Sex Chromosomes in Human Tooth Root Growth. Radiographic Studies On

Total Page:16

File Type:pdf, Size:1020Kb

Sex Chromosomes in Human Tooth Root Growth. Radiographic Studies On D855etukansi.fm Page 1 Thursday, September 7, 2006 9:03 AM D 885 OULU 2006 D 885 UNIVERSITY OF OULU P.O. Box 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATIS OULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTA D SERIES EDITORS Raija Lähdesmäki MEDICA RaijaLähdesmäki ASCIENTIAE RERUM NATURALIUM Professor Mikko Siponen SEX CHROMOSOMES BHUMANIORA IN HUMAN TOOTH ROOT Professor Harri Mantila GROWTH CTECHNICA Professor Juha Kostamovaara RADIOGRAPHIC STUDIES ON 47,XYY MALES, DMEDICA 46,XY FEMALES, 47,XXY MALES AND Professor Olli Vuolteenaho 45,X/46,XX FEMALES ESCIENTIAE RERUM SOCIALIUM Senior Assistant Timo Latomaa FSCRIPTA ACADEMICA Communications Officer Elna Stjerna GOECONOMICA Senior Lecturer Seppo Eriksson EDITOR IN CHIEF Professor Olli Vuolteenaho EDITORIAL SECRETARY Publication Editor Kirsti Nurkkala FACULTY OF MEDICINE, INSTITUTE OF DENTISTRY, DEPARTMENT OF ORAL DEVELOPMENT AND ORTHODONTICS, ISBN 951-42-8169-1 (Paperback) UNIVERSITY OF OULU ISBN 951-42-8170-5 (PDF) ISSN 0355-3221 (Print) ISSN 1796-2234 (Online) ACTA UNIVERSITATIS OULUENSIS D Medica 885 RAIJA LÄHDESMÄKI SEX CHROMOSOMES IN HUMAN TOOTH ROOT GROWTH Radiographic studies on 47,XYY males, 46,XY females, 47,XXY males and 45,X/46,XX females Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, for public discussion in Auditorium 1 of the Institute of Dentistry, on September 16th, 2006, at 12 noon OULUN YLIOPISTO, OULU 2006 Copyright © 2006 Acta Univ. Oul. D 885, 2006 Supervised by Professor Lassi Alvesalo Reviewed by Professor Timo Peltomäki Professor Janna Waltimo-Sirén ISBN 951-42-8169-1 (Paperback) ISBN 951-42-8170-5 (PDF) http://herkules.oulu.fi/isbn9514281705/ ISSN 0355-3221 (Printed ) ISSN 1796-2234 (Online) http://herkules.oulu.fi/issn03553221/ Cover design Raimo Ahonen OULU UNIVERSITY PRESS OULU 2006 Lähdesmäki, Raija, Sex chromosomes in human tooth root growth. Radiographic studies on 47,XYY males, 46,XY females, 47,XXY males and 45,X/46,XX females Faculty of Medicine, University of Oulu, P.O.Box 5000, FI-90014 University of Oulu, Finland, Institute of Dentistry, Department of Oral Development and Orthodontics, University of Oulu, P.O.Box 5281, FI-90014 University of Oulu, Finland Acta Univ. Oul. D 885, 2006 Oulu, Finland Abstract Studies on families and individuals with sex chromosome abnormalities and 46,XY females, together with molecular research, have provided proof that both X and Y chromosome genes are expressed in human tooth crown growth. The Y chromosome promotes the formation of both permanent tooth crown enamel and dentin, whereas the effect of the X chromosome is seen mainly in enamel formation. In particular, the effect of the Y chromosome on dentin formation explains the expression of sexual dimorphism in crown size. When crown growth is complete, root dentin is formed and requires proliferation of epithelial cells in Hertwig's epithelial root sheath to initiate the differentiation of root odontoblasts. These epithelial cells determine the size, shape and number of the roots. There is a clear sex difference in tooth crown sizes, men have larger teeth than women. The aim of this research was to study completed permanent tooth root lengths in individuals with sex chromosome abnormalities and 46,XY females, an approach which might also provide some clues for a further insight into the development of sexual dimorphism in human growth. The underlying hypothesis was that the effect of the X and Y chromosomes on crown growth is also expressed in root growth. The subjects were participants of L. Alvesalo's research project, Kvantti, and comprised 45,X/ 46,XX females, 47,XYY and 47,XXY males and female sex reversals with insensitivity to androgens (46,XY females). The root lengths were measured from dental panoramic radiographs with a sliding digital calliper. All available teeth (except third molars) with complete root formation on both sides of the jaws were measured. The results showed longer final permanent tooth root lengths in 47,XYY and 47,XXY males, while the roots in 45,X/46,XX females were shorter compared with the values of normal men and women, respectively. The root lengths of 46,XY females were longer compared to normal women and placed on a level with normal men. The root morphology did not reveal any major deviations from normal variation. In terms of population dental developmental standards it is conceivable that changes in these study groups in final size of their permanent tooth roots become evident during a period beginning eight years after birth and continuing up to the age of 14 