) have been created to support various kinds of reasoning tasks. However, in the last decades, thanks also to results in the Com- putational Complexity area, the weaknesses and the limits of this formalism have been revealed. Therefore, we decided to study solutions that would allow the use of the Logic Programming paradigm in contexts, such as Stream Reasoning, Big Data or Games’ AI, that have very specific constraints that make the practical use of logic- based formalisms not so straightforward. Logic Programming is best used for problems where a properly defined search space can be identified and has to be explored in full. For this reason, almost all the approaches that have been tried so far, have focused on problems where the amount of input data is not huge and is stored in a few well-defined sources, which are often completely available at the beginning of the computation.
    [Show full text]
  • Leonid MOROZ4 EFEKTYWNY ALGORYTM DLA SZYBKIEGO
    Andriy HRYNCHYSHYN 1, Oleh HORYACHYY 2, Oleksandr TYMOSHENKO 3 Supervisor: Leonid MOROZ 4 EFEKTYWNY ALGORYTM DLA SZYBKIEGO OBLICZANIA ODWROTNO ŚCI PIERWIASTKA KWADRATOWEGO Streszczenie: Funkcje pierwiastka kwadratowego i odwrotno ści pierwiastka kwadratowego dla liczb zmiennoprzecinkowych s ą wa żne dla wielu aplikacji. W artykule przedstawiono kilka modyfikacji oryginalnego algorytmu tzw. Fast Inverse Square Root (FISR) w celu poprawy jego dokładno ści dla liczb zmiennoprzecinkowych pojedynczej precyzji (typ float) standardu IEEE 754. Proponowane algorytmy s ą przeznaczone dla platform bez wsparcia sprz ętowego tych że funkcji, takich jak mikrokontrolery i układy FPGA, ale z szybkimi operacjami zmiennoprzecinkowymi dla dodawania / odejmowania, mno żenia oraz FMA (fused multiply- add). Słowa kluczowe: odwrotno ść pierwiastka kwadratowego, arytmetyka zmiennoprzecinkowa, algorytm FISR, stała magiczna, aproksymacja, funkcja FMA AN EFFICIENT ALGORITHM FOR FAST INVERSE SQUARE ROOT Summary: The square root and inverse square root functions for floating-point numbers are important for many applications. This paper presents a few modifications of the original Fast Inverse Square Root (FISR) algorithm to improve its accuracy. Normalized single precision floating-point numbers (type float ) of IEEE 754 standard are considered. The proposed algorithms are designed for platforms without hardware support of these functions, such as microcontrollers and FPGAs, but with fast floating-point operations for addition/subtraction, multiplication, and fused
    [Show full text]
  • Simple Effective Fast Inverse Square Root Algorithm with Two Magic Constants
    Oleh Horyachyy, Leonid Moroz, Viktor Otenko / International Journal of Computing, 18(4) 2019, 461-470 Print ISSN 1727-6209 [email protected] On-line ISSN 2312-5381 www.computingonline.net International Journal of Computing SIMPLE EFFECTIVE FAST INVERSE SQUARE ROOT ALGORITHM WITH TWO MAGIC CONSTANTS Oleh Horyachyy, Leonid Moroz, Viktor Otenko Lviv Polytechnic National University, 12 Bandera str., 79013 Lviv, Ukraine, [email protected], [email protected], [email protected], http://lpnu.ua Paper history: Abstract: The purpose of this paper is to introduce a modification of Fast Received 09 January 2019 Inverse Square Root (FISR) approximation algorithm with reduced relative Received in revised form 04 June 2019 Accepted 25 October 2019 errors. The original algorithm uses a magic constant trick with input floating- Available online 31 December 2019 point number to obtain a clever initial approximation and then utilizes the classical iterative Newton-Raphson formula. It was first used in the computer game Quake III Arena, causing widespread discussion among scientists and Keywords: inverse square root; programmers, and now it can be frequently found in many scientific applications, FISR algorithm; although it has some drawbacks. The proposed algorithm has such parameters of initial approximation; the modified inverse square root algorithm that minimize the relative error and magic constant; includes two magic constants in order to avoid one floating-point multiplication. IEEE 754 standard; floating-point arithmetic; In addition, we use the fused multiply-add function and iterative methods of FMA function; higher order in the second iteration to improve the accuracy. Such algorithms do maximum relative error; not require storage of large tables for initial approximation and can be effectively Newton-Raphson; used on field-programmable gate arrays (FPGAs) and other platforms without Householder.
    [Show full text]
  • Thesis Outline
    ENERGY AND RUN-TIME PERFORMANCE PRACTICES IN SOFTWARE ENGINEERING DISSERTATION FOR THE AWARD OF THE DOCTORAL DIPLOMA ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS 2021 Stefanos Georgiou Department of Management Science and Technology Athens University of Economics and Business ii Department of Management Science and Technology Athens University of Economics and Business Email: [email protected] Copyright 2021 Stefanos Georgiou This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. iii Supervised by Professor Diomidis Spinellis iv In loving memory of my grandma Contents 1 Introduction 1 1.1 Context ..................................... 1 1.2 Problem Statement ............................... 2 1.3 Proposed Solutions and Contributions ..................... 3 1.4 Thesis Outline .................................. 4 1.5 How to Read this Thesis ............................. 5 2 Related Work 6 2.1 Background ................................... 6 2.1.1 Methodology .............................. 7 2.1.2 Energy Efficiency in the Context of SDLC ................ 8 2.2 Requirements .................................. 9 2.2.1 Survey Studies ............................. 9 2.2.2 Empirical Evaluation Studies ...................... 10 2.3 Design ...................................... 11 2.3.1 Empirical Evaluation of Design Patterns ................ 11 2.3.2 Energy Optimisation of Design Patterns ................ 12 2.4 Implementation ................................. 13 2.4.1 Parallel Programming .........................
    [Show full text]
  • Efficiently Computing the Inverse Square Root Using Integer
    Efficiently Computing the Inverse Square Root Using Integer Operations Ben Self May 31, 2012 Contents 1 Introduction 2 2 Background 2 2.1 Floating Point Representation . 2 2.2 Integer Representation and Operations . 3 3 The Algorithm 3 3.1 Newton's Method . 3 3.2 Computing the Initial Guess . 5 3.2.1 Idea Behind the Initial Guess . 5 3.2.2 Detailed Analysis . 6 3.2.3 Error of the Initial Guess . 8 3.2.4 Finding the Optimal Magic Number . 9 3.3 Results . 12 4 Conclusion 13 1 1 Introduction In the field of computer science, clarity of code is usually valued over efficiency. However, sometimes this rule is broken, such as in situations where a small piece of code must be run millions of times per second. One famous example of this can be found in the rendering-related source code of the game Quake III Arena. In computer graphics, vector normalization is a heavily used operation when computing lighting and shading. For example, a renderer will commonly need to do a shading computation at least once for each pixel on the screen. In the modest case where a game is running at 30 frames per second on a screen with a resolution of 800×600 pixels and only a single vector must be normalized for each shading computation, 14,400,000 vector normalizations will need to be performed per second! To normalize a vector x, one must multiply each component by 1 = p 1 . Thus it is important that an inverse square jxj 2 2 x1+···+xn root can be computed efficiently.
    [Show full text]