years, at least. It became clear that the effect of the Y chromosome on tooth root growth is greater than that of the X chromosome, and this may cause the observed sexual dimorphism, males having longer roots than females. It is suggested that root growth may be affected by the same genes on the X and Y chromosomes which promote crown growth. Keywords: aneuploidy, chromosomes human X, chromosomes human Y, growth and development, humans, sex characteristics, tooth root Just keep on trusting that everything is much more wonderful than we can understand, it is the truth. Vincent van Gogh To my children Perttu, Mauri, Esko, and Seppo Acknowledgements This study was carried out at the Department of Oral Development and Orthodontics, Institute of Dentistry, University of Oulu, first during postgraduate studies and later as a part-time job in addition to work as a clinical orthodontist in the Kuopio and Iisalmi district health care centres. The theoretical studies and writing of the summary to the thesis were carried out in the last year as a part of full-time work at Oulu University. This study is a part of a larger research series belonging to Lassi Alvesalo’s research project, Kvantti, on individuals with sex chromosome abnormalities. The clinical examinations of the patients and relatives, and the documentation were performed by Professor Lassi Alvesalo and his research team, mainly at the Institute of Dentistry, University of Turku, during the 1970s and 1980s. I am most grateful to Professor Lassi Alvesalo, D.Odont., head of the Orthodontic Department, for the opportunity to take part in his research project. My first interest was to find out factors affecting growth in humans, and as an interesting response to this I was asked to study human tooth root growth, which was suggested by Professor Lassi Alvesalo. I want to thank him for the immensely valuable work he has done in conducting me into the world of science in an extremely forbearing and sensible manner. Special thanks go to Professor Erkki Tammisalo, D.Odont. for his great contribution to the accomplishment of radiographic examinations. This work was based entirely on that radiographic method as carried out by him at the Institute of Dentistry, University of Turku. The statistical calculations were performed by Ahti Niinimaa, Ph.D., who also kindly advised me on related problems whenever needed. Malcolm Hicks, M.A. (Cantab.) revised the English language of the reports during all stages of this thesis. He has been of great help in finding good and simple phrases to express the complex notions we have sometimes been dealing with. Sincere thanks to the official reviewers of the thesis, Professor Janna Waltimo-Sirén, D.Odont. Institute of Dentistry, University of Helsinki, and Professor Timo Peltomäki D.Odont., Clinic for Orthodontics and Pediatric Dentistry, Center for Dental and Oral Medicine and Cranio-Maxillofacial Surgery, University of Zürich, Switzerland, for the thorough and constructive comments on the main details and concepts in this thesis. They both get my special thanks for the opportunity to have profound discussions in this subject and tools to clarify the message. I also want to thank in advance my opponent Professor Grant Townsend, D.Odont., Associate Dean (Academic), Dental School, University of Adelaide, Australia. I received irreplaceable help from Ms Sirpa Väätäjä on many occasions during these years, while statistician Päivi Laukkanen, M.Sc. helped me to create the computer databases and secretary Ms Eija Tuomi helped me in transferring some of the data to the computer program. The staff at the Institute of Dentistry has provided good discussions and support during these years, which has greatly encouraged me to continue with the work. The head of the orthodontic department today, Professor Pertti Pirttiniemi, D.Odont., has adopted a very stimulating attitude towards my studies and the personnel of the department have given me most valuable help and support, which has made this all possible. Also I want to thank the Deans of the Institute of Dentistry Professors Aune Raustia, D.Odont. Kyösti Oikarinen, D.Odont. and Hannu Hausen, D.Odont. for providing the facilities to carry out the research. The Kvantti research project was supported during the earlier years by the Emil Aaltonen Foundation, the University of Turku Foundation and the Academy of Finland. In addition, this study has been supported by the University of Oulu, the Finnish Dental Society, Apollonia and the Orthodontic Section of the Finnish Dental Society, Apollonia. My parents have been most helpful and supportive to me in my career in so many ways during all these years. They have always had faith in my visions, and I am most grateful for that. Last but not least, I wish to thank my boys, Perttu, Mauri, Esko and Seppo, for their patience and great understanding during these years when I have been working on this thesis away from home. I hope they feel that it
Recommended publications
  • Oral Health in Prevalent Types of Ehlers–Danlos Syndromes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography J Oral Pathol Med (2005) 34: 298–307 ª Blackwell Munksgaard 2005 Æ All rights reserved www.blackwellmunksgaard.com/jopm Oral health in prevalent types of Ehlers–Danlos syndromes Peter J. De Coster1, Luc C. Martens1, Anne De Paepe2 1Department of Paediatric Dentistry, Centre for Special Care, Paecamed Research, Ghent University, Ghent; 2Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium BACKGROUND: The Ehlers–Danlos syndromes (EDS) Introduction comprise a heterogenous group of heritable disorders of connective tissue, characterized by joint hypermobility, The Ehlers–Danlos syndromes (EDS) comprise a het- skin hyperextensibility and tissue fragility. Most EDS erogenous group of heritable disorders of connective types are caused by mutations in genes encoding different tissue, largely characterized by joint hypermobility, skin types of collagen or enzymes, essential for normal pro- hyperextensibility and tissue fragility (1) (Fig. 1). The cessing of collagen. clinical features, modes of inheritance and molecular METHODS: Oral health was assessed in 31 subjects with bases differ according to the type. EDS are caused by a EDS (16 with hypermobility EDS, nine with classical EDS genetic defect causing an error in the synthesis or and six with vascular EDS), including signs and symptoms processing of collagen types I, III or V. The distribution of temporomandibular disorders (TMD), alterations of and function of these collagen types are displayed in dental hard tissues, oral mucosa and periodontium, and Table 1. At present, two classifications of EDS are was compared with matched controls.
    [Show full text]
  • Spectrum of PEX1 and PEX6 Variants in Heimler Syndrome
    European Journal of Human Genetics (2016) 24, 1565–1571 Official Journal of The European Society of Human Genetics www.nature.com/ejhg ARTICLE Spectrum of PEX1 and PEX6 variants in Heimler syndrome Claire EL Smith1, James A Poulter1, Alex V Levin2,3,4, Jenina E Capasso4, Susan Price5, Tamar Ben-Yosef6, Reuven Sharony7, William G Newman8,9, Roger C Shore10, Steven J Brookes10, Alan J Mighell1,11,12 and Chris F Inglehearn*,1,12 Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6,both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G4A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families.
    [Show full text]
  • International Journal of Dentistry and Oral Health Volume 4 Issue 10, September 2018
    International Journal of Dentistry and Oral Health Volume 4 Issue 10, September 2018 International Journal of Dentistry and Oral Health Case Report ISSN 2471-657X Amelogenesis Imperfecta in Primary Dentition-A Case of Full Mouth Rehabilitation Revathy Viswanathan1, Janak Harish Kumar*2, Suganthi3 1Department of Pedodontics, Tamilnadu Government Dental College and Hospital, Chennai, Tamilnadu, India 2Intern, Department of Pedodontics, Tamilnadu Government Dental College and Hospital, Chennai, Tamilnadu, India 3Department of Pedodontics, Tamilnadu Government Dental College and Hospital, Chennai, Tamilnadu, India Abstract The most common anomalies of dental hard tissues include hereditary defects of enamel. Amelogenesis imperfecta (AI) has been described as a complex group of hereditary conditions that disturbs the developing enamel and exists independent of any related systemic disorder. This clinical case report describes the diagnosis and management of hypoplastic amelogenesis imperfecta in a 5-year-old child. The treatment objectives were to improve aesthetics, improve periodontal health, prevent further loss of tooth structure, and improve the child’s confidence. The treatment plan was to restore the affected teeth with full coverage restorations. Treatment involved placement of composite strip crowns on maxillary anterior teeth and stainless steel crowns on the posterior teeth followed by fluoride varnish application in the upper and lower arches. A 6-month follow-up showed great aesthetic and psychological improvements in the patient. Keywords: Amelogenesis imperfecta, Deciduous dentition, Composite strip crowns, Stainless steel crowns Corresponding author: Janak Harish Kumar teeth and can occur in both primary and permanent dentition which Intern, Department of Pedodontics and Preventive dentistry, results in the teeth being small, pitted, grooved and fragile with Tamilnadu Government Dental College and Hospital, Chennai, India.
    [Show full text]
  • Structural Changes in the Oral Microbiome of the Adolescent
    www.nature.com/scientificreports OPEN Structural changes in the oral microbiome of the adolescent patients with moderate or severe dental fuorosis Qian Wang1,2, Xuelan Chen1,4, Huan Hu2, Xiaoyuan Wei3, Xiaofan Wang3, Zehui Peng4, Rui Ma4, Qian Zhao4, Jiangchao Zhao3*, Jianguo Liu1* & Feilong Deng1,2,3* Dental fuorosis is a very prevalent endemic disease. Although oral microbiome has been reported to correlate with diferent oral diseases, there appears to be an absence of research recognizing any relationship between the severity of dental fuorosis and the oral microbiome. To this end, we investigated the changes in oral microbial community structure and identifed bacterial species associated with moderate and severe dental fuorosis. Salivary samples of 42 individuals, assigned into Healthy (N = 9), Mild (N = 14) and Moderate/Severe (M&S, N = 19), were investigated using the V4 region of 16S rRNA gene. The oral microbial community structure based on Bray Curtis and Weighted Unifrac were signifcantly changed in the M&S group compared with both of Healthy and Mild. As the predominant phyla, Firmicutes and Bacteroidetes showed variation in the relative abundance among groups. The Firmicutes/Bacteroidetes (F/B) ratio was signifcantly higher in the M&S group. LEfSe analysis was used to identify diferentially represented taxa at the species level. Several genera such as Streptococcus mitis, Gemella parahaemolysans, Lactococcus lactis, and Fusobacterium nucleatum, were signifcantly more abundant in patients with moderate/severe dental fuorosis, while Prevotella melaninogenica and Schaalia odontolytica were enriched in the Healthy group. In conclusion, our study indicates oral microbiome shift in patients with moderate/severe dental fuorosis.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • Study of Root Canal Anatomy in Human Permanent Teeth
    Brazilian Dental Journal (2015) 26(5): 530-536 ISSN 0103-6440 http://dx.doi.org/10.1590/0103-6440201302448 1Department of Stomatologic Study of Root Canal Anatomy in Human Sciences, UFG - Federal University of Goiás, Goiânia, GO, Brazil Permanent Teeth in A Subpopulation 2Department of Radiology, School of Dentistry, UNIC - University of Brazil’s Center Region Using Cone- of Cuiabá, Cuiabá, MT, Brazil 3Department of Restorative Dentistry, School of Dentistry of Ribeirão Beam Computed Tomography - Part 1 Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil Carlos Estrela1, Mike R. Bueno2, Gabriela S. Couto1, Luiz Eduardo G Rabelo1, Correspondence: Prof. Dr. Carlos 1 3 3 Estrela, Praça Universitária s/n, Setor Ana Helena G. Alencar , Ricardo Gariba Silva ,Jesus Djalma Pécora ,Manoel Universitário, 74605-220 Goiânia, 3 Damião Sousa-Neto GO, Brasil. Tel.: +55-62-3209-6254. e-mail: [email protected] The aim of this study was to evaluate the frequency of roots, root canals and apical foramina in human permanent teeth using cone beam computed tomography (CBCT). CBCT images of 1,400 teeth from database previously evaluated were used to determine the frequency of number of roots, root canals and apical foramina. All teeth were evaluated by preview of the planes sagittal, axial, and coronal. Navigation in axial slices of 0.1 mm/0.1 mm followed the coronal to apical direction, as well as the apical to coronal direction. Two examiners assessed all CBCT images. Statistical data were analyzed including frequency distribution and cross-tabulation. The highest frequency of four root canals and four apical foramina was found in maxillary first molars (76%, 33%, respectively), followed by maxillary second molars (41%, 25%, respectively).
    [Show full text]
  • Volving Periodontal Attachment, the Apposition of Fire Or Severe Trauma, Physical Features Are Often Cementum at the Root Apex, the Amount of Apical Destroyed
    ISSN 0976-2256 E-ISSN: 2249-6653 The journal is indexed with ‘Indian Science Abstract’ (ISA) (Published by National Science Library), www.ebscohost.com, www.indianjournals.com JADCH is available (full text) online: Website- www.adc.org.in/html/viewJournal.php This journal is an official publication of Ahmedabad Dental College and Hospital, published bi-annually in the month of March and September. The journal is printed on ACID FREE paper. Editor - in - Chief Dr. Darshana Shah Co - Editor Dr. Rupal Vaidya DENTISTRY TODAY... Assistant Editor: We are living in an era in which community experience for Dr. Harsh Shah students is becoming a more essential component to the mission of dental education. Dental Public Health aims to improve the oral health of the population through preventive and curative services. The Editorial Board: introduction of mobile clinics into dentistry dates back to 1924. They have Dr. Mihir Shah been successfully used to provide dental treatment to schools, disabled patients, rural communities, industries and armed forces of various Dr. Vijay Bhaskar countries. Outreach programs using Mobile Dental Vans (MDV) are desirable model of clinical practice in a non-conventional setting, and help Dr. Monali Chalishazar the student to disassociate the image that best dentistry can only be Dr. A. R. Chaudhary practiced in conventional clinical settings. Confrontation with limited resources and economic barriers to Dr. Neha Vyas dental care for patients requiring more extensive procedures also serve as an additional learning experience in community-based programs. Unlike Dr. Sonali Mahadevia stationary dental clinics, mobile clinics provide greater physical access to dental care for medically underserved populations in poor urban and Dr.
    [Show full text]
  • Review Article Mouse Homologues of Human Hereditary Disease
    I Med Genet 1994;31:1-19 I Review article J Med Genet: first published as 10.1136/jmg.31.1.1 on 1 January 1994. Downloaded from Mouse homologues of human hereditary disease A G Searle, J H Edwards, J G Hall Abstract involve homologous loci. In this respect our Details are given of 214 loci known to be genetic knowledge of the laboratory mouse associated with human hereditary dis- outstrips that for all other non-human mam- ease, which have been mapped on both mals. The 829 loci recently assigned to both human and mouse chromosomes. Forty human and mouse chromosomes3 has now two of these have pathological variants in risen to 900, well above comparable figures for both species; in general the mouse vari- other laboratory or farm animals. In a previous ants are similar in their effects to the publication,4 102 loci were listed which were corresponding human ones, but excep- associated with specific human disease, had tions include the Dmd/DMD and Hprt/ mouse homologues, and had been located in HPRT mutations which cause little, if both species. The number has now more than any, harm in mice. Possible reasons for doubled (table 1A). Of particular interest are phenotypic differences are discussed. In those which have pathological variants in both most pathological variants the gene pro- the mouse and humans: these are listed in table duct seems to be absent or greatly 2. Many other pathological mutations have reduced in both species. The extensive been detected and located in the mouse; about data on conserved segments between half these appear to lie in conserved chromo- human and mouse chromosomes are somal segments.
    [Show full text]
  • Cell Proliferation Study in Human Tooth Germs
    Cell proliferation study in human tooth germs Vanesa Pereira-Prado1, Gabriela Vigil-Bastitta2, Estefania Sicco3, Ronell Bologna-Molina4, Gabriel Tapia-Repetto5 DOI: 10.22592/ode2018n32a10 Abstract The aim of this study was to determine the expression of MCM4-5-6 in human tooth germs in the bell stage. Materials and methods: Histological samples were collected from four fetal maxillae placed in paraffin at the block archive of the Histology Department of the School of Dentistry, UdelaR. Sections were made for HE routine technique and for immunohistochemistry technique for MCM4-5-6. Results: Different regions of the enamel organ showed 100% positivity in the intermediate layer, a variation from 100% to 0% in the inner epithelium from the cervical loop to the incisal area, and 0% in the stellar reticulum as well as the outer epithelium. Conclusions: The results show and confirm the proliferative action of the different areas of the enamel organ. Keywords: MCM4, MCM5, MCM6, tooth germ, cell proliferation. 1 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0001- 7747-671 2 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0002- 0617-1279 3 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0003- 1137-6866 4 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0001- 9755-4779 5 Histology Department, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0003-4563-9142 78 Odontoestomatología. Vol. XX - Nº 32 - Diciembre 2018 Introduction that all the DNA is replicated (12), and prevents DNA from replicating more than once in the Tooth organogenesis is a process involving a same cell cycle (13).
    [Show full text]
  • Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A.
    [Show full text]
  • Infectious Complications of Dental and Periodontal Diseases in the Elderly Population
    INVITED ARTICLE AGING AND INFECTIOUS DISEASES Thomas T. Yoshikawa, Section Editor Infectious Complications of Dental and Periodontal Diseases in the Elderly Population Kenneth Shay Geriatrics and Extended Care Service Line, Veterans Integrated Services Network 11, Geriatric Research Education and Clinical Center and Dental Service, Ann Arbor Downloaded from https://academic.oup.com/cid/article/34/9/1215/463157 by guest on 02 October 2021 Veterans Affairs Healthcare System, and University of Michigan School of Dentistry, Ann Arbor Retention of teeth into advanced age makes caries and periodontitis lifelong concerns. Dental caries occurs when acidic metabolites of oral streptococci dissolve enamel and dentin. Dissolution progresses to cavitation and, if untreated, to bacterial invasion of dental pulp, whereby oral bacteria access the bloodstream. Oral organisms have been linked to infections of the endocardium, meninges, mediastinum, vertebrae, hepatobiliary system, and prosthetic joints. Periodontitis is a pathogen- specific, lytic inflammatory reaction to dental plaque that degrades the tooth attachment. Periodontal disease is more severe and less readily controlled in people with diabetes; impaired glycemic control may exacerbate host response. Aspiration of oropharyngeal (including periodontal) pathogens is the dominant cause of nursing home–acquired pneumonia; factors reflecting poor oral health strongly correlate with increased risk of developing aspiration pneumonia. Bloodborne peri- odontopathic organisms may play a role in atherosclerosis. Daily oral hygiene practice and receipt of regular dental care are cost-effective means for minimizing morbidity of oral infections and their nonoral sequelae. More than 300 individual cultivable species of microbes have growing importance in the elderly population. In 1957, nearly been identified in the human mouth [1], with an estimated 1014 70% of the US population aged 175 years had no natural teeth.
    [Show full text]
  • Assessing Human Weaning Practices with Calcium Isotopes in Tooth Enamel
    Assessing human weaning practices with calcium isotopes in tooth enamel Théo Tacaila,1, Béatrice Thivichon-Princeb,c,d, Jeremy E. Martina, Cyril Charlesb, Laurent Viriotb, and Vincent Baltera aLaboratoire de Géologie de Lyon: Terre, Planètes, et Environnement, Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5276, 69364 Lyon, France; bTeam Evolution of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5242, Université Claude Bernard Lyon 1, 69364 Lyon, France; cFaculté d’Odontologie, Université Claude Bernard Lyon 1, 69372 Lyon, France; and dService d’Odontologie, Hospices Civils de Lyon, 69008 Lyon, France Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved April 26, 2017 (received for review March 16, 2017) Weaning practices differ among great apes and likely diverged at first female reproduction, shorter intervals between births, ex- during the course of human evolution, but behavioral inference from tended postmenopausal longevity, and a longer lifespan (5, 16, 21). the fossil record is hampered by a lack of unambiguous biomarkers. Study of past human populations including health, demography, Here, we show that early-life dietary transitions are recorded in and evolution is partly hampered by a lack of direct evidence of human deciduous tooth enamel as marked variations in Ca isotope weaning behavior in archaeological and fossil settings. Predictions ratios (δ44/42Ca). Using a sequential microsampling method along the from life-history theory and indirect morphological or histological enamel growth axis, we collected more than 150 enamel microsam- markers bring little solid insight into past weaning practices (9).
    [Show full text]